首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gastric vagal and cerebellar fastigial nuclear afferents have been implicated in the regulation of food intake by their communication with lateral hypothalamic area (LHA), which is generally referred to be the feeding center. This study was designed to examine the possible convergence of the inputs from the gastric vagal trunks and cerebellar fastigial nucleus (FN) on the LHA neurons. Among recorded 191 LHA neurons, 99 (51.8%) responded to the stimulation of the gastric vagal trunks, of which 55 (55.6%) also responded to the cerebellar FN stimulation. Of 62 LHA neurons that responded to the gastric vagal stimulation, 43 (69.4%) showed an inhibitory response to the intravenous glucose application indicating they were glycemia-sensitive neurons. When the gastric vagal trunks and cerebellar FN were stimulated simultaneously, a summation of the responses usually could be seen in the recorded LHA neurons (16/20, 80%). Moreover, of 45 LHA neurons that responded to both of the gastric vagal trunks and FN stimuli, 30 (66.7%) were identified to be glycemia-sensitive neurons. These results demonstrated that gastric vagal afferents could reach glycemia-sensitive neurons of the LHA, and that the inputs from cerebellar FN and gastric vagal trunks could converge onto glycemia-sensitive neurons in the LHA. According to the facts that gastric vagal inputs and blood glucose level may transmit meal-related visceral signals and FN may forward the somatic information to the LHA, we suggest that an integration of the somatic-visceral response related to the food intake may take place in the LHA following the gastric vagal and cerebellar FN afferent inputs and the integration may play an important role in the short-term regulation of feeding behavior.  相似文献   

2.
1. Effects of hypothalamic stimulation on activity of dorsomedial medulla neurons that responded to subdiaphragmatic vagal stimulation were investigated in urethan-anesthetized rats. 2. Extracellular recordings were made from 231 neurons in the nucleus of the tractus solitarius (NTS) that fired repetitively in response to single-pulse subdiaphragmatic vagal stimulation and from 320 neurons in the dorsal motor nucleus of the vagal nerve (DMV) that responded antidromically to subdiaphragmatic vagal stimulation. The mean latencies of responses to subdiaphragmatic vagal stimulation were 90.3 +/- 17.1 ms (mean +/- SD) for NTS neurons, and 90.8 +/- 11.2 ms for DMV neurons. This indicated that both afferent and efferent subdiaphragmatic vagal fibers were thin and unmyelinated and had a conduction velocity of approximately 1 m/s. 3. In extracellular recordings from 320 DMV neurons, marked inhibition preceded the antidromic response and subdiaphragmatic vagal stimulation evoked orthodromic spikes in only a few neurons. 4. Intracellular recordings from 66 DMV neurons revealed inhibitory postsynaptic potentials (IPSPs) before the antidromic responses. These IPSPs suppressed spontaneous firing and prevented excitatory postsynaptic potentials (EPSPs) from generating action potentials. 5. Stimulation in all hypothalamic loci studied, the ventromedial hypothalamic nucleus (VMH), the lateral hypothalamic area (LHA), and the paraventricular nucleus (PVN), induced responses with similar characteristics of excitation alone or excitation followed by inhibition in most NTS and DMV neurons. 6. No reciprocal effect of VMH and LHA stimulation was observed on NTS and DMV neurons. 7. Intracellular recordings from DMV neurons revealed monosynaptic EPSPs in response to stimulation of the VMH, the LHA, and the PVN. 8. PVN stimulation evoked significantly more responses in NTS and DMV neurons than VMH stimulation and more responses in DMV neurons than LHA stimulation. This suggests a difference in the number of connections between each hypothalamic site and the dorsomedial medulla. 9. The same dorsomedial medulla neurons were tested with VMH and LHA stimulation. The respective mean latencies of the antidromic and the orthodromic NTS neuron responses were 37.3 +/- 3.2 and 39.6 +/- 12.9 ms for VMH stimulation and 29.8 +/- 5.3 and 31.8 +/- 8.7 ms for LHA stimulation. The mean latencies of the orthodromic DMV neuron responses were 39.4 +/- 8.3 ms for VMH stimulation and 31.1 +/- 5.2 ms for LHA stimulation. The estimated conduction velocity from the VMH to the dorsomedial medulla was approximately 0.25 m/s and from the LHA it was approximately 0.33 m/s, which was significantly faster.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
1. The effects of dorsal raphe (DR) stimulation on neural activity in the rat lateral hypothalamic area (LHA), including specific glucose-sensitive neurons, were investigated by extracellular and intracellular recording in vivo, and the neurotransmitters involved were determined. 2. In 67 adult male anesthetized rats, 287 extracellular and 49 intracellular recordings of LHA responses to electrical stimulation of the DR were examined. 3. To determine neurotransmitter candidates, the effects of serotonin and the serotonin antagonists methysergide, lisuride, and (-)-propranolol were investigated by systemic administration and microelectrophoresis. 4. Of 287 spontaneously firing LHA neurons tested by DR stimulation, 157 (55%) were inhibited. Among these, 51% were glucose sensitive. The serotonin 1 receptor antagonists, lisuride and (-)-propranolol, attenuated the inhibitory responses to both DR stimulation and electrophoretic serotonin application. 5. Seventy-three (25%) were excited by DR stimulation, and 71% of these were glucose insensitive. Methysergide attenuated the excitatory responses to DR stimulation and the inhibitory response to electrophoretic serotonin application, but (-)-propranolol did not attenuate the excitation. 6. Intracellular recordings of LHA neurons during DR stimulation showed monosynaptic excitatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic potentials (IPSPs) with 3.8 and 3.0 ms latency, respectively. The reversal potential for the former was approximately -17 and for the latter, -94 mV. 7. From the results we concluded that 75% of LHA glucose-sensitive neurons receive inhibitory serotonin inputs from the DR through serotonin 1 receptors, and 20% of glucose-insensitive neurons receive excitatory inputs from the DR through serotonin 2 receptors though 41% of these receive inhibitory inputs through serotonin 1 receptor.  相似文献   

