首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
alpha-L-Iduronidase (IDUA) deficiency (mucopolysaccharidosis type I, MPS I) involves a broad spectrum of clinical severity ranging from a severe Hurler syndrome through an intermediate Hurler Scheie syndrome to a mild Scheie syndrome. To date, a number of mutations of the IDUA gene are known in Hurler syndrome, but only a few in Hurler Scheie or Scheie syndrome. The characterization of novel mutations in two patients with the Hurler-Scheie syndrome is reported on. The novel R619G mutation (C-G transversion in codon 619) was apparently homozygous. In transfected COS-7 cells, R619G caused significant reduction in enzyme activity (1.5% of normal activity), although it did not cause significant reduction in IDUA mRNA or protein level. Conversely, the previously described homozygous T364M mutation (C-T transition in codon 364) caused a decrease in the level of IDUA mRNA. Studies inhibiting RNA synthesis with actinomycin D or inhibiting protein synthesis with cycloheximide demonstrate that the decrease in the latter mutation is attributable to an increased rate of mRNA decay. By examining the stability of IDUA mRNA and protein, studies provide better insight into the effect of mutation on IDUA activity.  相似文献   

2.
Acute intermittent porphyria (AIP) results from mutations in the porphobilinogen deaminase (PBG) gene. Three of 14 randomly selected, unrelated patients with the cross reacting immunological material (CRIM) negative form of AIP were found to have previously undescribed RNA splicing defects. Defective splicing of exons 12 and 13 was caused by a C-->G transversion at position -3 of the 3' splice site of intron 11 and a G-->A transition at the first position of intron 13, respectively. Defective splicing of exon 3 was associated with a synonymous codon mutation (CGC-->CGG, R28R) at position -22 from the 5' splice site. Our findings are consistent with previous reports indicating that about 15% of mutations in the PBG deaminase gene that cause AIP affect RNA splicing and add to the evidence that synonymous intraexonic codon mutations may cause disease.  相似文献   

3.
Lysosomal acid lipase (LAL) gene mutations were identified in three patients with cholesteryl ester storage disease (CESD). Direct sequencing of genomic DNA revealed that: patient 1 was a compound heterozygote for a P181L mutation and an A to G3' splice site substitution that causes skipping of exon 7, with a loss of 49 amino acids from LAL (delta 205-253); patient 2 was a compound heterozygote for a G66V mutation and a 5' splice site mutation (G to A) that leads to skipping of exon 8 (delta 254-277); and patient 3 was a compound heterozygote for a L273S mutation and an unidentified null allele. Furthermore, patients 2 and 3 showed a novel G-2A polymorphism that could be detected by an Xbal restriction fragment length polymorphism. All these mutants and a previously reported H274Y allele were expressed in vitro in HeLa cells using the vaccinia T7 expression system. The resulting recombinant proteins were inactive towards cholesteryl oleate and trioleylglycerol, demonstrating the direct involvement of these mutations in the pathogenesis of CESD. Immunoblotting of normal LAL expressed in HeLa cells revealed four major molecular forms, at least two of high molecular mass (54 and 50-51 kDa) and two of low molecular mass (42 and 43 kDa). L273S and P181L substitutions and delta 254-277 were shown to result in altered LAL molecular forms, some of which suggest that post-translational processing may interfere with the catalytic activity of LAL.   相似文献   

