首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exciting new SPECT systems can be created by combining pinhole imaging with compact high-resolution gamma cameras. These new systems are able to solve the problem of the limited sensitivity-resolution trade-off that hampers contemporary small animal SPECT. The design presented here (U-SPECT-III) uses a set of detectors placed in a polygonal configuration and a cylindrical collimator that contains 135 pinholes arranged in nine rings. Each ring contains 15 gold pinhole apertures that focus on the centre of the cylinder. A non-overlapping projection is acquired via each pinhole. Consequently, when a mouse brain is placed in the central field-of-view, each voxel in the cerebrum can be observed via 130 to 135 different pinholes simultaneously. A method for high-resolution scintillation detection is described that eliminates the depth-of-interaction problem encountered with pinhole cameras, and is expected to provide intrinsic detector resolutions better than 150 microm. By means of simulations U-SPECT-III is compared to a simulated dual pinhole SPECT (DP-SPECT) system with a pixelated array consisting of 2.0 x 2.0 mm NaI crystals. Analytic calculations indicate that the proposed U-SPECT-III system yields an almost four times higher linear and about sixty times higher volumetric system resolution than DP-SPECT, when the systems are compared at matching system sensitivity. In addition, it should be possible to achieve a 15 up to 30 times higher sensitivity with U-SPECT-III when the systems are compared at equal resolution. Simulated images of a digital mouse-brain phantom show much more detail with U-SPECT-III than with DP-SPECT. In a resolution phantom, 0.3 mm diameter cold rods are clearly visible with U-SPECT-III, whereas with DP-SPECT the smallest visible rods are about 0.6-0.8 mm. Furthermore, with U-SPECT-III, the image deformations outside the central plane of reconstruction that hamper conventional pinhole SPECT are strongly suppressed. Simulation results indicate that future pinhole SPECT systems are likely to bring about significant improvements in radio-molecular imaging of small animals.  相似文献   

2.
A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high-resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners.  相似文献   

3.
This paper presents an analysis of two cone beam configurations (having focal lengths of 40 and 60 cm) for the acquisition of single photon emission computed tomography (SPECT) projection data. A three-dimensional filtered backprojection algorithm is used to reconstruct SPECT images of cone beam projection data obtained using Monte Carlo simulations. The mathematical analysis resulted in on-axis point source sensitivities (calculated for a distance of 15 cm from the collimator surface) for cone beam configurations that were 1.4-3 times the sensitivities of parallel-hole and fan beam geometries having similar geometric resolutions. Cone beam collimation offers the potential for improved sensitivity for SPECT devices using large-field-of-view scintillation cameras.  相似文献   

4.
In quantitative pinhole SPECT, photon penetration through the collimator edges (penetration), and photon scattering by the object (object scatter) and collimator (collimator scatter) have not been investigated rigorously. Monte Carlo simulation was used to evaluate these three physical processes for different tungsten knife-edge pinhole collimators using uniform, hotspot and donut phantoms filled with 201Tl, 99mTc, 123I and 131I solutions. For the hotspot phantom, the penetration levels with respect to total counts for a 1 mm pinhole aperture were 78%, 28% and 23% for 131I, 123I and 99mTc, respectively. For a 2 mm aperture, these values were 65% for 131I, 16% for 123I and 12% for 99mTc. For all pinholes, 201Tl penetration was less than 4%. The evaluated scatter (from object and collimator) with a hotspot phantom for the 1 mm pinhole was 24%, 16%, 18% and 13% for 201Tl, 99mTc, 123I and 131I, respectively. Summation of the object and collimator scatter for the uniform phantom was approximately 20% higher than that for the hotspot phantom. Significant counts due to penetration and object and collimator scatter in the reconstructed image were observed inside the core of the donut phantom. The collimator scatter can be neglected for all isotopes used in this study except for 131I. Object scatter correction for all radionuclides used in this study is necessary and correction for the penetration contribution is necessary for all radionuclides but 201Tl.  相似文献   