4.
Electrical stimulation of the cerebellar fastigial nucleus (FN) in anesthetized, paralyzed, and artificially ventilated rat with a 10-s stimulus train (50 Hz) resulted in a stimulus-locked elevation in arterial pressure (AP) and heart rate, the fastigial pressor response (FPR). Blockade of autonomic effectors by chemosympathectomy (produced by treatment with 6-hydroxydopamine) combined with adrenalectomy, or by spinal cord transection at C1, abolished the FPR but unmasked an elevation of AP with longer latency (10-12 s) and duration (2-4 min), termed the residual FPR. The residual FPR was 1) abolished by midbrain transection, 2) blocked by administration of a specific antagonist of the vasopressor response to arginine vasopressin (AVP) [1,d(CH2)5Tyr(Me)AVP], and 3) was absent in homozygous and attenuated in heterozygous rats of the Brattleboro strain. FN stimulation elevated AVP threefold (from 13 +/- 1 to 38 +/- 8 pg/ml, P less than 0.02; n = 6) in intact rats and sevenfold in rats with combined chemosympathectomy and adrenalectomy (from 14 +/- 1 to 96 +/- 11 pg/ml, P less than 0.001; n = 9). Stimulation of the cerebellar FN can release AVP. In the absence of sympathoadrenal effectors, the amount so released is enhanced and capable of elevating AP.  相似文献   

5.
It has been investigated feeding related LHA neuronal activity and responses to odor stimulation in rats at various levels of satiation. Extracellular responses of 168 neurons to three odors, isoamylacetate (AA), cineole (CL), and isovaleric acid (VA), were recorded from 168 LHA neurons of Wistar-SPF male rats. Of 168 units, 107 (63.7%) responded to from one to three odors, but not to light or phonic stimulation. Of the responding units, 94.4% (101/107) were excited, and 5.6% were inhibited. In response to a single electrical stimulation (0.5 msec, 1-10 V) of the OB, 61 units were excited with latencies of 6-43 msec (19.8 +/- 12.0 msec, mean +/- S.D.) indicating compound OB-LHA relations--mono- and polysynaptic through myelinated and nonmyelinated fibers. The results suggest predominantly excitatory effects of both electrical stimulation of the OB and odor stimulation on the LHA. Firing frequency in response to AA or VA was significantly (p less than 0.05) greater for the long fasting group (38 hr, LF, n = 8) than for the NF (nonfasting, n = 12) group; differences between the LF and MF (24 hr, n = 6) groups were not significant. Glucose-sensitive neurons (GSN, n = 19) responded more to odors than non-GSNs (n = 86), and discharge frequency increase depended markedly on food deprivation. Food deprivation results suggest that responsiveness of feeding related LHA neurons to odors depends on the degree of satiation. In conclusion, it was confirmed that olfactory functions are important in the responses of hypothalamic feeding related neurons.  相似文献   