4.
Mucopolysaccharidosis type I (MPS I) is an autosomal recessive lysosomal storage disorder caused by a deficiency of alpha-L-iduronidase (IDUA). Mutations in the gene are responsible for the enzyme deficiency, which leads to the intralysosomal storage of the partially degraded glycosaminoglycans dermatan sulfate and heparan sulfate. Molecular characterization of MPS I patients has resulted in the identification of over 70 distinct mutations in the IDUA gene. The high degree of molecular heterogeneity reflects the wide clinical variability observed in MPS I patients. Six novel mutations, c.1087C>T (p.R363C), c.1804T>A (p.F602I), c.793G>C, c.712T>A (p.L238Q), c.1727+2T>A, and c.1269C>G (p.S423R), in a total of 14 different mutations, and 13 different polymorphic changes, including the novel c.246C>G (p.H82Q), were identified in a cohort of 10 MPS I patients enrolled in a clinical trial of enzyme-replacement therapy. Five novel amino acid substitutions and c.236C>T (p.A79V) were engineered into the wild-type IDUA cDNA and expressed. A p.G265R read-through mutation, arising from the c.793G>C splice mutation, was also expressed. Each mutation reduced IDUA protein and activity levels to varying degrees with the processing of many of the mutant forms also affected by IDUA. The varied properties of the expressed mutant forms of IDUA reflect the broad range of biochemical and clinical phenotypes of the 10 patients in this study. IDUA kinetic data derived from each patient's cultured fibroblasts, in combination with genotype data, was used to predict disease severity. Finally, residual IDUA protein concentration in cultured fibroblasts showed a weak correlation to the degree of immune response to enzyme-replacement therapy in each patient.  相似文献   

5.
目的 对经酶学确诊的粘多糖贮积症Ⅰ型患者进行α-L-艾杜糖苷酸酶(α-L-iduronidase,IDUA)基因突变检测,了解中国北方地区粘多糖贮积症Ⅰ型轻型患者基因突变特点.方法 应用PCR扩增技术及直接测序技术对11例中国北方地区经酶学确诊的粘多糖贮积症Ⅰ型患者IDUA基因14个外显子及相邻区域进行突变筛查,同时进行亲本来源分析.结果 11例患者中检测出7种基因突变:A79V、R89Q、R89w、E178K、G197S、L346R和W626X.7种突变均为已报道过子,11例中6例患者为纯合改变,1例为无义突变杂合子;发现了9种已知多态性位点.结论 中国北方地区粘多糖贮积症Ⅰ型轻型患者IDUA基因的突变特点可能不同于其他国家和地区.
Abstract:
Objective Mucopolysaccharidosis type Ⅰ (MPS Ⅰ ) is an autosomal recessive diseaseresulting from the deficiency in the lysosomal enzyme α-L-iduronidase (IDUA). The present study was conducted to identify IDUA gene mutations in attenuated (MPS Ⅰ H/S and MPS Ⅰ S) patients with MPS Ⅰin northern China. Methods Fourteen exons with adjacent intronic sequences of the IDUA gene in 11 MPS Ⅰ patients were amplified by polymerase chain reaction (PCR), and the PCR products were sequenced directly and origin analysis was conducted. Results Seven mutations were detected in the 11 MPS Ⅰ patients, i.e., c. 236 C>T(p. A79V), c. 266 G>A(p. R89Q), c. 265 C>T(p. R89W), c. 532G>A(p.E178K), c. 589G>A(p. G197S), c. 1037T>G(p. L346R), and c. 1877 G>A(p. W626X). All of them were known mutations. Six patients were homozygotes and 1 was heterozygote with nonsense mutation. In addition, 9 reported single nucleotide polymorphism (SNP) were detected, i. e., p. A8, p. A20, p. H33Q,p. R105Q, p. A314, p. A361T, p. T388, p. T410 and p. V454I. Conclusion The mutation spectrum of the IDUA gene in attenuated MPS Ⅰ Chinese patients may be different from that in patients from other countries.  相似文献   

