首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cochlear prostheses for electrical stimulation of the auditory nerve ("electrical hearing") can provide auditory capacity for profoundly deaf adults and children, including in many cases a restored ability to perceive speech without visual cues. A fundamental challenge in auditory neuroscience is to understand the neural and perceptual mechanisms that make rehabilitation of hearing possible in these deaf humans. We have developed a feline behavioral model that allows us to study behavioral and physiological variables in the same deaf animals. Cats deafened by injection of ototoxic antibiotics were implanted with either a monopolar round window electrode or a multichannel scala tympani electrode array. To evaluate the effects of perceptually significant electrical stimulation of the auditory nerve on the central auditory system, an animal was trained to avoid a mild electrocutaneous shock when biphasic current pulses (0.2 ms/phase) were delivered to its implanted cochlea. Psychophysical detection thresholds and electrical auditory brain stem response (EABR) thresholds were estimated in each cat. At the conclusion of behavioral testing, acute physiological experiments were conducted, and threshold responses were recorded for single neurons and multineuronal clusters in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (A1). Behavioral and neurophysiological thresholds were evaluated with reference to cochlear histopathology in the same deaf cats. The results of the present study include: 1) in the cats implanted with a scala tympani electrode array, the lowest ICC and A1 neural thresholds were virtually identical to the behavioral thresholds for intracochlear bipolar stimulation; 2) behavioral thresholds were lower than ICC and A1 neural thresholds in each of the cats implanted with a monopolar round window electrode; 3) EABR thresholds were higher than behavioral thresholds in all of the cats (mean difference = 6.5 dB); and 4) the cumulative number of action potentials for a sample of ICC neurons increased monotonically as a function of the amplitude and the number of stimulating biphasic pulses. This physiological result suggests that the output from the ICC may be integrated spatially across neurons and temporally integrated across pulses when the auditory nerve array is stimulated with a train of biphasic current pulses. Because behavioral thresholds were lower and reaction times were faster at a pulse rate of 30 pps compared with a pulse rate of 2 pps, spatial-temporal integration in the central auditory system was presumably reflected in psychophysical performance.  相似文献   

2.
Cochlear implant speech processors transmit temporal features of sound as amplitude modulation of constant-rate electrical pulse trains. This study evaluated the central representation of amplitude modulation in the form of phase-locked firing of neurons in the auditory cortex. Anesthetized pigmented guinea pigs were implanted with cochlear electrode arrays. Stimuli were 254 pulse/s (pps) trains of biphasic electrical pulses, sinusoidally modulated with frequencies of 10-64 Hz and modulation depths of -40 to -5 dB re 100% (i.e., 1-56.2% modulation). Single- and multiunit activity was recorded from multi-site silicon-substrate probes. The maximum frequency for significant phase locking (limiting modulation frequency) was >or=60 Hz for 42% of recording sites, whereas phase locking to pulses of unmodulated pulse trains rarely exceeded 30 pps. The strength of phase locking to frequencies >or=40 Hz often varied nonmonotonically with modulation depth, commonly peaking at modulation depths around -15 to -10 dB. Cortical phase locking coded modulation frequency reliably, whereas a putative rate code for frequency was confounded by rate changes with modulation depth. Group delay computed from the slope of mean phase versus modulation frequency tended to increase with decreasing limiting modulation frequency. Neurons in cortical extragranular layers had lower limiting modulation frequencies than did neurons in thalamic afferent layers. Those observations suggest that the low-pass characteristic of cortical phase locking results from intracortical filtering mechanisms. The results show that cortical neurons can phase lock to modulated electrical pulse trains across the range of modulation frequencies and depths presented by cochlear implant speech processors.  相似文献   