5.
Huang Q  Zeng GL 《Medical physics》2006,33(4):997-1004
The pinhole collimator is currently the collimator of choice in small animal single photon emission computed tomography (SPECT) imaging because it can provide high spatial resolution and reasonable sensitivity when the animal is placed very close to the pinhole. It is well known that if the collimator rotates around the object (e.g., a small animal) in a circular orbit to form a cone-beam imaging geometry with a planar trajectory, the acquired data are not sufficient for an exact artifact-free image reconstruction. In this paper a novel skew-slit collimator is mounted instead of the pinhole collimator in order to significantly reduce the image artifacts caused by the geometry. The skew-slit imaging geometry is a more generalized version of the pinhole imaging geometry. The multiple pinhole geometry can also be extended to the multiple-skew-slit geometry. An analytical algorithm for image reconstruction based on the tilted fan-beam inversion is developed with nonuniform attenuation compensation. Numerical simulation shows that the axial artifacts are evidently suppressed in the skew-slit images compared to the pinhole images and the attenuation correction is effective.  相似文献   

6.
Geometric characterization of multi-axis multi-pinhole SPECT   总被引:1,自引:0,他引:1  
A geometric model and calibration process are developed for single photon emission computed tomography (SPECT) imaging with multiple pinholes and multiple mechanical axes. Unlike the typical situation where pinhole collimators are mounted directly to rotating gamma ray detectors, this geometric model allows for independent rotation of the detectors and pinholes, for the case where the pinhole collimator is physically detached from the detectors. This geometric model is applied to a prototype small animal SPECT device with a total of 22 pinholes and which uses dual clinical SPECT detectors. All free parameters in the model are estimated from a calibration scan of point sources and without the need for a precision point source phantom. For a full calibration of this device, a scan of four point sources with 360 degrees rotation is suitable for estimating all 95 free parameters of the geometric model. After a full calibration, a rapid calibration scan of two point sources with 180 degrees rotation is suitable for estimating the subset of 22 parameters associated with repositioning the collimation device relative to the detectors. The high accuracy of the calibration process is validated experimentally. Residual differences between predicted and measured coordinates are normally distributed with 0.8 mm full width at half maximum and are estimated to contribute 0.12 mm root mean square to the reconstructed spatial resolution. Since this error is small compared to other contributions arising from the pinhole diameter and the detector, the accuracy of the calibration is sufficient for high resolution small animal SPECT imaging.  相似文献   

7.
A whole-body single-photon emission computed tomography system (SPECT) consisting of two large-field-of-view scintillation cameras mounted on a rotatable gantry, a minicomputer and a display station has been designed, constructed and evaluated. In its usual mode of operation, eleven contiguous transverse sections, each 12.5 or 25 mm thick, are reconstructed from projection data acquired during a single, continuous 360 degree rotation lasting from 2 to 22 min. A generalised filtered and weighted backprojection algorithm is used to reconstruct data obtained with conventional parallel-hole collimators in the case of body scanning, or with specially designed fan beam collimators in the case of centrally positioned organs. A simple, yet effective, correction is used to compensate for the effects of gamma ray attenuation within the patient. In addition to providing transverse section images, the system is capable of simultaneous acquisition of opposed conventional scintigrams, the reconstruction of longitudinal section images, and the acquisition of gated cardiac transverse sections. Resolutions in the reconstructed images are typically 15 mm for body scans and 11 mm for brain scans, with only slight variations in sensitivity and resolution within the image. Phantoms and clinical data demonstrate that the SPECT system generates high quality section images while maintaining most of the flexibility of normal scintillation cameras, with the added advantage of dual heads.  相似文献   

8.
A single photon emission computed tomography (SPECT) rotating slat collimator with strip detector acquires distance-weighted plane integral data, along with the attenuation factor and distance-dependent detector response. In order to image a 3D object, the slat collimator device has first to spin around its axis and then rotate around the object to produce 3D projection measurements. Compared to the slice-by-slice 2D reconstruction for the parallel-hole collimator and line integral data, a more complex 3D reconstruction is needed for the slat collimator and plane integral data. In this paper, we propose a 3D RBI-EM reconstruction algorithm with spherically-symmetric basis function, also called 'blobs', for the slat collimator. It has a closed and spherically symmetric analytical expression for the 3D Radon transform, which makes it easier to compute the plane integral than the voxel. It is completely localized in the spatial domain and nearly band-limited in the frequency domain. Its size and shape can be controlled by several parameters to have desired reconstructed image quality. A mathematical lesion phantom study has demonstrated that the blob reconstruction can achieve better contrast-noise trade-offs than the voxel reconstruction without greatly degrading the image resolution. A real lesion phantom study further confirmed this and showed that a slat collimator with CZT detector has better image quality than the conventional parallel-hole collimator with NaI detector. The improvement might be due to both the slat collimation and the better energy resolution of the CZT detector.  相似文献   

