首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We previously reported that depletion of glutathione in murine hepatocytes by diethylmaleate (DEM) or acetaminophen (APAP) leads to oxidative stress-dependent necrosis and sensitizes to tumor necrosis factor (TNF)-induced apoptosis in an oxidative stress-independent fashion, which could not be explained by interference with nuclear factor kappaB (NF-kappaB) nuclear translocation. The present report explores the mechanisms of these effects. We observed that DEM led to necrosis when both mitochondrial and cytosol glutathione were depleted profoundly but sensitized to TNF-induced apoptosis when cytosol glutathione was depleted selectively. DEM and APAP lead to a significant decrease in reduced glutathione (GSH)/glutathione disulfide (GSSG) ratio. Glutathione depletion by DEM or APAP was associated with inhibition of TNF-induced NF-kappaB transactivation of anti-apoptotic genes, including inducible nitric oxide synthase (i-NOS). Provision of exogenous NO partially abrogated the sensitization to TNF in response to glutathione depletion. Glutathione depletion alone led to sustained increase in phospho-jun levels and c-Jun-N-terminal kinase (JNK) activity. JNK inhibitor partially blocked the sensitization to TNF-induced apoptosis accompanying glutathione depletion. In conclusion, these findings suggest that extramitochondrial glutathione depletion alters the thiol-disulfide redox state, leading to inhibition of NF-kappaB transactivation of survival genes and to sustained activation of JNK, both of which contribute to the sensitization to TNF-induced apoptosis.  相似文献   

3.
Pollet I  Opina CJ  Zimmerman C  Leong KG  Wong F  Karsan A 《Blood》2003,102(5):1740-1742
The intracellular pathways by which inflammatory mediators transmit their angiogenic signals is not well studied. The effects of a potent inflammatory mediator, bacterial lipopolysaccharide (LPS), are transmitted through Toll-like receptors (TLRs). A major, although not exclusive, LPS/TLR intracellular signaling pathway is routed through TNF (tumor necrosis factor) receptor associated factor 6 (TRAF6). In this report we demonstrate that LPS directly stimulates endothelial sprouting in vitro. By blocking TRAF6 activity using retroviral expression of a dominant-negative TRAF6 in endothelial cells, we show that TRAF6 is absolutely required for the LPS-initiated angiogenic response in vitro and in vivo. Inhibition of either c-Jun N-terminal kinase (JNK) activity or nuclear factor kappaB (NF-kappaB) activity, downstream of TRAF6, is sufficient to inhibit LPS-induced endothelial sprouting. In contrast, only inhibition of NF-kappaB, but not JNK, activity blocks basic fibroblast growth factor (bFGF)-induced angiogenesis. Our findings thus demonstrate a direct endothelial-stimulatory role of LPS in initiating angiogenesis through activation of TRAF6-dependent signaling pathways.  相似文献   

4.
5.
OBJECTIVE: NF-kappaB and JNK signaling pathways play key roles in the pathogenesis of inflammatory arthritis. Both factors are also activated in response to osteoclastogenic factors, such as RANKL and tumor necrosis factor alpha. Inflammatory arthritis and bone erosion subside in the presence of antiinflammatory cytokines such as interleukin-4 (IL-4). We have previously shown that IL-4 inhibits osteoclastogenesis in vitro through inhibition of NF-kappaB and JNK activation in a STAT-6-dependent manner. This study was undertaken to investigate the potential of constitutively active STAT-6 to arrest the activation of NF-kappaB and JNK and to subsequently ameliorate the bone erosion associated with inflammatory arthritis in mice. METHODS: Inflammatory arthritis was induced in wild-type and STAT-6-null mice by intraperitoneal injection of arthritis-eliciting serum derived from K/BxN mice. Bone erosion was assessed in the joints by histologic and immunostaining techniques. Cell-permeable Tat-STAT-6 fusion proteins were administered intraperitoneally. Cells were isolated from bone marrow and from joints for the JNK assay, the DNA-binding assays (electrophoretic mobility shift assays), and for in vitro osteoclastogenesis. RESULTS: Activation of NF-kappaB and JNK in vivo was increased in extracts of cells retrieved from the joints of arthritic mice. Cell-permeable, constitutively active STAT-6 (i.e., STAT-6-VT) was effective in blocking NF-kappaB and JNK activation in RANKL-treated osteoclast progenitors. More importantly, STAT-6-VT protein significantly inhibited the in vivo activation of NF-kappaB and JNK, attenuated osteoclast recruitment in the inflamed joints, and decreased bone destruction. CONCLUSION: Our findings indicate that the administration of STAT-6-VT presents a novel approach to the alleviation of bone erosion in inflammatory arthritis.  相似文献   

