首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of spinal muscarinic acetylcholine receptors (mAChRs) produces analgesia and inhibits dorsal horn neurons through potentiation of GABAergic/glycinergic tone and inhibition of glutamatergic input. To investigate the mAChR subtypes involved in the inhibitory effect of mAChR agonists on glutamate release, evoked excitatory postsynaptic currents (eEPSCs) were recorded in lamina II neurons using whole cell recordings in rat spinal cord slices. The nonselective mAChR agonist oxotremorine-M concentration-dependently inhibited the monosynaptic and polysynaptic EPSCs elicited by dorsal root stimulation. Interestingly, oxotromorine-M caused a greater inhibition of polysynaptic EPSCs (64.7%) than that of monosynaptic EPSCs (27.9%). In rats pretreated with intrathecal pertussis toxin, oxotremorine-M failed to decrease monosynaptic EPSCs but still partially inhibited the polysynaptic EPSCs in some neurons. This remaining effect was blocked by a relatively selective M(3) antagonist 4-DAMP. Himbacine, an M(2)/M(4) antagonist, or AFDX-116, a selective M(2) antagonist, completely blocked the inhibitory effect of oxotremorine-M on monosynaptic EPSCs. However, the specific M(4) antagonist MT-3 did not alter the effect of oxotremorine-M on monosynaptic EPSCs. Himbacine also partially attenuated the effect of oxotremorine-M on polysynaptic EPSCs in some cells and this effect was abolished by 4-DAMP. Furthermore, oxotremorine-M significantly decreased spontaneous EPSCs in seven of 22 (31.8%) neurons, an effect that was blocked by 4-DAMP. This study provides new information that the M(2) mAChRs play a critical role in the control of glutamatergic input from primary afferents to dorsal horn neurons. The M(3) and M(2)/M(4) subtypes on a subpopulation of interneurons are important for regulation of glutamate release from interneurons in the spinal dorsal horn.  相似文献   

2.
Activation of the descending noradrenergic system inhibits nociceptive transmission in the spinal cord. Although both α1- and α2-adrenoceptors in the spinal cord are involved in the modulation of nociceptive transmission, it is not clear how α1-adrenoceptors regulate excitatory and inhibitory synaptic transmission at the spinal level. In this study, inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs, respectively) were recorded from lamina II neurons in rat spinal cord slices. The specific α1-adrenoceptor agonist phenylephrine significantly increased the frequency of GABAergic spontaneous IPSCs in a concentration dependent manner, and this effect was abolished by the α1-adrenoceptor antagonist 2-(2,6-dimethoxyphenoxy)ethylaminomethyl-1,4-benzodioxane (WB4101). Phenylephrine also significantly reduced the amplitude of monosynaptic and polysynaptic EPSCs evoked from primary afferents. The inhibitory effect of phenylephrine on evoked monosynaptic glutamatergic EPSCs was largely blocked by the GABAA receptor antagonist picrotoxin and, to a lesser extent, by the GABAB receptor antagonist CGP55845. Furthermore, blocking T-type Ca2+ channels with amiloride or mibefradil diminished the inhibitory effect produced by phenylephrine or the GABAA receptor agonist muscimol on monosynaptic EPSCs evoked from primary afferents. Collectively, these findings suggest that activation of α1-adrenoceptors in the spinal cord increases synaptic GABA release, which attenuates glutamatergic input from primary afferents mainly through GABAA receptors and T-type Ca2+ channels. This mechanism of presynaptic inhibition in the spinal cord may be involved in the regulation of nociception by the descending noradrenergic system.  相似文献   

3.
To elucidate the mechanisms involved in the inhibition of synaptic transmission by ammonium ions, the effects of NH4Cl on glutamate release and on synaptic transmission from Schaffer collaterals to CA1 pyramidal cells were measured in fully submerged slices of rat hippocampus. The large, Ca(2+)-dependent release of glutamate evoked by electrical-field stimulation or by 56 mM K+ was not reduced by 5 mM NH4Cl. In contrast, 5 mM NH4Cl decreased the smaller, field stimulation-induced release of glutamate observed in the presence of low concentrations of Ca2+ (0.1 mM), as well as the spontaneous release of glutamate both in normal and low Ca2+. Unlike the Ca(2+)-dependent release of glutamate, synaptic transmission was reversibly depressed even by 1 mM NH4 Cl. Firing of CA1 pyramidal cells evoked by iontophoretically applied glutamate was significantly inhibited by 2 or 5 mM NH4Cl. This depression was increased in the presence of 25 microM bicuculline. Results suggest that ammonium ions do not depress the Ca(2+)-dependent release of glutamate originating from synaptic vesicles, which is involved in synaptic transmission. Rather, ammonium ions inhibit synaptic transmission by a postsynaptic action, a conclusion strengthened by the inhibitory effect of NH4Cl on glutamate-induced firing. However, NH4Cl may inhibit the formation of cytoplasmic glutamate, the source of spontaneous and Ca(2+)-independent release.  相似文献   