6.
1. The interaction between the pressor response to electrical stimulation of the fastigial nucleus (FN), the fastigial pressor response (FPR), and the depressor response to electrical stimulation of the carotid sinus nerve (CSN) was examined in paralysed anaesthetized cats.2. Blood pressure responses evoked by electrical stimulation of the FN and the CSN were mutually inhibitory and summed algebraically.3. The FPR was augmented after denervation of buffer nerves. Lesions of the FN did not alter the depressor response to stimulation of the CSN.4. Bilateral electrolytic lesions of the paramedian reticular nucleus abolished both the FPR and the CSN depressor response without altering base line pressure.5. With micro-electrode recording neurones were discovered within the paramedian reticular nucleus which responded to electrical stimulation of the FN or the CSN. These neurones were polysynaptically excited by stimulation of either the FN or the CSN but rarely from both, and could be further subdivided into cells responding with either a single spike or a burst discharge.6. The interaction between the FN and the CSN projections to the paramedian reticular nucleus was examined by conditioning-test studies. Eleven per cent of FN- and CSN-units were inhibited by conditioning stimulation of the heteronymous input. The interaction was exclusively inhibitory and observed only in units with latencies > 4 msec and having burst responses. The latency for inhibition was > 20 msec, peaked around 100 msec and lasted up to 300 msec.7. We conclude that the FRP is buffered by baroreceptors and that there is a mutually inhibitory interaction between projections from the FN and the CSN acting on sympathetic vasomotor neurones. The paramedian reticular nucleus appears to be an important site for the interaction.8. The findings support the view that interneurones mediating pressor and depressor responses are intermixed within the medial reticular formation of the medulla.  相似文献   

7.
1. Intracellular recordings from neurons within dorsal raphe nucleus in slices from rat brain were used to study an inhibitory postsynaptic potential (IPSP) evoked by electrical stimulation. 2. The IPSP was observed in approximately 70% of neurons, had a latency to onset of 40-65 ms, reached a peak in 350-400 ms, had a total duration of 1-2 s, and reversed polarity at the potassium equilibrium potential. 3. This IPSP was blocked by spiperone (1 microM) and prolonged by fluoxetine (300 nM-30 microM) suggesting that it was mediated by 5-hydroxytryptamine (5-HT). 4. Superfusion with gamma-aminobutyric acid (GABA) and excitatory amino acid receptor antagonists were used to block "fast" synaptic potentials that preceded the IPSP such that it could be studied in isolation. Blockade of the GABA-mediated synaptic potentials increased the amplitude of the IPSP by 1.3-fold. The amplitude of the IPSP was reduced by 30% after blockade of the excitatory amino acid-mediated synaptic potential. 5. The results indicate that the IPSP recorded in dorsal raphe neurons was caused by 5-HT released at least in part from indirect (synaptically induced) excitation of 5-HT-containing cells within the slice.  相似文献   

8.
1. The postsynaptic actions of afferents ascending in the ventrolateral quadrant and dorsal columns of the spinal cord were studied in neurons in the ventrolateral nucleus of the thalamus (VL) (n = 138) by use of intracellular recording procedures. Neurons were identified by their monosynaptic input from the cerebellum and, when possible, their antidromic activation from the motor cortex. The possible occurrence of monosynaptic transmission along spinothalamic fibers was investigated by estimating the intrathalamic delay time of postsynaptic responses and by examining the occurrence of temporal facilitation to double-shock stimulation. The experiments were performed in cats anesthetized with alpha-chloralose. 2. The majority of neurons (86%) responded with excitatory or inhibitory postsynaptic potentials to stimulation of the ascending paths. The response latencies of excitation on stimulation of the ventral quadrants at C3 ranged from 2.9 to 18 ms. Evidence for monosynaptic excitation after stimulation of (spinothalamic) afferents ascending in the ventrolateral quadrants was obtained for a number of neurons (n = 30). For these neurons, estimated intrathalamic delays were less than 1 ms and/or the neurons did not display temporal facilitation to double shocks. All the shortest latency responses (from C3) showed evidence of monosynaptic transmission. It is estimated that approximately 19-39% of neurons sampled may receive monosynaptic input. The spinal conduction velocities of the direct projections ranged from 10 to 35 m/s (median 20 m/s). 3. Much of the ascending input was mediated polysynaptically. For afferents ascending in the ventrolateral quadrant, estimated intrathalamic delays were greater than 1.5 ms and/or the postsynaptic responses displayed temporal facilitation to double shocks. The shortest latency from C3 of a polysynaptic response was 5 ms. Spatial interactions were observed between polysynaptic inputs from the ventrolateral quadrants and the dorsal columns, indicating that at least some of the pathways to VL are shared. 4. The data show that many neurons in the VL receive input ascending from the spinal cord via direct and indirect routes. Somatosensory information reaching VL could serve to adjust, during the course of movement execution, the cerebellar commands relayed by VL to the motor cortex.  相似文献   