6.
7.
8.
9.
Sethi G  Ahn KS  Pandey MK  Aggarwal BB 《Blood》2007,109(7):2727-2735
Celastrol, a quinone methide triterpene derived from the medicinal plant Tripterygium wilfordii, has been used to treat chronic inflammatory and autoimmune diseases, but its mechanism is not well understood. Therefore, we investigated the effects of celastrol on cellular responses activated by TNF, a potent proinflammatory cytokine. Celastrol potentiated the apoptosis induced by TNF and chemotherapeutic agents and inhibited invasion, both regulated by NF-kappaB activation. We found that TNF induced the expression of gene products involved in antiapoptosis (IAP1, IAP2, Bcl-2, Bcl-XL, c-FLIP, and survivin), proliferation (cyclin D1 and COX-2), invasion (MMP-9), and angiogenesis (VEGF) and that celastrol treatment suppressed their expression. Because these gene products are regulated by NF-kappaB, we postulated that celastrol mediates its effects by modulating the NF-kappaB pathway. We found that celastrol suppressed both inducible and constitutive NF-kappaB activation. Celastrol was found to inhibit the TNF-induced activation of IkappaBalpha kinase, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 nuclear translocation and phosphorylation, and NF-kappaB-mediated reporter gene expression. Recent studies indicate that TNF-induced IKK activation requires activation of TAK1, and we indeed found that celastrol inhibited the TAK1-induced NF-kappaB activation. Overall, our results suggest that celastrol potentiates TNF-induced apoptosis and inhibits invasion through suppression of the NF-kappaB pathway.  相似文献   

10.
BACKGROUND/AIMS: Failure to induce apoptosis triggered by members of the death receptor family has been described in hepatocellular carcinoma (HCC) and sensitization of malignant cells to pro-apoptotic molecules such as TRAIL has been proposed as an alternative cancer therapy. Limiting to this approach are the resistance of many tumor cells to TRAIL and safety concerns about the toxicity of TRAIL in normal hepatocytes. METHODS: We here explored the possibility that the protooncogene c-Src, known to be overexpressed in a variety of tumors, could be specifically responsible for the loss of response to receptor-mediated apoptosis. RESULTS: Cotreatment of several hepatoma cell lines with the Src inhibitor PP2 potently sensitized these cells to TRAIL and CD95, dramatically decreasing effective doses of TRAIL to as low as 1 ng/ml. Remarkably, Src-inhibition did not synergize with TRAIL signaling in primary hepatocytes. Specific siRNAs showed that the effect was due to blockade of p60(c-Src) and occurred through increased recruitment of caspase 8. CONCLUSIONS: We provide evidence that p60(c-Src) is an important and effective suppressor of receptor-mediated apoptosis in hepatoma cells but not in primary human hepatocytes. Inhibition of Src sensitizes tumor cells to apoptosis and decreases effective doses of TRAIL to therapeutic concentrations.  相似文献   

11.
We found that MEK1 inhibitor PD184352 strikingly increased apoptosis induced by arsenic trioxide (ATO) in 21 of 25 patients with primary acute myelogenous leukemia (AML). Isobologram analysis confirmed the synergistic (13 of 25 patients) or additive (8 of 25 patients) nature of this interaction. Moreover, we demonstrated that the p53-related gene p73 is a molecular target of the combined treatment in AML blasts. Indeed, ATO modulates the expression of the p73 gene by inducing the proapoptotic and antiproliferative TAp73 and the antiapoptotic and proproliferative DeltaNp73 isoforms, thereby failing to elevate the TA/DeltaNp73 ratio. Conversely, treatment with PD184352 reduces the level of DeltaNp73 and blunts the arsenic-mediated up-regulation of DeltaNp73, thus causing an increase in the TA/DeltaNp73 ratio of dual-treated cells. High doses of ATO induced p53 accumulation in 11 of 21 patients. Combined treatment resulted in the induction of the proapoptotic p53/p73 target gene p53AIP1 (p53-regulated apoptosis-inducing protein 1) and greatly enhanced the apoptosis of treated cells.  相似文献   