4.
A whole cell patch-clamp study was carried out in slices obtained from young rat brain to elucidate the roles of somatostatin in the modulation of synaptic transmission onto cholinergic neurons in the basal forebrain (BF), a region that contains cholinergic and GABAergic corticopetal neurons and somatostatin (SS)-containing local circuit neurons. Cholinergic neurons within the BF were identified by in vivo prelabeling with Cy3 IgG. Because in many cases SS is contained in GABAergic neurons in the CNS, we investigated whether exogenously applied SS can influence GABAergic transmission onto cholinergic neurons. Bath application of somatostatin (1 muM) reduced the amplitude of the evoked GABAergic inhibitory presynaptic currents (IPSCs) in cholinergic neurons. SS also reduced the frequency of miniature IPSCs (mIPSCs) without affecting their amplitude distribution. SS-induced effect on the mIPSC frequency was significantly larger in the solution containing 7.2 mM Ca(2+) than in the standard (2.4 mM Ca(2+)) external solution. Similar effects were observed in the case of non-NMDA glutamatergic excitatory postsynaptic currents (EPSCs). SS inhibited the amplitude of evoked EPSCs and reduced the frequency of miniature EPSCs dependent on the external Ca(2+) concentration with no effect on their amplitude distribution. Pharmacological analyses using SS-receptor subtype-specific drugs suggest that SS-induced action of the IPSCs is mediated mostly by the sst(2) subtype, whereas sst subtypes mediating SS-induced inhibition of EPSCs are mainly sst(1) or sst(4). These findings suggest that SS presynaptically inhibits both GABA and glutamate release onto BF cholinergic neurons in a Ca(2+)-dependent way, and that SS-induced effect on IPSCs and EPSCs are mediated by different sst subtypes.  相似文献   

5.
Chronic neuropathic pain remains an unmet clinical problem because it is often resistant to conventional analgesics. Metabotropic glutamate receptors (mGluRs) are involved in nociceptive processing at the spinal level, but their functions in neuropathic pain are not fully known. In this study, we investigated the role of group III mGluRs in the control of spinal excitatory and inhibitory synaptic transmission in a rat model of neuropathic pain induced by L5/L6 spinal nerve ligation. Whole-cell recording of lamina II neurons was performed in spinal cord slices from control and nerve-ligated rats. The baseline amplitude of glutamatergic EPSCs evoked from primary afferents was significantly larger in nerve-injured rats than in control rats. However, the baseline frequency of GABAergic and glycinergic inhibitory postsynaptic currents (IPSCs) was much lower in nerve-injured rats than in control rats. The group III mGluR agonist l(+)-2-amino-4-phosphonbutyric acid (l-AP4) produced a greater inhibition of the amplitude of monosynaptic and polysynaptic evoked EPSCs in nerve-injured rats than in control rats. l-AP4 inhibited the frequency of miniature EPSCs in 66.7% of neurons in control rats but its inhibitory effect was observed in all neurons tested in nerve-injured rats. Furthermore, l-AP4 similarly inhibited the frequency of GABAergic and glycinergic IPSCs in control and nerve-injured rats. Our study suggests that spinal nerve injury augments glutamatergic input from primary afferents but decreases GABAergic and glycinergic input to spinal dorsal horn neurons. Activation of group III mGluRs attenuates glutamatergic input from primary afferents in nerve-injured rats, which could explain the antinociceptive effect of group III mGluR agonists on neuropathic pain.  相似文献   