3.
As cochlear implants have become increasingly successful in the rehabilitation of adults with profound hearing impairment, the number of pediatric implant subjects has increased. We have developed an animal model of congenital deafness and investigated the effect of electrical stimulus frequency on the temporal resolution of central neurons in the developing auditory system of deaf cats. Maximum following frequencies (Fmax) and response latencies of isolated single neurons to intracochlear electrical pulse trains (charge balanced, constant current biphasic pulses) were recorded in the contralateral inferior colliculus (IC) of two groups of neonatally deafened, barbiturate-anesthetized cats: animals chronically stimulated with low-frequency signals (< or = 80 Hz) and animals receiving chronic high-frequency stimulation (> or = 300 pps). The results were compared with data from unstimulated, acutely deafened and implanted adult cats with previously normal hearing (controls). Characteristic differences were seen between the temporal response properties of neurons in the external nucleus (ICX; approximately 16% of the recordings) and neurons in the central nucleus (ICC; approximately 81% of all recordings) of the IC: 1) in all three experimental groups, neurons in the ICX had significantly lower Fmax and longer response latencies than those in the ICC. 2) Chronic electrical stimulation in neonatally deafened cats altered the temporal resolution of neurons exclusively in the ICC but not in the ICX. The magnitude of this effect was dependent on the frequency of the chronic stimulation. Specifically, low-frequency signals (30 pps, 80 pps) maintained the temporal resolution of ICC neurons, whereas higher-frequency stimuli significantly improved temporal resolution of ICC neurons (i.e., higher Fmax and shorter response latencies) compared with neurons in control cats. Furthermore, Fmax and latencies to electrical stimuli were not correlated with the tonotopic gradient of the ICC, and changes in temporal resolution following chronic electrical stimulation occurred uniformly throughout the entire ICC. In all three experimental groups, increasing Fmax was correlated with shorter response latencies. The results indicate that the temporal features of the chronically applied electrical signals critically influence temporal processing of neurons in the cochleotopically organized ICC. We suggest that such plastic changes in temporal processing of central auditory neurons may contribute to the intersubject variability and gradual improvements in speech recognition performance observed in clinical studies of deaf children using cochlear implants.  相似文献   

4.
Current cochlear prostheses use amplitude-modulated pulse trains to encode acoustic signals. In this study we examined the responses of inferior colliculus (IC) neurons to sinusoidal amplitude-modulated pulses and compared the maximum unmodulated pulse rate (Fmax) to which they responded with the maximum modulation frequency (maxFm) that they followed. Consistent with previous results, responses to unmodulated pulses were all low-pass functions of pulse rate. Mean Fmax to unmodulated pulses was 104 pulses per second (pps) and modal Fmax was 60 pps. Above Fmax IC neurons ceased responding except for an onset burst at the beginning of the stimulus. However, IC neurons responded to much higher pulse rates when these pulses were amplitude modulated; 74% were relatively insensitive to carrier rate and responded to all modulated carriers including those exceeding 600 pps. In contrast, the responses of these neurons (70%) were low-pass functions of modulation frequency, and the remaining (30%) had band-pass functions with a maxFm of 42 and 34 Hz, respectively. Thus temporal resolution of IC neurons for modulated frequencies is significantly lower than that for unmodulated pulses. These two measures of temporal resolution (Fmax and maxFm) were uncorrelated (r(2) = 0.101). Several parameters influenced the amplitude and temporal structure of modulation responses including modulation depth, overall intensity and modulation-to-carrier rate ratio. We observed distortions in unit responses to amplitude-modulated signals when this ratio was 1/4 to 1/6. Since most current cochlear implant speech processors permit ratios that are significantly greater than this, severe distortion and signal degradation may occur frequently in these devices.  相似文献   

5.
Temporal modulations in stimulus amplitude are essential for recognizing and categorizing behaviorally relevant acoustic signals such as speech. Despite this behavioral importance, it remains unclear how amplitude modulations (AMs) are represented in the responses of neurons at higher levels of the auditory system. Studies using stimuli with sinusoidal amplitude modulations (SAMs) have shown that the responses of many neurons are strongly tuned to modulation frequency, leading to the hypothesis that AMs are represented by their periodicity in the auditory midbrain. However, AMs in general are defined not only by their modulation frequency, but also by a number of other parameters (duration, duty cycle, etc.), which covary with modulation frequency in SAM stimuli. Thus the relationship between modulation frequency and neural responses as characterized with SAM stimuli alone is ambiguous. In this study, we characterize the representation of AMs in the gerbil inferior colliculus by analyzing neural responses to a series of pulse trains in which duration and interpulse interval are systematically varied to quantify the importance of duration, interpulse interval, duty cycle, and modulation frequency independently. We find that, although modulation frequency is indeed an important parameter for some neurons, the responses of many neurons are also strongly influenced by other AM parameters, typically duration and duty cycle. These results suggest that AMs are represented in the auditory midbrain not only by their periodicity, but by a complex combination of several important parameters.  相似文献   