6.
The E2 gene of the branched-chain α-keto acid dehydrogenase (BCKDH) complex was studied at the molecular level in three patients with intermittent maple syrup urine disease (MSUD). All three patients had higher BCKDH activity than did those with the classical phenotype. In the first patient, a single base substitution from A to G in intron 8 created a new 5′ splice site and caused an insertion of 126 nucleotides between exons 8 and 9 by activating an upstream cryptic 3′ splice site in the same intron. The predicted mRNA encoded a truncated protein with 282 amino acids including 4 novel ones at the carboxyl terminus, compared with the normal protein with 421 amino acids. In vitro, the region from the patient but not from a normal control was recognized and was recovered as a novel exon, indicating that the single substitution was responsible for incorporation of the region into mRNA. This mutation probably supports an exon definition model in which the spliceosome recognizes a 3′ splice site and then scans downstream for an acceptable 5′ splice site, thereby defining an exon. The second patient was homozygous for a G to T transversion at nucleotide 1463 in exon 11, which predicted a substitution of the termination codon by a leucine residue and the addition of 7 extra amino acids at the carboxyl terminus. For each mutation, these two patients were homozygous and their parents were heterozygous. The third patient was a compound heterozygote for a C to G transversion at nucleotide 309 in exon 4 and a G to A transition at nucleotide 1165 in exon 9, causing an Ile-to-Met substitution at amino acid 37 and a Gly-to-Ser substitution at amino acid 323, respectively. Taken together, these results indicate that the molecular basis of intermittent phenotype MSUD in some patients can be due to mutations in the E2 gene, giving rise to a low but significant residual activity of the BCKDH complex. Received: October 29, 1997 / Accepted: November 27, 1997  相似文献   

7.
Mucopolysaccharidosis type I (MPS-I) is an autosomal recessive disease caused by mutations in the α-L-iduronidase (IDUA) gene. These mutations lead to a deficiency of the glycosidase α-L-iduronidase (IDUA), which is required for the degradation of heparan sulphate and dermatan sulphate and thus the storage of these glycosaminoglycans in the lysosome. There is a wide range of clinical phenotypes in MPS-I (eponyms: Hurler syndrome, severe; Hurler/Scheie syndrome, intermediate; Scheie syndrome, mild), which makes prediction of disease severity and genetic counselling difficult. However, since cloning of the IDUA gene, mutation analysis has provided some molecular explanations for the range of MPS-I phenotypes, in turn facilitating the selection and evaluation of patients undergoing experimental treatment protocols such as bone marrow transplantation. A total of 46 mutations now have been defined for MPS-I consisting of 8 nonsense mutations, 21 missense mutations, 3 splice site mutations, and 14 minor deletions and/or insertions. Furthermore, 30 polymorphisms or nonpathogenie sequence variants have been defined, including 7 amino acid substitutions. Among patients of European origin, there are two major MPS-I mutations and a number of less frequent mutations. It is possible to follow mutation analysis of 292 patients, which can be divided into eight main patient groups of different ethnic and/or geographic origin with significant variation in mutant allele frequencies. A complex picture of molecular heterogeneity is emerging, building a valuable database for genotype/phenotype correlation. Mutation analysis is also providing some of the first clues into the structure and function of IDUA. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is a life-threatening disorder of mitochondrial fatty acid beta-oxidation. We identified four novel mutations in three unrelated patients. All patients had the severe childhood form of VLCAD deficiency with early onset and high mortality. Immunoblot analysis revealed that VLCAD protein was undetectable in patients 2 and 3, whereas normal-size VLCAD protein and an aberrant form of VLCAD (4kDa smaller) were detected in patient 1. As expected, null mutations were found in patients 2 and 3: patient 2 is homozygous for a frameshift mutation, del 4 bp at 798-801, and patient 3 is homozygous for a nonsense mutation 65C>A(S22X). Patient 1 was homozygous for a complex mutant allele containing two alterations, including a 194C>T transition (P65L) and 739A>C transversion (K247Q); in the case of P65L, the amino acid change does not reduce enzyme activity. However, the nucleotide change resulted in exon 3 skipping, whereas the latter K247Q mutation had a drastic effect on enzyme activity. We verified these events by in vivo splicing experiments and transient expression analysis of mutant cDNAs. The P65L mutation locates 11 bases upstream of a splice donor site of intron 3. This is an example of an exonic mutation which affects exon-splicing.  相似文献   