6.
The atypical antipsychotic drug clozapine effectively alleviates both negative and positive symptoms of schizophrenia via unclear cellular mechanisms. Clozapine may modulate both glutamatergic and dopaminergic transmission in the prefrontal cortex (PFC) to achieve part of its therapeutic actions. Using whole cell patch-clamp techniques, current-clamp recordings in layers V-VI pyramidal neurons from rat PFC slices showed that stimulation of local afferents (in 2 microM bicuculline) evoked mixed [AMPA/kainate and N-methyl-D-aspartate (NMDA) receptors] glutamate receptor-mediated excitatory postsynaptic potentials (EPSPs). Clozapine (1 microM) potentiated polysynaptically mediated evoked EPSPs (V(Hold) = -65 mV), or reversed EPSPs (rEPSP, V(Hold) = +20 mV) for >30 min. The potentiated EPSPs or rEPSPs were attenuated by elevating [Ca(2+)](O) (7 mM), by application of NMDA receptor antagonist 2-amino5-phosphonovaleric acid (50 microM), or by pretreatment with dopamine D1/D5 receptor antagonist SCH23390 (1 microM) but could be further enhanced by a dopamine reuptake inhibitor bupropion (1 microM). Clozapine had no significant effect on pharmacologically isolated evoked NMDA-rEPSP or AMPA-rEPSPs but increased spontaneous EPSPs without changing the steady-state resting membrane potential. Under voltage clamp, clozapine (1 microM) enhanced the frequency, and the number of low-amplitude (5-10 pA) AMPA receptor-mediated spontaneous EPSCs, while there was no such changes with the mini-EPSCs (in 1 microM TTX). Taken together these data suggest that acute clozapine can increase spike-dependent presynaptic release of glutamate and dopamine. The glutamate stimulates distal dendritic AMPA receptors to increase spontaneous EPSCs and enabled a voltage-dependent activation of neuronal NMDA receptors. The dopamine released stimulates postsynaptic D1 receptor to modulate a lasting potentiation of the NMDA receptor component of the glutamatergic synaptic responses in the PFC neuronal network. This sequence of early synaptic events induced by acute clozapine may comprise part of the activity that leads to later cognitive improvement in schizophrenia.  相似文献   

7.
High-affinity glutamate transporters (GTs) play a major role in controlling the extracellular level of this excitatory neurotransmitter in the CNS. Here we have characterized, by means of in vitro patch-clamp recordings from medium spiny neurons (MSNs), the role of GTs in regulating corticostriatal glutamatergic synaptic transmission in the adult rat. Charge transfer and decay-time, but not amplitude, of excitatory postsynaptic currents (EPSCs) were enhanced by dl-threo-β-benzyloxyaspartate (TBOA), a broad inhibitor of GTs. Moreover, TBOA also potentiated currents induced by high-frequency stimulation (HFS) protocols. Interestingly, the effect of TBOA on EPSCs was lost when MSNs were clamped at +40 mV, a condition in which neuronal GTs, that are voltage-dependent, are blocked. However, in this condition TBOA was still able to enhance HFS-induced currents, suggesting that glial GT's role is to regulate synaptic transmission when glutamate release is massive. These data suggest that neuronal GTs, rather than glial, shape EPSCs' kinetics and modulate glutamate transmission at corticostriatal synapse. Moreover, the control of glutamate concentration in the synaptic cleft by GTs may play a role in a number of degenerative disorders characterized by the hyperactivity of corticostriatal pathway, as well as in synaptic plasticity.  相似文献   