12.
Granulocytes and mononuclear phagocytes develop from the same myeloid progenitor cells in the bone marrow via distinct differentiation pathways. Yet, it is known that mature macrophages are more resistant than granulocytes to spontaneous apoptosis in cultures without hematopoietic growth factors. This fact suggests that the development of resistance to apoptosis during myeloid differentiation is differentially regulated by a lineage-dependent mechanism. Using primary cultures of human bone marrow cells, we now report that induction of monocytic differentiation into mature macrophages with M-CSF was correlated with a steady and gradual increase in the levels of X-chromosome-linked inhibitor of apotosis (XIAP) and Bcl-2, while induction of granulocytic differentiation with G-CSF had no significant effects on the expression of these proteins. Consistent with this, NF-kappaB activation is linked to monocytic, but not granulocytic differentiation, while ERK or STAT3 activation is not lineage-dependent. Blockade of NF-kappaB activation in mature macrophages resulted in a marked decrease in the levels of XIAP and Bcl-2, which was accompanied with cell death through an apoptotic mechanism. Thus lineage-dependent activation of NF-kappaB is responsible at least in part for the resistance of mature macrophages to 'spontaneous' apoptosis in vitro.  相似文献   

13.
TRAIL exhibits potent anti-tumor activity on systemic administration in mice. Because of its proven in vivo efficacy, TRAIL may serve as a novel anti-neoplastic drug. However, approximately half of the tumor cell lines tested so far are TRAIL resistant, and potential toxic side effects of certain recombinant forms of TRAIL on human hepatocytes have been described. Pretreatment with the proteasome inhibitor MG132 and PS-341 rendered TRAIL-resistant hepatocellular carcinoma (HCC) cell lines but not primary human hepatocytes sensitive for TRAIL-induced apoptosis. We investigated the different levels of possible MG132-induced interference with resistance to apoptotic signal transduction. Although proteasome inhibition efficiently suppressed nuclear factor-kappaB (NF-kappaB) activity, specific suppression of NF-kappaB by mutIkappaBalpha failed to sensitize TRAIL-resistant cell lines for TRAIL-induced apoptosis. In contrast to the previously reported mechanism of sensitization by 5-fluorouracil (5-FU), cellular FLICE-inhibitory protein (cFLIP)(L) and cFLIP(S) were markedly upregulated in the TRAIL death inducing signaling complex (DISC) by proteasome inhibitor pretreatment. Compared with 5-FU pretreatment, caspase-8 was more efficiently recruited to the DISC in MG132 pretreated cells despite the presence of fewer death receptors and more cFLIP in the DISC. But downregulation of cFLIP by short interference RNA (siRNA) further sensitized the HCC cell lines. In conclusion, these results show that otherwise chemotherapy-resistant tumor cells can be sensitized for TRAIL-induced apoptosis at the DISC level in the presence of high levels of cFLIP, which suggests the existence of an additional factor that modulates the interaction of FADD and the TRAIL death receptors. Of clinical relevance, proteasome inhibitors sensitize HCC cells but not primary human hepatocytes for TRAIL-induced apoptosis.  相似文献   

14.
15.
Y Nagata  K Todokoro 《Blood》1999,94(3):853-863
C-Jun amino terminal kinase/stress-activated protein kinases (JNK/SAPK) and p38 subgroups of mitogen-activated protein kinases have been suggested to play a critical role in apoptosis, cell growth, and/or differentiation. We found that a short exposure of SKT6 cells, which respond to erythropoietin (Epo) and induce erythroid differentiation, to osmotic or heat shock induced transient activation of JNK/SAPK and p38 and inactivation of ERK and resulted in erythroid differentiation without Epo, whereas long exposure of the cells to these stresses induced prolonged activation/inactivation of the same kinases and caused apoptosis. Inhibition of JNK/SAPK and p38 resulted in inhibition of stress-induced erythroid differentiation and apoptosis. Inhibition of ERK had no effect on stress-induced erythroid differentiation, but stimulated apoptosis. Activation of p38 and/or JNK/SAPK for a short time caused erythroid differentiation without Epo, although its prolonged activation induced apoptosis. Activation of ERK suppressed stress-induced apoptosis. These results indicate that short cellular stresses, inducing transient activation of JNK/SAPK and p38, lead to cell differentiation rather than apoptosis. Furthermore, activation of JNK/SAPK and p38 is required for both cell differentiation and apoptosis, and the duration of their activation may determine the cell fate, cell differentiation, and apoptosis. In contrast, inactivation of ERK is required for stress-induced apoptosis but not cell differentiation.  相似文献   