9.
Mutations in the TSC2 gene on chromosome 16p13.3 are responsible for approximately 50% of familial tuberous sclerosis (TSC). The gene has 41 small exons spanning 45 kb of genomic DNA and encoding a 5.5 kb mRNA. Large germline deletions of TSC2 occur in <5% of cases, and a number of small intragenic mutations have been described. We analysed mRNA from 18 unrelated cases of TSC for TSC2 mutations using the protein truncation test (PTT). Three cases were predicted to be TSC2 mutations on the basis of linkage analysis or because a hamartoma from the patient showed loss of heterozygosity for 16p13.3 markers. Three overlapping PCR products, covering the complete coding sequence of mRNA, were generated from lymphoblastoid cell lines, translated into 35S-methionine labelled protein, and analysed by SDS-PAGE. PCR products showing PTT shifts were directly sequenced, and mutations confirmed by restriction enzyme digestion where possible. Six PTT shifts were identified. Five of these were caused by mutations predicted to produce a truncated protein: (i) a sporadic case showed a 32 bp deletion in exon 11, and a mutant mRNA without exon 11 was produced; the normal exon 10 was also spliced out; (ii) a sporadic case had a 1 bp deletion in exon 12 (1634delT); (iii) a TSC2-linked mother and daughter pair had a G-->T transversion in exon 23 (G2715T) introducing a cryptic splice site causing a 29 bp truncation of mRNA from exon 23; (iv) a sporadic case showed a 2 bp deletion in exon 36; (v) a sporadic case showed a 1 bp insertion disrupting the donor splice site of exon 37 (5007+2insA), resulting in the use of an upstream exonic cryptic splice site to cause a 29 bp truncation of mRNA from exon 37. In one case, the PTT shift was explained by in-frame splicing out of exon 10, in the presence of a normal exon 10 genomic sequence. Alternative splicing of exon 10 of the TSC2 gene may be a normal variant. Three 3rd base substitution polymorphisms were also detected during direct sequencing of PCR products. Confirmed mutations were identified in 28% of the families studied and on the assumption that half of the sporadic cases should have TSC2 mutations, a crude estimate of the detection rate would be 60%. This compares favourably with other screening methods used for TSC2, notably SSCP, and since PTT involves much less work it may be the method of choice.   相似文献   

10.
目的:探讨我国粘多糖贮积症I型患者α-L-艾杜糖醛酸酶基因的突变情况。方法:采用PCR-SSCP和DNA测序的方法检测我国辽宁地区10个粘多糖贮积症I型家系α-L-艾杜糖醛酸酶基因的突变类型。结果: ①发现我国辽宁地区粘多糖贮积症I型患者α-L-艾杜糖醛酸酶基因存在2种新的突变类型R363H和880+g-c。②同时发现3种多态性位点R105Q、L118和A361T。结论: 我国辽宁地区粘多糖贮积症I型患者α-L-艾杜糖醛酸酶基因的突变情况不同于其他国家和地区,但其多态性与Scott等报道的欧裔患者情况相似[1]。  相似文献   

11.
12.
Uncovering frequent motives of action by which variants impair 3′ splice site (3′ss) recognition and selection is essential to improve our understanding of this complex process. Through several mini‐gene experiments, we demonstrate that the pyrimidine (Y) to purine (R) transversion NM_000267.3(NF1):c.1722‐11T>G, although expected to weaken the polypyrimidine tract, causes exon skipping primarily by introducing a novel AG in the AG‐exclusion zone (AGEZ) between the authentic 3′ss AG and the branch point. Evaluation of 90 additional noncanonical intronic NF1 3′ss mutations confirmed that 63% of all mutations and 89% (49/55) of the single‐nucleotide variants upstream of positions ‐3 interrupt the AGEZ. Of these AGEZ‐interrupting mutations, 24/49 lead to exon skipping suggesting that absence of AG in this region is necessary for accurate 3′ss selection already in the initial steps of splicing. The analysis of 91 noncanonical NF1 3′ss mutations also shows that 90% either introduce a novel AG in the AGEZ, cause a Y>R transversion at position ‐3 or remove ≥2 Ys in the AGEZ. We confirm in a validation cohort that these three motives distinguish spliceogenic from splice‐neutral variants with 85% accuracy and, therefore, are generally applicable to select among variants of unknown significance those likely to affect splicing.  相似文献   