8.
Raabe  W. 《Journal of neurophysiology》1989,62(6):1461-1473
1. Glutamine is thought to be a precursor of the pool of glutamate that is used as synaptic transmitter. NH4+ inhibits glutaminase, the enzyme presumed to cleave glutamine into glutamate in synaptic terminals. Therefore a decrease by NH4+ of excitatory synaptic transmission in hippocampus was suggested to be due to the inability to utilize glutamine as a precursor for glutamate and subsequent transmitter depletion. This study reexamines the effects of NH4+ on excitatory synaptic transmission. 2. The effects of NH4+ on excitatory synaptic transmission from low-threshold afferent fibers, presumably Ia-afferent fibers, to motoneurons was investigated in the spinal cord of anesthetized cats in vivo. 3. Action potentials of low-threshold afferent fibers were recorded at the entry of the dorsal roots into the spinal cord. An extracellular electrode within a motoneuron nucleus recorded the action potential of low-threshold afferent fibers and the extracellular monosynaptic excitatory postsynaptic potential, i.e., the focal synaptic potential (FSP). This extracellular electrode also recorded the antidromic field potential (AFP) in response to ventral root stimulation. Electrodes on the ventral roots recorded the monosynaptic reflex (MSR) and the monosynaptic excitatory postsynaptic potential in motoneurons electrotonically conducted into the ventral roots (VR-EPSP). 4. Intravenous infusion of ammonium acetate (AA) reversibly decreased MSR, VR-EPSP, and FSP, i.e., decreased excitatory synaptic transmission. 5. The decrease of VR-EPSP and FSP was accompanied initially by a decrease of conduction and, eventually, a conduction block in presynaptic terminals of low-threshold afferent fibers. 6. The decreases of VR-EPSP and FSP were also accompanied by the transient appearance of a reflex discharge, triggered by VR-EPSPs of decreased amplitude, and changes of the AFP indicating increased invasion of motoneuron somata by antidromic action potentials. 7. It is suggested that NH4+ depolarizes intraspinal Ia-afferent fibers and motoneurons. This depolarization initially decreases and then blocks conduction of action potentials into the presynaptic terminals of Ia-afferent fibers. The conduction block prevents the release of excitatory transmitter and decreases excitatory synaptic transmission. 8. The suggested depolarizing action of NH4+ may be due to K+-like ionic properties of NH4+ and/or an inhibition of K+-uptake into astrocytes. 9. The conduction block in presynaptic terminals of low-threshold afferent fibers can fully explain the decrease of excitatory synaptic transmission by NH4+. Because of the conduction block in presynaptic terminals, this study does not permit a conclusion as to an inhibition by NH4+ fo the utilization of glutamine as a precursor for glutamate used as synaptic transmitter.  相似文献   

9.
1. The depressant actions of taurine applications on lumbar motoneurons in the isolated frog spinal cord were studied using conventional intracellular recordings and the two-electrode voltage-clamp technique. 2. With microelectrodes containing K+-acetate, 0.75-2 mM taurine mostly induced a hyperpolarization that often faded or turned into depolarization during the continuous application. A higher concentration (5-7.5 mM) depolarized a majority of cells. The effects on the membrane potential were associated with an increase in input conductance (approximately 285%). 3. The reversal potential of the taurine-induced currents was approximately -70 mV, with microelectrodes containing K+-acetate. In recordings using KCl-filled electrodes, taurine (less than or equal to 2 mM) produced a large depolarization (greater than or equal to 20 mV) at resting potentials near -50 mV, thereby indicating that the reversal potential was positively shifted by loading the cell with Cl-. These results suggest that the taurine potentials were mediated predominantly by an increased Cl- permeability. 4. Voltage-dependent relaxations of taurine currents were observed in 10 of 14 neurons. 5. A linear relation was found between the input conductance and the amount of current required to generate a 1-mV increment in EPSP at resting potential. 6. Polysynaptic excitatory postsynaptic potentials (EPSPs) and currents (EPSCs) were more susceptible to taurine than the monosynaptic responses. Taurine (less than 1 mM) seemed to suppress the interneurons mediating polysynaptic pathways. 7. Monosynaptic EPSPs and EPSCs were decreased with higher concentrations of taurine (greater than 1 mM). The percent reduction of EPSPs and that of the corresponding EPSCs had a positive correlation (r = 0.95), whereas, there was no significant correlation between changes in EPSPs and in input conductance, and between changes in EPSCs and in input conductance. The amount of current required to produce a 1-mV increment of EPSP was increased in the presence of taurine, in association with the increased input conductance. 8. Taurine suppressed synaptic potentiation of EPSPs evoked by paired stimuli, at an interval of 60-180 ms. Gamma-D-glutamylglycine, an antagonist of receptors for excitatory amino acids, greatly reduced the amplitude of EPSPs, but had little effect on synaptic potentiation. 9. Taurine suppressed glutamate currents evoked at membrane potentials, clamped near rest in low Ca2+, high Mg2+ solution. 10. These findings suggest that the taurine-induced reduction of EPSPs is due mainly to suppression of EPSCs, through both presynaptic and postsynaptic mechanisms.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Zhu W  Pan ZZ 《Neuroscience》2005,133(1):97-103
The central nucleus of the amygdala (CeA) plays an important role both in stimulus-reward learning for the reinforcing effects of drugs of abuse and in environmental condition-induced analgesia. Both of these two CeA functions involve the opioid system within the CeA. However, the pharmacological profiles of its opioid receptor system have not been fully studied and the synaptic actions of opioid receptors in the CeA are largely unknown. In this study with whole-cell voltage-clamp recordings in brain slices in vitro, we examined actions of opioid agonists on glutamate-mediated excitatory postsynaptic currents (EPSCs) in CeA neurons. Opioid peptide methionine-enkephalin (ME; 10 microM) produced a significant inhibition (38%) in the amplitude of evoked EPSCs, an action mimicked by the mu-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly-ol(5)]-enkephalin (DAMGO; 1 microM, 44%). Both effects of ME and DAMGO were abolished by the mu receptor antagonist CTAP (1 microM), suggesting a mu receptor-mediated effect. Neither delta-opioid receptor agonist [D-Pen(2),D-Pen(5)]-enkephalin (1 microM) nor kappa-opioid receptor agonist U69593 (300 nM) had any effect on the glutamate EPSC. ME significantly increased the paired-pulse ratio of the evoked EPSCs and decreased the frequency of miniature EPSCs without altering the amplitude of miniature EPSCs. Furthermore, the mu-opioid inhibition of the EPSC was blocked by 4-aminopyridine (4AP; 100 microM), a voltage-dependent potassium channel blocker, and by phospholipase A(2) inhibitors AACOCF(3) (10 microM) and quinacrine (10 microM). These results indicate that only the mu-opioid receptor is functionally present on presynaptic glutamatergic terminals in normal CeA neurons, and its activation reduces the probability of glutamate release through a signaling pathway involving phospholipase A(2) and the presynaptic, 4AP-sensitive potassium channel. This study provides evidence for the presynaptic regulation of glutamate synaptic transmission by mu-opioid receptors in CeA neurons.  相似文献   