6.
Interaural time differences (ITDs) are important cues for mammalian sound localization. At high frequencies, sensitivity to ITDs, which are conveyed only by the envelope of the waveforms, has been shown to be poorer than sensitivity to ITDs at low frequencies, which are conveyed primarily by the fine structure of the waveforms. Recently, human psychophysical experiments have demonstrated that sensitivity to envelope-based ITDs in high-frequency transposed tones can be equivalent to low-frequency fine-structure-based ITD sensitivity. Transposed tones are designed to provide high-frequency auditory nerve fibers (ANFs) with similar temporal information to that provided by low-frequency tones. We investigated neural sensitivity to ITDs in high-frequency transposed and sinusoidally amplitude modulated (SAM) tones, in the inferior colliculus of the guinea pig. Neural sensitivity to ITDs in transposed tones was found to be greater than that to ITDs in SAM tones; in response to transposed tones, neural firing rates were more modulated as a function of ITD and discrimination thresholds were found to be lower than those in response to SAM tones. Similar to psychophysical findings, ITD discrimination of single neurons in response to transposed tones for rates of modulation <250 Hz was comparable to neural discrimination of ITDs in low-frequency tones. This suggests that the neural mechanisms that mediate sensitivity to ITDs at high and low frequencies are functionally equivalent, provided that the stimuli result in appropriate temporal patterns of action potentials in ANFs.  相似文献   

7.
In the most commonly used cochlear prosthesis systems, temporal features of sound are signaled by amplitude modulation of constant-rate pulse trains. Several convincing arguments predict that speech reception should be optimized by use of pulse rates > or approximately 2,000 pulses per second (pps) and by use of intracochlear electrode configurations that produce restricted current spread (e.g., bipolar rather than monopolar configurations). Neither of those predictions has been borne out in consistent improvements in speech reception. Neurons in the auditory cortex of anesthetized guinea pigs phase lock to the envelope of sine-modulated electric pulse trains presented through a cochlear implant. The present study used that animal model to quantify the effects of carrier pulse rate, electrode configuration, current level, and modulator wave shape on transmission of temporal information from a cochlear implant to the auditory cortex. Modulation sensitivity was computed using a signal-detection analysis of cortical phase-locking vector strengths. Increasing carrier pulse rate in 1-octave steps from 254 to 4,069 pps resulted in systematic decreases in sensitivity. Comparison of sine- versus square-wave modulator waveforms demonstrated that some, but not all, of the loss of modulation sensitivity at high pulse rates was a result of the decreasing size of pulse-to-pulse current steps at the higher rates. Use of a narrow bipolar electrode configuration, compared with the monopolar configuration, produced a marked decrease in modulation sensitivity. Results from this animal model suggest explanations for the failure of high pulse rates and/or bipolar electrode configurations to produce hoped-for improvements in speech reception.  相似文献   

8.
The auditory midbrain implant (AMI), which is designed for stimulation of the inferior colliculus (IC), is now in clinical trials. The AMI consists of a single shank array (20 contacts) and uses a stimulation strategy originally designed for cochlear implants since it is already approved for human use and we do not yet know how to optimally activate the auditory midbrain. The goal of this study was to investigate the effects of different pulse rates and phase durations on loudness and pitch percepts because these parameters are required to implement the AMI stimulation strategy. Although each patient was implanted into a different region (i.e. lateral lemniscus, central nucleus of IC, dorsal cortex of IC), they generally exhibited similar threshold versus phase duration, threshold versus pulse rate, and pitch versus pulse rate curves. In particular, stimulation with 100 mus/phase, 250 pulse per second (pps) pulse trains achieved an optimal balance among safety, energy, and current threshold requirements while avoiding rate pitch effects. However, we observed large differences across patients in loudness adaptation to continuous pulse stimulation over long time scales. One patient (implanted in dorsal cortex of IC) even experienced complete loudness decay and elevation of thresholds with daily stimulation. Comparing these results with those of cochlear implant and auditory brainstem implant patients, it appears that stimulation of higher order neurons exhibits less and even no loudness summation for higher rate stimuli and greater current leakage for longer phase durations than that of cochlear neurons. The fact that all midbrain regions we stimulated, which includes three distinctly different nuclei, exhibited similar loudness summation effects (i.e. none for pulse rates above 250 pps) suggests a possible shift in some coding properties that is affected more by which stage along the auditory pathway rather than the types of neurons are being stimulated. However, loudness adaptation occurs at multiple stages from the cochlea up to the midbrain.  相似文献   