13.
14.
6-Pyruvoyl-tetrahydrobiopterin synthase (PTPS) is involved in tetrahydrobiopterin (BH4) biosynthesis, the cofactor for various enzymes including the hepatic phenylalanine hydroxylase. Inherited PTPS deficiency leads to BH4 depletion, causes hyperphenylalaninemia, and requires cofactor replacement therapy for treatment. We previously isolated the human PTPS cDNA and recently characterized its corresponding gene, PTS. Here we developed PCR-based mutation analysis with newly designed primers to detect genomic alterations and describe five mutations, four of which are novel, in the PTS gene of four Italian families with affected individuals. The mutant alleles found included three missense mutations (T67M, K129E, D136V), a previously described triplet deletion (ΔV57), and a single c–3⇒g transversion in the 3′-acceptor splice site of intron 1, leading to cryptic splice site usage that resulted in a 12 bp deletion (mutant allele Δ(K29-S32)). Except for K129E, all mutant alleles were inactive and/or unstable proteins, as shown by recombinant expression and Western blot analysis of patients' fibroblasts. The PTPS-deficient patient with the homozygous K129E allele had transient hyperphenylalaninemia, did not depend on BH4 replacement therapy, and showed normal PTPS immunoreactivity, but no enzyme activity in primary fibroblasts and red blood cells. In contrast to its inactivity in these cells, the K129E mutant was 2–3 fold more active than wild-type PTPS when transfected into COS-1 or the human hepatoma cell line Hep G2. K129E appears thus as a mutant PTPS whose activity depends on the cell type. Hum Mutat 10:25–35, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
16.
The SRY gene (sex-determining region of the Y chromosome) initiates the process of male sex differentiation in mammalians. In humans mutations in the SRY gene have been reported to account for 10-15% of the XY sex reversal cases. We describe here two novel missense mutations in the SRY gene after the screening of 17 patients, including 3 siblings, with 46,XY gonadal dysgenesis and 4 true hermaphrodites. One of the mutations, an A to C transversion within the HMG box, causes the N65H substitution and it was found in a patient presenting 46,XY pure gonadal dysgenesis. The Escherichia coli expressed SRY(N65H) protein did not present DNA-binding activity in vitro. The other mutation, a G to T transversion, causes the R30I substitution. This mutation was found in affected and nonaffected members of a family, including the father, two siblings with partial gonadal dysgenesis, a phenotypic female with pure gonadal dysgenesis, and three nonaffected male siblings. The G to T base change was not found in the SRY sequence of 100 normal males screened by ASO-PCR. The R30I mutation is located upstream to the HMG box, within the (29)RRSSS(33) phosphorylation site. The E. coli expressed SRY(R30I) protein was poorly phosphorylated and consequently showed reduced DNA-binding capacity in vitro.  相似文献   

17.
Germline mutations of the EVER1/TMC6 gene are associated with epidermodysplasia verruciformis (EV), which is characterized by an abnormal susceptibility to human papillomaviruses that were considered to be innocuous for the general population. In this study, we have employed polymerase chain reaction and DNA sequencing analysis to characterize the EVER1 gene in a 65-year-old Japanese EV patient. Direct sequence analyses resulted in the identification of two novel mutations. One nonsense mutation consisting of a (C>A) transversion at nucleotide 744 in exon 8 in one EVER1 allele resulted in the introduction of a premature termination codon (Y248X). Another mutation was identified in the splice acceptor site of intron 8 (892-2, IVS8-2, A>T) in another allele. This is the second report of EVER1/TMC6 mutations in EV.  相似文献   