11.
The effects of antidepressant drugs on spontaneous excitatory postsynaptic currents (EPSCs) were investigated in the mechanically dissociated rat locus coeruleus (LC) neurons which had their presynaptic nerve terminals attached. The membrane currents were recorded by the whole-cell patch-clamp technique. Desipramine, a tricyclic antidepressant, reversibly and concentration-dependently increased the frequency of spontaneous EPSCs, but did not alter their amplitude distribution. The inhibitors of high-voltage-activated Ca2+ channels failed to block the facilitatory action of desipramine, while they inhibited the high K+-induced facilitation of spontaneous EPSC frequency. The desipramine action was also observed in the absence of extracellular Ca2+. Pretreatment of thapsigargin in Ca2+-free solution fully inhibited the desipramine action, thus suggesting the involvement of Ca2+ release from intracellular Ca2+ stores at glutamatergic presynaptic nerve terminals. Imipramine and nortriptyline, other tricyclic antidepressants, and amoxapine, mianserin and fluoxetine, non-tricyclic antidepressants, also increased the EPSC frequency, while tranylcypromine, an inhibitor of monoamine oxidase, did not increase the glutamate release. The present results indicate that modulation of spontaneous glutamatergic transmission by tricyclic- and non-tricyclic-antidepressant drugs may regulate the excitability of LC neurons.  相似文献   

12.
Metabotropic glutamate receptors (mGluRs) are located in both plexiform layers in the retina and may modulate transmission between photoreceptors and bipolar cells and between bipolar and ganglion cells. We investigated whether mGluR activation modulates excitatory synaptic input to bipolar cells and ganglion cells in the salamander retinal slice preparation. The group III mGluR agonist L-2-amino-4-phosphonobutyric acid (AP4) inhibited monosynaptic excitatory postsynaptic currents (EPSCs) in ganglion cells evoked by electrical stimuli, whereas group I and group II agonists had no significant effect. AP4 reduced the frequency but not the amplitude of ganglion cell miniature EPSCs, suggesting a presynaptic action at bipolar cell terminals. AP4 also reduced ganglion cell EPSCs evoked by the offset of a light stimulus, suggesting that group III mGluRs modulate release from OFF bipolar cells. Comparison of light-evoked EPSCs in OFF bipolar cells and ganglion cells indicated that AP4 reduced ganglion cell EPSCs by acting primarily at bipolar cell terminals, and to a lesser extent at photoreceptor terminals. The group II/III mGluR antagonist (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG) blocked the effect of AP4 at bipolar cell terminals, consistent with localization of group III mGluRs at these sites. However, CPPG did not increase EPSCs at light offset, indicating that activation of group III mGluRs by synaptic glutamate does not play a large role in modulating transmission from bipolar cells to ganglion cells.  相似文献   