9.
Fastigial stimulation in rats releases adrenomedullary catecholamines   总被引:1,自引:0,他引:1  
Electrical stimulation of the rostral fastigial nucleus (FN) in anesthetized, paralyzed, and artificially ventilated rats with a 10-s stimulus train elicited a stimulus-locked elevation of arterial pressure (AP) and heart rate (HR) (the fastigial pressor response, FPR) and elevated plasma catecholamines (CA) within 20 s from the onset of stimulus. Norepinephrine (NE) increased from 139 +/- 24 to 280 +/- 43 pg/ml (P less than 0.05, n = 8) and epinephrine (E) from 70 +/- 26 to 360 +/- 107 pg/ml (P less than 0.02, n = 8). Acute adrenalectomy increased basal plasma NE (362 +/- 108 pg/ml, P less than 0.05, n = 6) and reduced E (9 +/- 4 pg/ml, P less than 0.02, n = 6). The magnitude and duration of the FPR and the relative increase of NE were unchanged; however, the elevation of E was abolished. Chemosympathectomy, produced by 6-hydroxydopamine hydrobromide (100 mg/kg iv, 24 h before the experiment), lowered resting AP (from 122 +/- 2 to 77 +/- 1 mmHg, P less than 0.001) and NE (16 +/- 5 pg/ml, P less than 0.01), but not E. After chemosympathectomy, FN stimulation induced a pressor response of greater magnitude and longer latency and duration than in controls, increased NE 3.5-fold (from 16 +/- 5 to 56 +/- 14 pg/ml, P less than 0.05, n = 5) and E 9-fold (from 38 +/- 11 to 336 +/- 88, P less than 0.05, n = 5). The increases in CA were abolished by adrenalectomy. Chemosympathectomy shifted the pressor-dose-response curves of NE and E to the left; thus, the enhanced pressor response to FN stimulation after chemosympathectomy was possibly a consequence of supersensitivity to circulatory CA. Stimulation of cerebellar FN increased plasma CA, as a consequence of coexcitation of both neural and adrenomedullary components of the autonomic nervous system. However, in rats with intact sympathetic nerves the release of adrenomedullary CA did not contribute to the elevation in AP.  相似文献   

10.
Involvement of rat lateral hypothalamus (LHA) neurons in integration of motivation, reward, and learning processes was studied by recording single-neuron activity during cuetone discrimination, learning behavior to obtain glucose, or electrical rewarding intracranial self-stimulation (ICSS) of the posterior LHA. To relate the activity of an LHA neuron to glucose, ICSS, and anticipatory cues, the same licking task was used to obtain both rewards. Each neuron was tested with rewards alone and then with rewards signaled by cuetone stimuli (CTS), CTS1+ = 1,200 Hz for glucose, CTS2+ = 4,300 Hz for ICSS, and CTS- = 2,800 Hz for no reward. The activity of 318 neurons in the LHA was analyzed. Of these, 212 (66.7%) responded to one or both rewarding stimuli (glucose, 115; ICSS, 193). Usually, both rewards affected the same neuron in the same direction. Of 96 neurons that responded to both rewards, the responses of 72 (75%) were similar, i.e., either both excitatory or both inhibitory. When a tone was associated with glucose or ICSS reward, 81 of the 212 neurons that responded to either or both rewards and none of 106 neurons that failed to respond to either reward acquired a response to the respective CTS. Usually, the response to a tone was in the same direction as the reward response. Of 45 neurons that responded to both glucose and CTS1+, 38 (84.4%) were similar, and of 66 that responded to both ICSS and CTS2+, 47 (71.2%) were similar. The neural response to a tone was acquired rapidly after licking behavior was learned and was extinguished equally rapidly before licking stopped in extinction. The latency of the neural response to CTS1+ was 10-150 ms (58.7 +/- 40.9 ms, mean +/- SE, n = 31), and that of the first lick was 100-370 ms (204.8 +/- 59.1 ms, n = 31). The latency of neural responses to CTS2+ was 10-230 ms (68.3 +/- 53.5 ms, n = 33), and that of the first lick was 90-370 ms (212.4 +/- 58.5 ms, n = 33). There was no significant difference between the neural response latencies for the two cue tones nor between the lick latencies for the different rewards. Neurons inhibited by glucose or ICSS reward were distributed widely in the LHA, whereas most excited neurons were in the posterodorsal subarea; fewer were in the anteroventral subarea. Neurons responding to the CTS for glucose or ICSS were found more frequently in the posterior region.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
C D Ingram  F Moos 《Neuroscience》1992,47(2):439-452
Immunocytochemical staining within the forebrain of lactating rats revealed oxytocin-immunoreactive perikarya in a continuum running from the anterior parvocellular hypothalamic paraventricular nucleus through the anterior commissural nucleus and perifornical region. Beaded axons could be seen arising from these perikarya to enter the bed nuclei of the stria terminalis. In sections cut at a 45 degree angle to the parasagittal plane, much of this pathway could be maintained intact, and in vitro tissue slices prepared in this orientation were used for electrophysiological studies of oxytocinergic innervation of the bed nuclei. By extracellular recording, neurons of the bed nuclei of the stria terminalis were tested for their response to exogenous oxytocin and to stimulation of the paraventricular hypothalamus. Both short latency (3-40 ms) orthodromic excitation (26/78 neurons) and longer latency (greater than 100 ms) excitation (12/78 neurons) were observed following paraventricular hypothalamic stimulation, possibly representing mono- and polysynaptic inputs, respectively. Removal of extracellular Ca2+ blocked these orthodromic responses (n = 6). Antidromic invasion was seen in a further 11/78 neurons with characteristics of constant latency (mean = 5.9 +/- 0.7 ms), high frequency following (40-80 Hz) and persistence in Ca(2+)-free medium. When tested for the effect of oxytocin (10(-7) M), none (0/11) of the antidromically activated neurons were excited, but nine of 34 of the orthodromically excited neurons (both short and long latency) responded with a marked increase in activity. In three of eight cases, the orthodromic synaptic excitation following hypothalamic stimulation could be reversibly attenuated by the receptor antagonist [d(CH2)5,D-Tyr(OEt)2,Val4,Cit8]-vasopressin (0.5 or 2.5 x 10(-6) M), further substantiating the involvement of oxytocin. These data provide anatomical and electrophysiological evidence for an oxytocinergic innervation of the bed nuclei of the stria terminalis. This pathway is discussed in terms of possible involvement in mediating the facilitatory effect of oxytocin on the milk-ejection reflex of lactating rats which has been suggested to act through this part of the limbic system.  相似文献   