9.
Bilateral cochlear implantation seeks to improve hearing by taking advantage of the binaural processing of the central auditory system. Cochlear implants typically encode sound in each spectral channel by amplitude modulating (AM) a fixed-rate pulse train, thus interaural time differences (ITD) are only delivered in the envelope. We investigated the ITD sensitivity of inferior colliculus (IC) neurons with sinusoidally AM pulse trains. ITD was introduced independently to the AM and/or carrier pulses to measure the relative efficacy of envelope and fine structure for delivering ITD information. We found that many IC cells are sensitive to ITD in both the envelope (ITDenv) and fine structure (ITDfs) for appropriate modulation frequencies and carrier rates. ITDenv sensitivity was generally similar to that seen in normal-hearing animals with AM tones. ITDenv tuning generally improved with increasing modulation frequency up to the maximum modulation frequency that elicited a sustained response in a neuron (tested 160 Hz). ITDfs sensitivity was present in about half the neurons for 1,000 pulse/s (pps) carriers and was nonexistent at 5,000 pps. The neurons that were sensitive to ITDfs at 1,000 pps were those that showed the best ITD sensitivity to low-rate pulse trains. Overall, the best ITD sensitivity was found for ITD contained in the fine structure of a moderate rate AM pulse train (1,000 pps). These results suggest that the interaural timing of current pulses should be accurately controlled in a bilateral cochlear implant processing strategy that provides salient ITD cues.  相似文献   

10.
11.
Neural responses to amplitude-modulated (AM) tones in the unanesthetized rabbit inferior colliculus (IC) were studied in an effort to establish explicit relationships between physiological and psychophysical measures of temporal envelope processing. Specifically, responses to variations in modulation depth (m) at the cell's best modulation frequency, with and without modulation maskers, were quantified in terms of average rate and synchronization to the envelope over the entire perceptual dynamic range of depths. Statistically significant variations in the metrics were used to define neural AM detection and discrimination thresholds. Synchrony emerged at modulation depths comparable with psychophysical AM detection sensitivities in some neurons, whereas the lowest rate-based neural thresholds could not account for psychoacoustical thresholds. The majority of rate thresholds (85%) were -10 dB or higher (in 20 log m), and 16% of the population exhibited no systematic dependence of average rate on m. Neural thresholds for AM detection did not decrease systematically at higher SPLs (as observed psychophysically): thresholds remained constant or increased with level for most cells tested at multiple sound-pressure levels (SPLs). At depths higher than the rate-based detection threshold, some rate modulation-depth functions were sufficiently steep with respect to the across-trial variability of the rate to predict depth discrimination thresholds as low as 1 dB (comparable with the psychophysics). Synchrony, on the other hand, did not vary systematically with m in many cells at high modulation depths. A simple computational model was extended to reproduce several features of the modulation frequency and depth dependence of both transient and sustained pure-tone responders.  相似文献   

12.
When the brain is deprived of input from one sensory modality, it often compensates with supranormal performance in one or more of the intact sensory systems. In the absence of acoustic input, it has been proposed that cross-modal reorganization of deaf auditory cortex may provide the neural substrate mediating compensatory visual function. We tested this hypothesis using a battery of visual psychophysical tasks and found that congenitally deaf cats, compared with hearing cats, have superior localization in the peripheral field and lower visual movement detection thresholds. In the deaf cats, reversible deactivation of posterior auditory cortex selectively eliminated superior visual localization abilities, whereas deactivation of the dorsal auditory cortex eliminated superior visual motion detection. Our results indicate that enhanced visual performance in the deaf is caused by cross-modal reorganization of deaf auditory cortex and it is possible to localize individual visual functions in discrete portions of reorganized auditory cortex.  相似文献   