13.
Kainate (KA) receptor-mediated excitatory postsynaptic currents (EPSCs) exhibit slow kinetics at the great majority of synapses. However, native or heterologously expressed KA receptors exhibit rapid kinetics in response to agonist application. One possibility to explain this discrepancy is that KA receptors are extrasynaptic and sense glutamate diffusing from the synaptic cleft. We investigated this by studying the effect of three manipulations that change glutamate clearance on evoked KA EPSCs at thalamocortical synapses. First, we used high-frequency stimulation to increase extrasynaptic glutamate levels. This caused an apparent increase in the relative contribution of the KA EPSC to transmission and slowed the decay kinetics. However, scaling and summing the EPSC evoked at low frequency reproduced this, demonstrating that the effect was due to postsynaptic summation of KA EPSCs. Second, we applied inhibitors of high-affinity glutamate transport. This caused a depression in both AMPA and KA EPSC amplitude due to the activation of a presynaptic glutamatergic autoreceptor. However, transport inhibitors had no selective effect on the amplitude or kinetics of the KA EPSC. Third, to increase glutamate clearance, we raised temperature during recordings. This shortened the decay of both the AMPA and KA components and increased their amplitudes, but this effect was the same for both. Therefore these data provide evidence against glutamate diffusion out of the synaptic cleft as the mechanism for the slow kinetics of KA EPSCs. Other possibilities such as interactions of KA receptors with other proteins or novel properties of native synaptic heteromeric receptors are required to explain the slow kinetics.  相似文献   

14.
The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibular reflexes. In 16-day embryos, the application of glutamate receptor antagonists abolished the postsynaptic responses generated on vestibular-nerve stimulation, but spontaneous synaptic activity was largely unaffected. Here, spontaneous synaptic activity was characterized in principal cells from brain slices at E16 using whole cell voltage-clamp recordings. With KCl electrodes, the frequency of spontaneous inward currents was 3.1 Hz at -60 mV, and the reversal potential was +4 mV. Cs-gluconate pipette solution allowed the discrimination of glycine/GABA(A) versus glutamate receptor-mediated events according to their different reversal potentials. The ratio for spontaneous excitatory to inhibitory events was about 1:4. Seventy-four percent of the outward events were GABA(A), whereas 26% were glycine receptor-mediated events. Both pre- and postsynaptic GABA(B) receptor effects were shown, with presynaptic GABA(B) receptors inhibiting 40% of spontaneous excitatory postsynaptic currents (sEPSCs) and 53% of spontaneous inhibitory postsynaptic currents (sIPSCs). With TTX, the frequency decreased approximately 50% for EPSCs and 23% for IPSCs. These data indicate that the spontaneous synaptic activity recorded in the principal cells at E16 is primarily inhibitory, action potential-independent, and based on the activation of GABA(A) receptors that can be modulated by presynaptic GABA(B) receptors.  相似文献   

15.
Endomorphin-1 modulates intrinsic inhibition in the dorsal vagal complex   总被引:2,自引:0,他引:2  
Mu-opioid receptor (MOR) agonists profoundly influence digestive and other autonomic functions by modulating neurons in nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV). Whole cell recordings were made from NTS and DMV neurons in brain stem slices from rats and transgenic mice that expressed enhanced green fluorescent protein (EGFP) under the control of a GAD67 promoter (EGFP-GABA neurons) to identify opioid-mediated effects on GABAergic circuitry. Synaptic and membrane properties of EGFP-GABA neurons were assessed. The endogenous selective MOR agonist endomorphin-1 (EM-1) reduced spontaneous and evoked excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs) in both rat and mouse DMV neurons. Electrical stimulation of the solitary tract evoked constant-latency EPSCs in approximately 50% of EGFP-GABA neurons, and the responses were reduced by EM-1 application. EM-1 reduced action potential firing, the frequency and amplitude of synaptic inputs in EGFP-GABA neurons and responses to direct glutamate stimulation. A subset of EGFP-GABA neurons colocalized mRFP1 after retrograde, transneuronal infection after gastric inoculation with PRV-614, indicating that they synapsed with gastric-projecting DMV neurons. Glutamate photolysis stimulation of intact NTS projections evoked IPSCs in DMV neurons, and EM-1 reduced the evoked response, most likely by activation of MOR on the soma of premotor GABA neurons in NTS. Naltrexone or H-d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP), MOR antagonists, blocked the effects of EM-1. Our results show that GABA neurons in the NTS receive direct vagal afferent input and project to gastric-related DMV neurons. Furthermore, modulation by EM-1 of specific components of the vagal complex differentially suppresses excitatory and inhibitory synaptic input to the DMV by acting at different receptor locations.  相似文献   