12.
The subthalamic nucleus (STN) is one of the principal sources of excitatory glutamatergic input to dopaminergic neurons of the substantia nigra, yet stimulation of the STN produces both excitatory and inhibitory effects on nigral dopaminergic neurons recorded extracellularly in vivo. The present experiments were designed to determine the sources of the excitatory and inhibitory effects. Synaptic potentials were recorded intracellularly from substantia nigra pars compacta dopaminergic neurons in parasagittal slices in response to stimulation of the STN. Synaptic potentials were analyzed for onset latency, amplitude, duration, and reversal potential in the presence and absence of GABA and glutamate receptor antagonists. STN-evoked depolarizing synaptic responses in dopaminergic neurons reversed at approximately -31 mV, intermediate between the expected reversal potential for an excitatory and an inhibitory postsynaptic potential (EPSP and IPSP). Blockade of GABA(A) receptors with bicuculline caused a positive shift in the reversal potential to near 0 mV, suggesting that STN stimulation evoked a near simultaneous EPSP and IPSP. Both synaptic responses were blocked by application of the glutamate receptor antagonist, 6-cyano-7-nitroquinoxalene-2,3-dione. The confounding influence of inhibitory fibers of passage from globus pallidus and/or striatum by STN stimulation was eliminated by unilaterally transecting striatonigral and pallidonigral fibers 3 days before recording. The reversal potential of STN-evoked synaptic responses in dopaminergic neurons in slices from transected animals was approximately -30 mV. Bath application of bicuculline shifted the reversal potential to approximately 5 mV as it did in intact animals, suggesting that the source of the IPSP was within substantia nigra. These data indicate that electrical stimulation of the STN elicits a mixed EPSP-IPSP in nigral dopaminergic neurons due to the coactivation of an excitatory monosynaptic and an inhibitory polysynaptic connection between the STN and the dopaminergic neurons of substantia nigra pars compacta. The EPSP arises from a direct monosynaptic excitatory glutamatergic input from the STN. The IPSP arises polysynaptically, most likely through STN-evoked excitation of GABAergic neurons in substantia nigra pars reticulata, which produces feed-forward GABA(A)-mediated inhibition of dopaminergic neurons through inhibitory intranigral axon collaterals.  相似文献   

13.
Spike potentials of fastigial nucleus neurons were recorded extracellularly in decerebrate, unanesthetized cats. The neurons responding to head rotation in the horizontal plane with a type I fashion were located mainly in the middle and caudal regions of the fastigial nucleus. Three fourth of these fastigial type I neurons were antidromically activated by stimulation of the contralateral vestibular nuclei. These neurons were excited transsynaptically from the ipsilateral vestibular nerve or nuclei. Intra cellular recordings were made from those neurons which were located in the caudal half of the fastigial nucleus and were activated antidromically from the contralateral vestibular nuclei. Stimulation of the ipsilateral vestibular nerve produced EPSPs in these neurons with latencies of 1.0-6.6 msec. The shortest conduction time along primary vestibular aggerents from the labyrinth to the ipsilateral fastigial nucleus was 0,7 msec. The EPSPs with the shortest latency of 1.0 msec were therefore postulated to be due to monosynaptic connections of primary vestibular afferents with fastigial neurons. Stimulation of ipsilateral vestibular nuclei also produced monosynaptic EPSPs in fastigial neurons. These EPSPs were facilitated by conditioning stimulation of the ipsilateral vestibular nerve, indicating the existence of polysynaptic activation of fastigial neurons from the ipsilateral vestibular nerve through the vestibular nuclei.  相似文献   