9.
Obtaining the best possible task performance using reconstructed SPECT images requires optimization of both the collimator and reconstruction parameters. The goal of this study is to determine how to perform this optimization, namely whether the collimator parameters can be optimized solely from projection data, or whether reconstruction parameters should also be considered. In order to answer this question, and to determine the optimal collimation, a digital phantom representing a human torso with 16 mm diameter hot lesions (activity ratio 8:1) was generated and used to simulate clinical SPECT studies with parallel-hole collimation. Two approaches to optimizing the SPECT system were then compared in a lesion quantification task: sequential optimization, where collimation was optimized on projection data using the Cramer–Rao bound, and joint optimization, which simultaneously optimized collimator and reconstruction parameters. For every condition, quantification performance in reconstructed images was evaluated using the root-mean-squared-error of 400 estimates of lesion activity. Compared to the joint-optimization approach, the sequential-optimization approach favoured a poorer resolution collimator, which, under some conditions, resulted in sub-optimal estimation performance. This implies that inclusion of the reconstruction parameters in the optimization procedure is important in obtaining the best possible task performance; in this study, this was achieved with a collimator resolution similar to that of a general-purpose (LEGP) collimator. This collimator was found to outperform the more commonly used high-resolution (LEHR) collimator, in agreement with other task-based studies, using both quantification and detection tasks.  相似文献   

10.
Investigators in nuclear medicine have long been in search of a practical method to increase the number of detected events in cardiac SPECT. A clinically practical method requires a simple data acquisition protocol, clinically acceptable reconstruction times, artifact levels near or below visual threshold, and the use of currently available cameras and computers. Towards this end, we have developed the Cardiofocal collimator, a variable-focus collimator for cardiac SPECT that increases the number of detected events from the heart by more than a factor of two compared to that of a parallel-hole collimator with equivalent resolution. In both the transverse and axial dimensions, the focusing is strongest at the centre of the collimator, and gradually relaxes to nearly parallel-hole collimation at the edge of the collimator. The variable-focus concept provides an increase in the number of counts from organs imaged near the centre of the collimator, where the heart will spend most of the time during a cardiac SPECT study, while adequately sampling enough of the background activity distribution to prevent truncation artifacts in the reconstructed images. Images are reconstructed in clinically acceptable times using a filtered backprojection reconstruction algorithm. The algorithm supports both full-scan (360 degrees) and short-scan (180 degrees plus the fan angle) acquisitions. The results of simulations and phantom studies are included to demonstrate the performance of the Cardiofocal collimator.  相似文献   

11.
Attenuation of photon flux on trajectories between the source and pinhole apertures affects the quantitative accuracy of reconstructed single-photon emission computed tomography (SPECT) images. We propose a Chang-based non-uniform attenuation correction (NUA-CT) for small-animal SPECT/CT with focusing pinhole collimation, and compare the quantitative accuracy with uniform Chang correction based on (i) body outlines extracted from x-ray CT (UA-CT) and (ii) on hand drawn body contours on the images obtained with three integrated optical cameras (UA-BC). Measurements in phantoms and rats containing known activities of isotopes were conducted for evaluation. In (125)I, (201)Tl, (99m)Tc and (111)In phantom experiments, average relative errors comparing to the gold standards measured in a dose calibrator were reduced to 5.5%, 6.8%, 4.9% and 2.8%, respectively, with NUA-CT. In animal studies, these errors were 2.1%, 3.3%, 2.0% and 2.0%, respectively. Differences in accuracy on average between results of NUA-CT, UA-CT and UA-BC were less than 2.3% in phantom studies and 3.1% in animal studies except for (125)I (3.6% and 5.1%, respectively). All methods tested provide reasonable attenuation correction and result in high quantitative accuracy. NUA-CT shows superior accuracy except for (125)I, where other factors may have more impact on the quantitative accuracy than the selected attenuation correction.  相似文献   