16.
K Z Shen  S W Johnson 《Neuroscience》2001,108(3):431-436
Effects of baclofen on synaptic transmission were studied in rat subthalamic neurons using whole-cell patch clamp recording from brain slices. Focal electrical stimulation of the brain slice evoked GABAergic inhibitory postsynaptic currents and glutamatergic excitatory postsynaptic currents. Baclofen reduced the amplitude of evoked inhibitory postsynaptic currents in a concentration-dependent manner with an IC(50) of 0.6+/-0.2 microM. Evoked excitatory postsynaptic currents were also reduced by baclofen concentration-dependently (IC(50) of 1.6+/-0.2 microM), but baclofen was more potent at reducing the GABA(A) receptor inhibitory postsynaptic currents. The GABA(B) receptor antagonist CGP 35348 blocked these inhibitory effects of baclofen on evoked inhibitory and excitatory postsynaptic currents. Baclofen increased the paired-pulse ratios of evoked inhibitory and excitatory postsynaptic currents. Furthermore, baclofen reduced the frequency of spontaneous miniature excitatory postsynaptic currents, but had no effect on their amplitude.These results provide evidence for presence of presynaptic GABA(B) receptors that modulate both GABA and glutamate release from afferent terminals in the subthalamus.  相似文献   

17.
We obtained patch-clamp recordings from neuron-glial cell pairs in cerebellar brain slices to examine the contribution of glutamate (Glu) uptake by Bergmann glial cells to shaping excitatory postsynaptic currents (EPSCs) at the parallel fiber to Purkinje cell synapse. We show that electrical stimulation of parallel fibers not only activates EPSCs in Purkinje cells but also activates inward currents in antigenically identified Bergmann glial cells that invest Purkinje cell synapse with their processes. The inward current is partially due to 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX)- and 2-amino-5-phosphonopentanoic acid (AP5)-sensitive ionotropic Glu receptors, but >/=70% of the current was mediated by D,L-threo-beta-hydroxyaspartate (THA)-sensitive Glu transporters. Glu inward currents were completely and reversibly inhibited by depolarization of Bergmann glial cells to positive membrane potentials allowing biophysical inhibition of Glu uptake into a single glial cell. Inhibition of Glu transport into Bergmann glial cells by voltage-clamping the cell to depolarized potentials caused a reversible increase in spontaneous EPSC frequency in the Purkinje cell. This increase could also be achieved by pharmacological inhibition of Glu transport with the Glu transport inhibitor THA, suggesting that inhibition of Glu uptake into Bergmann glial cells is responsible for the modulation of postsynaptic EPSCs. THA modulation of spontaneous EPSCs could only be observed in the absence of TTX, suggesting primarily a presynaptic effect. Taken together these data suggest that glial Glu uptake can profoundly affect excitatory transmission in the cerebellum, most likely by regulating presynaptic glutamate release.  相似文献   

18.
1. The effect of the lectin wheat germ agglutinin (WGA), an inhibitor of ionotropic quisqualate receptor desensitization, on both evoked and spontaneous fast excitatory postsynaptic events was examined in cultured postnatal rat hippocampal neurons with the use of whole cell recordings. 2. WGA, at 580 nM, potentiated evoked fast excitatory postsynaptic currents (EPSCs) by increasing the amplitudes by 100 +/- 27% (mean +/- SE) and the time constant of decay from 5.8 +/- 0.6 to 7.9 +/- 0.5 ms. The increases in these parameters were not accompanied by changes in the current-voltage (I-V) relationship or pharmacological profile of the fast EPSCs. 3. WGA did not alter the amplitude or time course of decay of inhibitory postsynaptic currents (IPSCs), and it did not alter neuronal input resistance or action potentials. 4. WGA increased the amplitude of spontaneous fast miniature EPSCs (MEPSCs), defined as spontaneous EPSCs recorded in the presence of tetrodotoxin, by 53 +/- 11% and increased the time required to decay to 50% of the peak amplitude by 48 +/- 23%. These changes were not associated with a change in the rate of MEPSC occurrence. 5. These results suggest that WGA augments hippocampal excitatory postsynaptic events via a postsynaptic mechanism. The results further imply that ionotropic quisqualate receptor desensitization can modulate the amplitude and time course of decay of fast excitatory synaptic events. Thus desensitization may be one factor that regulates fast excitatory synaptic transmission.  相似文献   