13.
In an animal model of prelingual deafness, we examined the anatomical and physiological effects of prolonged deafness and chronic electrical stimulation on temporal resolution in the adult central auditory system. Maximum following frequencies (Fmax) and first spike latencies of single neurons responding to electrical pulse trains were evaluated in the inferior colliculus of two groups of neonatally deafened cats after prolonged periods of deafness (>2.5 yr): the first group was implanted with an intracochlear electrode and studied acutely (long-deafened unstimulated, LDU); the second group (LDS) received a chronic implant and several weeks of electrical stimulation (pulse rates > or =300 pps). Acutely deafened and implanted adult cats served as controls. Spiral ganglion cell density in all long-deafened animals was markedly reduced (mean <5.8% of normal). Both long-term deafness and chronic electrical stimulation altered temporal resolution of neurons in the central nucleus (ICC) but not in the external nucleus. Specifically, LDU animals exhibited significantly poorer temporal resolution of ICC neurons (lower Fmax, longer response latencies) as compared with control animals. In contrast, chronic stimulation in LDS animals led to a significant increase in temporal resolution. Changes in temporal resolution after long-term deafness and chronic stimulation occurred broadly across the entire ICC and were not correlated with its tonotopic gradient. These results indicate that chronic electrical stimulation can reverse the degradation in temporal resolution in the auditory midbrain after long-term deafness and suggest the importance of factors other than peripheral pathology on plastic changes in the temporal processing capabilities of the central auditory system.  相似文献   

14.
Using the in vitro isolated whole brain preparation of the guinea pig maintained at 29°C, we intracellularly recorded and stained cochlear nucleus (CN) neurons and auditory nerve (AN) fibers. Discharge properties of CN cells and AN axons were tested in response to 50-ms trains of electrical pulses delivered to the AN at rates ranging from 100 to 1000 pulses per second (pps). At low stimulation rates (200–300 pps), the discharges of AN fibers and a large proportion of principal cells (bushy, octopus, stellate) in the ventral cochlear nucleus (VCN) followed with high probability each pulse in the train, resulting in synchronization of discharges within large populations of AN fibers and CN cells. In contrast, at high stimulation rates (500 pps and higher), AN fibers and many VCN cells exhibited "primary-like", "onset" and some other discharge patterns resembling those produced by natural sound stimuli. Unlike cells in the VCN, principal cells (pyramidal, giant) of the dorsal CN did not follow the stimulating pulses even at low rates. Instead, they often showed "pauser" and "build-up" patterns of activity, characteristic for these cells in conditions of normal hearing. We hypothesize that, at low stimulation rates, the response behavior of AN fibers and VCN cells is different from the patterns of neuronal activity related to normal auditory processing, whereas high stimulation rates produce more physiologically meaningful discharge patterns. The observed differences in discharge properties of AN fibers and CN cells at different stimulation rates can contribute to significant advantages of high- versus low-rate electrical stimulation of the AN used for coding sounds in modern cochlear implants.  相似文献   

15.
A multiple-electrode hearing prosthesis for cochlea implantation in deaf patients has been developed at the University of Melbourne. It has been designed as a multiple-electrode implant to provide the best chance of enabling patients to understand speech. It has been shown that an electrode array can be threaded along the coills of the inner ear close to residual auditory nerves. Experimental studies have indicated that the long-term implantation of the array will not lead to significant degeneration of auditory nerve fibres. Loss of platinum from the stimulating electrodes can be minimized with a biphasic constant current pulse, where the first phase is negative with respect to ground. The receiver-stimulator component has also been designed to provide 10-15 channels of stimulation. Furthermore, the phase and amplitude of the stimuli to individual electrodes can be varied to enable the localization of the electrical fields to discrete groups of nerve fibres, and the correct method of frequency and intensity coding to be determined. Finally, the device should be used in the first instance for a specially selected group of adults who are post-lingually deaf.  相似文献   

16.
The processing and perception of auditory signals depends on the temporal structure of stimulus characteristics. We studied 26 healthy subjects who participated in psychophysical experiments and in electrophysiological recordings of auditory evoked potentials from Cz, C3, C4, T3 and T4. Stimuli consisted of tone series presented binaurally as tones or gaps with a base duration of 100 ms. In the psychophysical experiments, difference thresholds as indicators of temporal discrimination performance were significantly lower for tones than for gaps. In the electrophysiological recordings, gaps often failed to elicit N100 components. Tones produced shortest component latencies with largest amplitudes. In addition, brain activity was strongest at Cz, and showed a symmetrical fall-off over both hemispheres. N100 components had significantly longer latencies and smaller amplitudes when they were evoked by the end of the gap (i.e. with the continuation of the tone) than by tones. Our data illustrate how the temporal structure of auditory stimuli affects neuronal responses of the brain. Similar effects were observed in psychophysical and electrophysiological experiments, and we were able to demonstrate a direct relationship between subjective sensory thresholds and auditory evoked brain activity.  相似文献   