12.
Zeng GL  Gagnon D 《Medical physics》2004,31(12):3461-3473
This paper discusses the use of small pixels in a spinning CdZnTe single photon emission computed tomography (SPECT) camera that is mounted with a parallel slat collimator. In a conventional slat collimation configuration, there is a detector pixel between two adjacent collimator slats. In our design, the pixel size is halved. That is, there are two smaller pixels to replace a regular pixel between two adjacent slats while the collimator remains unchanged. It has an advantage over our older design that uses tilted slats. In order to acquire a complete data set the tilted-slat collimator must spin 360 degrees at each SPECT view while the proposed design requires only 180 degrees at each SPECT view. Computer simulations and phantom experiments have been carried out to investigate the performance of the small-pixel configuration. It is observed that this design has the potential to increase the spatial resolution of the detector while keeping photon counts the same.  相似文献   

13.
Single photon emission computed tomography (SPECT) is an important technology for molecular imaging studies of small animals. In this arena, there is an increasing demand for high performance imaging systems that offer improved spatial resolution and detection efficiency. We have designed a multipinhole small animal imaging system based on position sensitive avalanche photodiode (PSAPD) detectors with the goal of submillimeter spatial resolution and high detection efficiency, which will allow us to minimize the radiation dose to the animal and to shorten the time needed for the imaging study. Our design will use 8 x 24 mm2 PSAPD detector modules coupled to thallium-doped cesium iodide [CsI(Tl)] scintillators, which can achieve an intrinsic spatial resolution of 0.5 mm at 140 keV. These detectors will be arranged in rings of 24 modules each; the animal is positioned in the center of the 9 stationary detector rings which capture projection data from the animal with a cylindrical tungsten multipinhole collimator. The animal is supported on a bed which can be rocked about the central axis to increase angular sampling of the object. In contrast to conventional SPECT pinhole systems, in our design each pinhole views only a portion of the object. However, the ensemble of projection data from all of the multipinhole detectors provide angular sampling that is sufficient to reconstruct tomographic data from the object. The performance of this multipinhole PSAPD imaging system was simulated using a ray tracing program that models the appropriate point spread functions and then was compared against the performance of a dual-headed pinhole SPECT system. The detection efficiency of both systems was simulated and projection data of a hot rod phantom were generated and reconstructed to assess spatial resolution. Appropriate Poisson noise was added to the data to simulate an acquisition time of 15 min and an activity of 18.5 MBq distributed in the phantom. Both sets of data were reconstructed with an ML-EM reconstruction algorithm. In addition, the imaging performance of both systems was evaluated with a uniformity phantom and a realistic digital mouse phantom. Simulations show that our proposed system produces a spatial resolution of 0.8 mm and an average detection efficiency of 630 cps/MBq. In contrast, simulations of the dual-headed pinhole SPECT system produce a spatial resolution of 1.1 mm and an average detection efficiency of 53 cps/MBq. These results suggest that our novel design will achieve high spatial resolution and will improve the detection efficiency by more than an order of magnitude compared to a dual-headed pinhole SPECT system. We expect that this system can perform SPECT with submillimeter spatial resolution, high throughput, and low radiation dose suitable for in vivo imaging of small animals.  相似文献   

14.
Pinhole collimation can provide both higher sensitivity and resolution than parallel hole collimation when used to image small objects. When objects are placed close to the pinhole, small pinhole diameters combined with high-magnification pinhole geometries yield ultra high resolution images. With Monte Carlo (MC) calculations it is possible to simulate accurately a wide range of features of pinhole imaging. The aim of the present work is to accelerate MC simulations of pinhole SPECT projections. To achieve speed-up, forced detection (FD), a commonly used acceleration technique, is replaced by a kernel-based forced detection (KFD) step. In KFD, instead of tracing individual photons from the source or last scatter position to the detector, a position dependent kernel (point spread function (PSF)) is projected on the detector. The PSFs for channel and knife edge pinhole apertures model the penetration effects through the aperture material. For simulations, the PSFs are pre-calculated and stored in tables. The speed-up and accuracy achieved by using KFD were validated by means of digital phantoms. MC simulations with FD and with KFD converge to almost identical images. However, KFD converges to an equal image noise level one to four orders of magnitude faster than FD, depending on the number of photons simulated. A simulator accelerated by KFD could serve as a practical tool to improve iterative image reconstruction.  相似文献   