19.
Glutamatergic transmission at central synapses undergoes activity-dependent and developmental changes. In the hippocampal dentate gyrus, the non-N-methyl d-aspartate (NMDA) receptor component of field excitatory postsynaptic potentials (fEPSPs) increases with age in Fischer-344 rats. This effect may not depend on the animal's activity or experience but could be part of the developmental process. Age-dependent differences in synaptic transmission at the perforant path-granule cell synapse may be caused by changes in non-NMDA and NMDA receptor-mediated currents. To test this hypothesis, we compared whole cell excitatory postsynaptic currents (EPSCs) in dentate granule cells evoked by perforant path stimulation in young (3-4 mo) and aged (22-27 mo) Fischer-344 rats using a Cs+-based intracellular solution. Aged animals as a group showed spatial learning and memory deficits in the Morris water maze. Using whole cell recordings, slope conductances of both non-NMDA and NMDA EPSCs at holding potentials -10 to +50 mV were significantly reduced in aged animals and the non-NMDA/NMDA ratio in aged animals was found to be significantly smaller than in young animals. In contrast, we detected no differences in basic electrophysiological parameters, or absolute amplitudes of non-NMDA and NMDA EPSCs. Extracellular Cs+ increased the fEPSP in young slices to a greater degree than was found in the aged slices, while it increased population spikes to a greater degree in the aged rats. Our results not only provide evidence for reduced glutamatergic synaptic responses in Fischer-344 rats but also point to differential changes in Cs+-sensitive dendritic conductances, such as Ih or inwardly rectifying potassium currents, during aging.  相似文献   

20.
Ma J  Lowe G 《Neuroscience》2007,144(3):1094-1108
Glomeruli are functional units of the olfactory bulb responsible for early processing of odor information encoded by single olfactory receptor genes. Glomerular neural circuitry includes numerous external tufted (ET) cells whose rhythmic burst firing may mediate synchronization of bulbar activity with the inhalation cycle. Bursting is entrained by glutamatergic input from olfactory nerve terminals, so specific properties of ionotropic glutamate receptors on ET cells are likely to be important determinants of olfactory processing. Particularly intriguing is recent evidence that AMPA receptors of juxta-glomerular neurons may permeate calcium. This could provide a novel pathway for regulating ET cell signaling. We tested the hypothesis that ET cells express functional calcium-permeable AMPA receptors. In rat olfactory bulb slices, excitatory postsynaptic currents (EPSCs) in ET cells were evoked by olfactory nerve shock, and by uncaging glutamate. We found attenuation of AMPA/kainate EPSCs by 1-naphthyl acetyl-spermine (NAS), an open-channel blocker specific for calcium permeable AMPA receptors. Cyclothiazide strongly potentiated EPSCs, indicating a major contribution from AMPA receptors. The current-voltage (I-V) relation of uncaging EPSCs showed weak inward rectification which was lost after > approximately 10 min of whole-cell dialysis, and was absent in NAS. In kainate-stimulated slices, Co(2+) ions permeated cells of the glomerular layer. Large AMPA EPSCs were accompanied by fluorescence signals in fluo-4 loaded cells, suggesting calcium permeation. Depolarizing pulses evoked slow tail currents with pharmacology consistent with involvement of calcium permeable AMPA autoreceptors. Tail currents were abolished by Cd(2+) and (+/-)-4-(4-aminophenyl)-2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), and were sensitive to NAS block. Glutamate autoreceptors were confirmed by uncaging intracellular calcium to evoke a large inward current. Our results provide evidence that calcium permeable AMPA receptors reside on ET cells, and are divided into at least two functionally distinct pools: postsynaptic receptors at olfactory nerve synaptic terminals, and autoreceptors sensitive to glutamate released from dendrodendritic synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号