17.
电子耳蜗语音处理主流算法的效果比较和最新进展   总被引:4,自引:0,他引:4  
电子耳蜗作为一种帮助全聋患者恢复听觉的电子设备,已日益成为耳科学和康复工程研究领域的热点。它依靠电脉冲直接刺激患者的听神经使患者恢复听觉,是神经生理学、心理学和电子学相结合的产物。本文着重介绍了电子耳蜗的结构、语音处理最新算法、各种产品和算法临床效果比较以及该领域研究热点等。  相似文献   

18.
Fos-like immunoreactivity was used to compare the auditory brain stem excitation elicited by bipolar electrical stimulation of the cochlea at various current levels relative to the electrically evoked auditory brain stem response threshold for a 50-micros/phase monophasic pulse. Fos-like immunoreactive cells were labeled in primary auditory brain stem regions. The distribution of labeled cells was restricted to regions known to be cochleotopically related to the stimulated region of the scala tympani. Some labeled cells were observed at 2x electrically evoked auditory brain stem response threshold. The number, density and spatial distribution of labeled cells were quantified in the dorsal cochlear nucleus and inferior colliculus, and found to increase with increasing level of stimulation. For 50-micros pulses, the location of labeled neurons remained reasonably restricted to narrow bands within each region until the 1Ox level of stimulation (20 dB above electrically evoked auditory brain stem response threshold) was reached. While a monotonic increase in Fos-like immunoreactivity with increasing stimulus level was observed in most nuclei, for cells of the superficial layer of the dorsal cochlear nucleus, a non-monotonic change with increasing stimulus level was seen. This dorsal cochlear nucleus non-monotonicity may indicate that, at higher levels of stimulation, a secondary indirect inhibitory input, probably associated with activation of deep layer dorsal cochlear nucleus cells, reduces excitatory responses at the superficial layer of the dorsal cochlear nucleus. Electrically evoked auditory brain stem response and Fos expression showed parallel changes as a function of stimulus level and pulse duration. The data indicate that discrete activation of cell populations within the central auditory pathways can occur with bipolar electrical stimulation to the highest levels of stimulation typically useful in humans. The data also indicate a close, but not identical, quantitative relationship between Fos-like immunoreactivity and electrophysiological response amplitude. These findings support the view that a study of Fos-like immunoreactivity can provide a powerful and quantitative tool for study of the dynamic response characteristics of cells of the central auditory system to electrical stimulation at suprathreshold levels. The data suggest that there is a monotonic increase in the number of neurons responsive to intracochlear electrical stimulation as a function of stimulus level, at least through the upper half of the dynamic range, but that this increase does not result in a complete loss of spatial selectivity. Coupled with previous psychophysical studies, these results suggest that the increase in the number of activated neurons is functionally beneficial, resulting in improved discrimination of changes in the electrical signals.  相似文献   

19.
Two versions of multichannel cochlear stimulators have been implanted, one allowing stimulation against a common distributed ground within the cochlea and the other allowing bipolar stimulation. The results obtained indicate that with both versions sufficiently discrete stimulation of the auditory nerve is possible in order to be able to make use of tonotopy for the processing of speech. The bipolar stimulation, however, besides of being characterized by higher thresholds than unipolar stimulation, also leads to a very narrow range of stimulus frequency within which perceived pitch is influenced by stimulus frequency. Surprisingly different psychophysical behaviours are exhibited by the two subjects considered, one being a case of prelingual, the other of acquired deafness. This indicates the marked influence which etiology of deafness might have on design considerations for auditory prostheses.  相似文献   

20.
Neurons in the rat primary auditory cortex (A1) generally cannot respond to tone sequences faster than 12 pulses per second (pps). To test whether experience can modify this maximum following rate in adult rats, trains of brief tones with random carrier frequency but fixed repetition rate were paired with electrical stimulation of the nucleus basalis (NB) 300 to 400 times per day for 20-25 days. Pairing NB stimulation with 5-pps stimuli markedly decreased the cortical response to rapidly presented stimuli, whereas pairing with 15-pps stimuli significantly increased the maximum cortical following rate. In contrast, pairing with fixed carrier frequency 15-pps trains did not significantly increase the mean maximum following rate. Thus this protocol elicits extensive cortical remodeling of temporal response properties and demonstrates that simple differences in spectral and temporal features of the sensory input can drive very different cortical reorganizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号