15.
Tomographic systems employing truncated projections have been developed for parallel and fan beam collimation and for cone beam CT but the idea has not been extensively explored in pinhole single photon emission computed tomography (SPECT). In this paper, we explore the sampling requirements and system performance of SPECT systems with asymmetric pinhole collimators and truncated projections. We demonstrate that complete 3D sampling can be achieved by using multiple detectors with truncated asymmetric pinholes, offset axially from each other, and a spiral orbit. The use of truncated projections can be exploited in the design of pinhole SPECT systems by moving the pinholes closer to the subject, resulting in increased sensitivity and improved spatial resolution. Truncated and untruncated pinhole systems were evaluated using the contrast-to-noise ratio (CNR) calculated from the linearized local impulse response as a figure of merit. The CNR for the truncated pinhole system was up to 60% greater than that for the untruncated system at matched resolution for a source voxel near the centre of a uniform phantom and 30% greater at the edge. We conclude that an object can be reconstructed from asymmetric pinholes with truncated projections, which leads to potentially important design considerations and applications in single- and multi-pinhole SPECT.  相似文献   

16.
This study simulates a multi-pinhole single-photon emission computed tomography (SPECT) system using the Monte Carlo method, and investigates different multi-pinhole designs for quantitative mouse brain imaging. Prior approaches investigating multi-pinhole SPECT were not often optimal, as the number and geometrical arrangement of pinholes were usually chosen empirically. The present study seeks to optimize the number of pinholes for a given pinhole arrangement, and also for the specific application of quantitative neuroreceptor binding in the mouse brain. An analytical Monte Carlo simulation based method was used to generate the projection data for various count levels. A three-dimensional ordered-subsets expectation-maximization algorithm was developed and used to reconstruct the images, incorporating a realistic pinhole model for resolution recovery and noise reduction. Although artefacts arising from overlapping projections could be a major problem in multi-pinhole reconstruction, the cold-rod phantom study showed minimal loss of spatial resolution in multi-pinhole systems, compared to a single-pinhole system with the same pinhole diameter. A quantitative study of neuroreceptor binding sites using a mouse brain phantom and low activity (37 MBq) showed that the multi-pinhole system outperformed the single-pinhole system by maintaining the mean and lowering the variance in the measured uptake ratio. Multi-pinhole collimation can be used to reduce the injected dose and thereby reduce the radiation exposure to the animal. Results also suggest that the nine-pinhole configuration shown in this paper is a good choice for mouse brain imaging.  相似文献   

17.
Multifocal converging-beam collimation has been suggested for cardiac SPECT imaging to increase sensitivity over the heart without truncation of the activity distribution in the chest. In this study, an analytical reconstruction algorithm is derived for multifocal fan-beam and multifocal cone-beam tomography. In the algorithm, the projection data are differently weighted and filtered, depending on the distance from the detector. For a given image point, the set of filtered data corresponding to the distance between this point and detector is backprojected to determine the pixel value of the point. Thus, the backprojection is done only once at each projection view. To evaluate the algorithm, simulation studies are performed using a 3D Defrise slab phantom without considering photon attenuation and scatter, detector response, and statistical noise. Reconstructed images demonstrate that reasonable quality can be achieved with a modest focal-length variation rate and with a small radius of rotation. A collimator with a focal length increasing quickly near its centre provides better quality in the image region distant from the central plane of the cone geometry, but produces more severe artifacts at the centre of the reconstructed image, compared to a collimator with an initially slowly varying focal length.  相似文献   