14.
The timing of events within the nervous system is a critical feature of signal processing and integration. In neurotransmission, the synaptic latency, the time between stimulus delivery and appearance of the synaptic event, is generally thought to be directly related to the complexity of that pathway. In horizontal brain stem slices, we examined synaptic latency and its shock-to-shock variability (synaptic jitter) in medial nucleus tractus solitarius (NTS) neurons in response to solitary tract (ST) electrical activation. Using a visualized patch recording approach, we activated ST 1-3 mm from the recorded neuron with short trains (50-200 Hz) and measured synaptic currents under voltage clamp. Latencies ranged from 1.5 to 8.6 ms, and jitter values (SD of intraneuronal latency) ranged from 26 to 764 micros (n = 49). Surprisingly, frequency of synaptic failure was not correlated with either latency or jitter (P > 0.147; n = 49). Despite conventional expectations, no clear divisions in latency were found from the earliest arriving excitatory postsynaptic currents (EPSCs) to late pharmacologically polysynaptic responses. Shortest latency EPSCs (<3 ms) were mediated by non-N-methyl-D-aspartate (non-NMDA) glutamate receptors. Longer latency responses were a mix of excitatory and inhibitory currents including non-NMDA EPSCs and GABAa receptor-mediated currents (IPSC). All synaptic responses exhibited prominent frequency-dependent depression. In a subset of neurons, we labeled sensory boutons by the anterograde fluorescent tracer, DiA, from aortic nerve baroreceptors and then recorded from anatomically identified second-order neurons. In identified second-order NTS neurons, ST activation evoked EPSCs with short to moderate latency (1.9-4.8 ms) but uniformly minimal jitter (31 to 61 micros) that were mediated by non-NMDA receptors but had failure rates as high as 39%. These monosynaptic EPSCs in identified second-order neurons were significantly different in latency and jitter than GABAergic IPSCs (latency, 2.95 +/- 0.71 vs. 5.56 +/- 0.74 ms, mean +/- SE, P = 0.027; jitter, 42.3 +/- 6.5 vs. 416.3 +/- 94.4 micros, P = 0.013, n = 4, 6, respectively), but failure rates were similar (27.8 +/- 9.0 vs. 9.7 +/- 4.4%, P = 0.08, respectively). Such results suggest that jitter and not absolute latency or failure rate is the most reliable discriminator of mono- versus polysynaptic pathways. The results suggest that brain stem sensory pathways may differ in their principles of integration compared with cortical models and that this importantly impacts synaptic performance. The unique performance properties of the sensory-NTS pathway may reflect stronger axosomatic synaptic processing in brain stem compared with dendritically weighted models typical in cortical structures and thus may reflect very different strategies of spatio-temporal integration in this NTS region and for autonomic regulation.  相似文献   