18.
Fifteen children presenting with infantile seizures, acquired microcephaly, and developmental delay were found to have novel heterozygous mutations in the GLUT1 (SLC2A1). We refer to this condition as the Glut-1 Deficiency Syndrome (Glut-1 DS). The encoded protein (Glut-1), which has 12 transmembrane domains, is the major glucose transporter in the mammalian blood-brain barrier. The presence of GLUT1 mutations correlates with reduced cerebrospinal fluid glucose concentrations (hypoglycorrhachia) and reduced erythrocyte glucose transporter activities in the patients. We used Florescence in situ hybridization, PCR, single-stranded DNA conformational polymorphism, and DNA sequencing to identify novel GLUT1 mutations in 15 patients. These abnormalities include one large-scale deletion (hemizygosity), five missense mutations (S66F, R126L, E146K, K256V, R333W), three deletions (266delC, 267A>T; 904delA; 1086delG), three insertions (368-369 insTCCTGCCCACCACGCTCACCACG, 741-742insC, 888-889insG), three splice site mutations (197+1G>A; 1151+1G>T; 857T>G, 858G>A, 858+1del10), and one nonsense mutation (R330X). In addition, six silent mutations were identified in exons 2, 4, 5, 9, and 10. The K256V missense mutation involved the maternally derived allele in the patient and one allele in his mother. A spontaneous R126L missense mutation also was present in the paternally derived allele of the patient. The apparent pathogenicity of these mutations is discussed in relation to the functional domains of Glut-1.  相似文献   

19.
Erythropoietic protoporphyria (EPP) is an inherited disorder, caused by a partial deficiency of ferrochelatase (FECH), the last enzyme of the heme biosynthetic pathway. The deficiency results in accumulation of protoporphyrin, primarily in erythroid cells, and the major clinical feature is cutaneous photosensitivity. In addition, some patients may develop liver complications. Several EPP-coupled mutations have been identified in the FECH gene, and the less than 50% of FECH activity seen in patients with overt EPP was recently shown to be due to the in trans inheritance of one deleterious mutation and a IVS3-48T>C transition in intron 3 of the FECH gene. This IVS3-48T>C transition modulates the use of a constitutive aberrant splice site, which results in a decreased FECH mRNA level in the carrier. In the present study, the inheritance of four novel (364C>T, 393delC, 532G>A, and 1088-89insGG) and two previously reported (343C>T and 1001C>T) FECH mutations, and the splice site modulator IVS3-48C was investigated in nine Swedish families with EPP. The methods used for the FECH gene analysis included denaturating gradient gel electrophoresis, sequencing analysis, and restriction enzyme cleavage. Haplotype analysis, based on the polymorphic loci 287(G/A), IVS3-48(T/C), and 921(G/A), revealed that all individuals carrying a mutated allele and IVS3-48C in trans to each other were affected by overt EPP. Mild clinical and biochemical EPP signs may, however, be present in individuals carrying a T at position IVS3-48 in trans to a mutated allele, because this was the case in one of the individuals investigated in the present study.  相似文献   

20.
Hereditary myeloperoxidase (MPO) deficiency (MPOD) is the most common neutrophil biochemical defect, and is characterized by a lack of peroxidase activity. In order to extend the epidemiological studies on hereditary MPOD in Italy, a population screening was carried out to detect mutations in the MPO gene. Of approximately 40,000 individuals analyzed, seven partial and eight total MPO-deficient subjects were identified. The genetic characterization of the subjects showed the presence of three already-known mutations (c.752T>C, c.1705C>T, and c.1566_1579del14) and six novel mutations: four missense mutations (c.995C>T, c.1112A>G, c.1715T>G, and c.1927T>C), then a deletion of an adenine within exon 3 (c.325delA) and a mutation within the 3' splice site of intron 11 (c.2031-2A>C). The novel missense mutations cause the substitution of the residues p.A332V, p.D371G, p.L572W, and p.W643R, respectively, and the potential structural changes are discussed. The c.325delA deletion causes a shift of the reading frame with the occurrence of a premature stop codon within the propeptide. Then, considering the difficulty in obtaining bone marrow samples from MPO-deficient subjects to study MPO mRNA splicing in vivo, we set up an eukaryotic expression system to investigate how the c.2031-2A>C mutation alters the MPO pre-mRNA splicing. The activation of a cryptic 3' splice site located 109nt upstream of the authentic 3' splice site was observed. The 109nt-insertion causes a shift in the reading frame that should lead to the generation of an abnormal MPO precursor lacking the enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号