18.
Wu MC  Hasegawa BH  Dae MW 《Medical physics》2002,29(12):2830-2839
The increasing use of transgenic mice as models of human physiology and disease has motivated the development of dedicated in vivo imaging systems for anatomic and functional characterization of mice as an adjunct to or a replacement for established ex vivo techniques. We have developed a pinhole single photon emission computed tomography (SPECT) system for high resolution imaging of mice with cardiovascular imaging as the primary application. In this work, we characterize the system performance through phantom studies. The spatial resolution and sensitivity were measured from images of a line source and point source, respectively, and were reported for a range of object-to-pinhole distances and pinhole diameters. Tomographic images of a uniform cylindrical phantom, Defrise phantom, and grid phantom were used to characterize the image uniformity and spatial linearity. The uniform phantom image did not contain any ring or reconstruction artifacts, but blurring in the axial direction was evident in the Defrise phantom images. The grid phantom images demonstrated excellent spatial linearity. A novel phantom modeling perfusion of the left ventricle of a mouse was designed and built with perfusion defects of varying sizes to evaluate the system performance for myocardial perfusion imaging of mice. The defect volumes were measured from the pinhole SPECT images and correlated to the actual defect volumes calculated according to geometric formulas. Linear regression analysis produced a correlation coefficient of r = 0.995 (p < 0.001), demonstrating the feasibility for measurement of perfusion defect size in mice using pinhole SPECT. We have performed phantom studies to characterize the spatial resolution, sensitivity, image uniformity, and spatial linearity of the pinhole SPECT system. Measurement of the perfusion defect size is a valuable phenotypic assessment and will be useful for hypothesis testing in murine models of cardiovascular disease.  相似文献   

19.
Pinhole SPECT often provides an excellent resolution sensitivity trade-off for radionuclide imaging compared to SPECT with parallel holes, particularly when imaging small experimental animals like rodents. High absorption pinhole materials are often chosen because of their low edge penetration and therefore good system resolution. Capturing more photons in the edges however results in decreased system sensitivity if the pinhole diameter remains the same, which may partly undo the beneficial effect on the resolution. In the search for an optimal trade-off we have compared pinhole projection data and reconstructed images of different materials with pinhole aperture diameters adjusted to obtain equal sensitivity. Monte Carlo calculations modeling the transmission, penetration and scattering of gamma radiation in single pinholes of uranium, gold, tungsten and lead were performed for a range of pinhole opening angles, diameters and gamma ray energies. In addition, reconstructed images of a hot rod phantom were determined for a multipinhole SPECT system and for a system that can image the 511 keV annihilation photons of positron emitting tracers with clustered pinholes. Our results indicate that, under the condition of equal sensitivity, tungsten and for SPECT also lead pinholes perform just as well as gold and uranium ones, indicating that a significant cost reduction can be achieved in pinhole collimator manufacturing while the use of rare or impractical materials can be avoided.  相似文献   

20.
Zhang B  Zeng GL 《Medical physics》2006,33(9):3124-3134
A rotating slat collimator can be used to acquire planar-integral data. It achieves higher geometric efficiency than a parallel-hole collimator by accepting more photons, but the planar-integral data contain less tomographic information that may result in larger noise amplification in the reconstruction. Lodge evaluated the rotating slat system and the parallel-hole system based on noise behavior for an FBP reconstruction. Here, we evaluate the noise propagation properties of the two collimation systems for iterative reconstruction. We extend Huesman's noise propagation analysis of the line-integral system to the planar-integral case, and show that approximately 2.0(D/dp) SPECT angles, 2.5(D/dp) self-spinning angles at each detector position, and a 0.5dp detector sampling interval are required in order for the planar-integral data to be efficiently utilized. Here, D is the diameter of the object and dp is the linear dimension of the voxels that subdivide the object. The noise propagation behaviors of the two systems are then compared based on a least-square reconstruction using the ratio of the SNR in the image reconstructed using a planar-integral system to that reconstructed using a line-integral system. The ratio is found to be proportional to the square root of F/D, where F is a geometric efficiency factor. This result has been verified by computer simulations. It confirms that for an iterative reconstruction, the noise tradeoff of the two systems is not only dependent on the increase of the geometric efficiency afforded by the planar projection method, but also dependent on the size of the object. The planar-integral system works better for small objects, while the line-integral system performs better for large ones. This result is consistent with Lodge's results based on the FBP method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号