15.
1. Medullary raphespinal neurons antidromically activated from the T2-T5 segments were tested for responses to electrical stimulation of cervical vagal and thoracic sympathetic afferents (by stimulating the left stellate ganglion), somatic probing, auditory stimuli, and visual stimuli in cats anesthetized with alpha-chloralose. A total of 99 neurons in the raphe nuclei were studied; the locations of 76 cells were histologically confirmed. Neurons were located in raphe magnus (RM, 65%), raphe obscurus (RO, 32%), and raphe pallidus (RPa, 4%). The mean conduction velocity of these neurons was 62 +/- 2.9 (SE) m/s with a range of 1.1-121 m/s. 2. A total of 60/99 tested neurons responded to electrical stimulation of sympathetic afferents. Quantitation of responses was obtained for 55 neurons. With one exception, all responsive neurons were excited and exhibited an early burst of spikes with a mean latency of 16 +/- 1.2 ms. From a spontaneous discharge rate of 5.2 +/- 1.2 spikes/s, neuronal activity increased by 2.9 +/- 0.3 spikes/stimulus. In addition to an early peak, 15 neurons (25%) exhibited a late burst of spikes with a latency of 182 +/- 12.9 ms; neuronal activity increased by 5.0 +/- 1.3 spikes/stimulus. Duration of the late peak (130 +/- 18.5 ms) was longer than for the early peak (18 +/- 0.7 ms), but threshold voltages for eliciting each peak were comparable. Sixteen of 29 spontaneously active neurons exhibited a postexcitatory depression of activity that lasted for 163 +/- 19.1 ms. All but one tested neuron in RO responded to stimulation of sympathetic afferents, but 65% of neurons in RM responded to this stimulus. 3. In response to vagal afferent stimulation, 19% of 57 neurons exhibited inhibition only, 11% were only excited, and 9% were either excited or inhibited, depending on the stimulus paradigm used; the remaining 61% of neurons were unresponsive. From a spontaneous rate of 7.9 +/- 3.8 spikes/s, excited cells increased their discharge rate by 1.6 +/- 0.3 spikes/stimulus. Activity of inhibited cells was reduced from 21.3 +/- 5.8 to 7.8 +/- 3.1 spikes/s. The conditioning-test (CT) technique was used to assess 11 neurons' responses. Stellate ganglion stimulation was the test stimulus, and vagal stimulation the conditioning stimulus. Vagal stimulation reduced the neuronal responses to stellate ganglion stimulation by an average of 50% with a CT interval of 60-100 ms, and cell responses returned to control after 300 ms. With spontaneous cell activity, low frequencies of vagal stimulation were generally excitatory, and high frequencies (10-20 Hz) inhibitory.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Excitatory postsynaptic currents (EPSCs) in parasympathetic preganglionic neurons (PGNs) were examined using the whole cell patch-clamp recording technique in L6 and S1 spinal cord slices from neonatal rats (6-16 days old). PGNs were identified by labeling with retrograde axonal transport of a fluorescent dye (Fast Blue) injected into the intraperitoneal space 3-7 days before the experiment. Synaptic responses were evoked in PGNs by field stimulation of the lateral funiculus (LF) in the presence of bicuculline methiodide (10 microM) and strychnine (1 microM). In approximately 40% of the cells (total, 100), single-shock electrical stimulation of the LF elicited short, relatively constant latency [3.0 +/- 0.1 (SE) ms] fast EPSCs consistent with a monosynaptic pathway. The remainder of the cells did not respond to stimulation. At low intensities of stimulation, the EPSCs often occurred in an all-or-none manner, indicating that they were mediated by a single axonal input. Most cells (n = 33) exhibited only fast EPSCs (type 1), but some cells (n = 8) had fast EPSCs with longer, more variable latency polysynaptic EPSCs superimposed on a slow inward current (type 2). Type 1 fast synaptic EPSCs were pharmacologically dissected into two components: a transient component that was blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 5 microM), a non-NMDA glutamatergic antagonist, and a slow decaying component that was blocked by 2-amino-5-phosphonovalerate (APV, 50 microM), a NMDA antagonist. Type 2 polysynaptic currents were reduced by 5 microM CNQX and completely blocked by combined application of 5 microM CNQX and 50 microM APV. The fast monosynaptic component of type 1 EPSCs had a linear current-voltage relationship and reversed at a membrane potential of 5.0 +/- 5.9 mV (n = 5), whereas the slow component exhibited a negative slope conductance at holding potentials greater than -20 mV. The type 1, fast synaptic EPSCs had a time to peak of 1.4 +/- 0.1 ms and exhibited a biexponential decay (time constants, 5.7 +/- 0.6 and 38.8 +/- 4.0 ms). In the majority of PGNs (n = 11 of 15 cells), EPSCs evoked by electrical stimulation of LF exhibited paired-pulse inhibition (range; 25-33% depression) at interstimulus intervals ranging from 50 to 120 ms. These results indicate that PGNs receive monosynaptic and polysynaptic glutamatergic excitatory inputs from axons in the lateral funiculus.  相似文献   

17.
Summary The ventral medial nucleus of the thalamus (VM) has been shown in rats and cats to constitute a common target for nigro- and cerebellothalamic pathways. In the present study the responses of VM neurons to ipsilateral substantia nigra (SN) and contralateral cerebellar nuclei stimulation were analyzed in the rat. The typical response of VM neurons to SN stimulation consisted of a pure short-latency (1.1–3 ms), short-duration (7–17 ms) IPSP. Latencies of these responses were accorded well with the conduction velocity of the nigrothalamic fibers as measured on the basis of antidromic activation of this pathway. A high percentage (58%) of the thalamic neurons receiving the inhibitory nigral effect were also affected by cerebellar stimulation. The cerebellar effect consisted of a short-latency depolarizing potential which could trigger an action potential. These responses were invariably blocked during the course of SN evoked inhibition. Such convergence was found with fastigial as well as interpositus/dentatus evoked responses.The demonstration of an interaction between the processing of SN and cerebellar output at thalamic level provides an important clue for the understanding of the neurophysiologic mechanisms by which SN acts on motor behavior.  相似文献   

18.
Long-term potentiation of synaptic transmission in kitten visual cortex   总被引:5,自引:0,他引:5  
1. Potentiation of synaptic transmission in visual cortex (areas 17 and 18) of kittens was investigated by extracellular recording of field potentials (FPs) and cortical units in cortical slices and whole-animal preparations. Responses to test stimulation (0.05 Hz) of the white matter (WM), lateral geniculate nucleus (LGN), and optic chiasm (OC) were documented before and after conditioning stimulation (2 Hz for 1 h). 2. In slice preparations of area 17, the FPs were always depressed during conditioning stimulation and were usually potentiated immediately after conditioning stimulation. Long-term potentiation (LTP) of FPs developed rapidly during the initial 1-2 h and continued to increase slowly for several hours after conditioning. 3. LTP of FPs was age dependent: LTP occurred most frequently (43/53) at the ages of 21-34 days, less frequently (4/7 and 5/11) at 14-20 and 35-41 days, and never (0/5 and 0/5) at 7-13 and 42-49 days. LTP age relationship determined as a ratio of the amplitudes of FPs after conditioning to that before conditioning was greater at 21-34 days (mean potentiation, 2.4 +/- 0.6) than at 14-20 or 35-41 days (1.7 +/- 0.5). 4. LTP was also documented by the shortening in latencies of orthodromic responses of cortical units sampled from 10 pairs of conditioned and unconditioned control slices. Unit responses were classified into mono- and polysynaptic groups according to the central delay, defined as the time required for their activation after the arrival of afferent impulses. The monosynaptic central delays were 0.22 ms shorter in conditioned (0.60 +/- 0.17 ms, n = 56) than in control slices (0.82 +/- 0.22 ms, n = 57); similarly, polysynaptic central delays were 0.66 ms smaller (1.70 +/- 0.43 ms, n = 51; and 2.36 +/- 0.79 ms, n = 51). Both differences were statistically significant (P less than 0.001). 5. There were laminar differences in LTP of mono- and polysynaptic transmission. LTP of monosynaptic transmission occurred throughout layers II-V (central delays shortened about 0.2 ms), whereas LTP of polysynaptic transmission was greatest in layer II (1.17 ms), moderate in layer III (0.66 ms), and slight in layer IV (0.3 ms). The time course of shortening in orthodromic latency in five polysynaptic units agreed with the time course of LTP of FP. 6. Location of synapses involved in LTP of synaptic transmission was studied by current source-density (CSD) analysis in slice preparations of area 17 during test stimulation of WM. CSD analysis demonstrated two components of current sinks (early and late), probably representing mono- and polysynaptic transmission.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Changes in epidurally induced (S1) spinal cord reflexes were studied as a function of the level of restoration of stepping ability after spinal cord transection (ST). Three types of responses were observed. The early response (ER) had a latency of 2.5 to 3 ms and resulted from direct stimulation of motor fibers or motoneurons. The middle response (MR) had a latency of 5 to 7 ms and was monosynaptic. The late response (LR) had a latency of 9 to 11 ms and was polysynaptic. After a complete midthoracic ST, the LR was abolished, whereas the MR was facilitated and progressively increased. The LR reappeared about 3 wk after ST and increased during the following weeks. Restoration of stepping induced by epidural stimulation at 40 Hz coincided with changes in the LR. During the first 2 wk post-ST, rats were unable to step and electrophysiological assessment failed to show any LR. Three weeks post-ST, epidural stimulation resulted in a few steps and these coincided with reappearance of the LR. The ability of rats to step progressively improved from wk 3 to wk 6 post-ST. There was a continuously improved modulation of rhythmic EMG bursts that was correlated with restoration of the LR. These results suggest that restoration of polysynaptic spinal cord reflexes after complete ST coincides with restoration of stepping function when facilitated by epidural stimulation. Combined, these findings support the view that restoration of polysynaptic spinal cord reflexes induced epidurally may provide a measure of functional restoration of spinal cord locomotor networks after ST.  相似文献   

20.
In unanesthetized cats it has been found that pyramidal volleys elicited upon medullary pyramidal tract stimulation were capable of modifying the discharge of 41% of intracerebellar nuclear cells, via pontocerebellar systems impinging predominantly on the lateral cerebellar cortex. The incidence of responsive cells was 80% in the dentate nucleus compared with 10% in the fastigial nucleus, 11% in the anterior and 12% in the posterior division of the interpositus nucleus. The response was in 59% of the cases excitation followed by inhibition, in 30% of the cases a pure excitation and in 11% of the cases a pure inhibition. Excitation, pure or followed by inhibition, had a mean latency of 5.78 ms and a mean duration of 12.21 ms, while inhibition displayed a mean latency of 9.03 ms and a mean duration of 34.64 ms. The possible functional significance of the pyramidal input to the lateral cerebellum is briefly discussed in relation to a possible convergence of pyramidal and associative impulses in single cerebellar neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号