16.
Prostaglandin E1 (PGE1) reduces cell death in experimental and clinical liver dysfunction. We have previously shown that PGE1 preadministration protects against NO-dependent cell death induced by D-galactosamine (D-GalN) through a rapid increase of nuclear factor kappaB (NF-kappaB) activity, inducible NO synthase (NOS-2) expression, and NO production. The present study investigates whether PGE1-induced NO was able to abolish NF-kappaB activation, NOS-2 expression, and apoptosis elicited by D-GalN. Rat hepatocytes were isolated following the classical method of collagenase perfusion of liver. PGE1 (1 micromol/L) was administered 2 hours before D-GalN (5 mmol/L) in primary culture rat hepatocytes. PGE1 reduced inhibitor kappaBalpha degradation, NF-kappaB activation, NOS-2 expression, and apoptosis induced by D-GalN. The administration of an inhibitor of NOS-2 abolished the inhibitory effect of PGE1 on NF-kappaB activation and NOS-2 expression in D-GalN-treated hepatocytes. Transfection studies using different plasmids corresponding to the NOS-2 promoter region showed that D-GalN and PGE1 regulate NOS-2 expression through NF-kappaB during the initial stage of hepatocyte treatment. PGE1 was able to reduce the promoter activity induced by D-GalN. In addition, a NO donor reduced NOS-2 promoter activity in transfected hepatocytes. In conclusion, administration of PGE1 to hepatocytes produces low levels of NO, which inhibits its own formation during D-GalN-induced cell death through the attenuation of NF-kappaB-dependent NOS-2 expression. Therefore, a dual role for NO in PGE1-treated D-GalN-induced toxicity in hepatocytes is characterized by a rapid NO release that attenuates the late and proapoptotic NOS-2 expression.  相似文献   

17.
BACKGROUND AND AIMS: Hepatocyte apoptosis is induced by tumor necrosis factor alpha (TNF-alpha) and Fas ligand. Although nuclear factor-kappaB (NF-kappaB) activation protects hepatocytes from TNF-alpha-mediated apoptosis, the NF-kappaB responsive genes that protect hepatocytes are unknown. Our aim was to study the role of NF-kappaB activation and inducible nitric oxide synthases (iNOSs) in TNF-alpha- and Fas-mediated apoptosis in hepatocytes. METHODS: Primary cultures of hepatocytes from wild-type and iNOS knockout mice were treated with TNF-alpha, the Fas agonistic antibody Jo2, a nitric oxide (NO) donor (S-nitroso-N-acetylpenicillamine), an NO inhibitor (N(G)-methyl-L-arginine acetate), and/or adenovirus-expressing NF-kappaB inhibitors. RESULTS: The IkappaB superrepressor and a dominant-negative form of IkappaB kinase beta (IKKbeta) inhibited NF-kappaB binding activity by TNF-alpha or Jo2 and sensitized hepatocytes to TNF-alpha- and Jo2-mediated apoptosis. TNF-alpha and Jo2 induced iNOS messenger RNA and protein levels through the induction of NF-kappaB. S-nitroso-N-acetylpenicillamine inhibited Bid cleavage, the mitochondrial permeability transition, cytochrome c release, and caspase-8 and -3 activity, and reduced TNF-alpha- and Fas-mediated death in hepatocytes expressing IkappaB superrepressor. N(G)-methyl-L-arginine acetate partially sensitized hepatocytes to TNF-alpha- and Fas-mediated cell killing. TNF-alpha alone or Jo2 alone induced moderate cell death in hepatocytes from iNOS(-)/(-) mice. CONCLUSIONS: NO protects hepatocytes from TNF-alpha- and Fas-mediated apoptosis. Endogenous iNOS, which is activated by NF-kappaB via IKKbeta, provides partial protection from apoptosis.  相似文献   

18.
19.
Prolonged liver ischemia followed by reperfusion (I/R) causes functional and structural damage to liver cells, resulting in necrosis and apoptosis. c-jun N-terminal kinase 1/stress-activated protein kinase 1 (JNK(1)/SAPK(1)) is activated during I/R and participates in the onset of the apoptosis program. Excessive blood loss during surgery can hinder postoperative recovery. Intermittent portal triad clamping (PTC) is better tolerated than prolonged continuous ischemia. This study was designed to demonstrate that intermittent ischemia could improve postischemic survival rates by a decrease of JNK(1)/SAPK(1) and caspase 3 activation, which were involved in the apoptosis process. Rats were subjected to intermittent 1-hour ischemia (15-minute ischemia/5-minute reperfusion, 4 times), followed by 220-minute reperfusion, or to continuous ischemia (1 hour), followed by 240-minute reperfusion. Mortality rates were assessed on day 7. Serum aspartate transaminase (AST), alanine transaminase (ALT), and lactate dehydrogenase levels (LDH) were measured 6 hours after ischemia. This study was completed in primary cultured isolated rat hepatocytes, subjected to the same continuous or intermittent hypoxic conditions. The activation status of JNK(1)/SAPK(1) was evaluated by immunoprecipitation or Western blotting experiments. Apoptosis was assessed by measuring caspase activation and by terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling (TUNEL) reaction. Eighty percent of the intermittent-ischemia group was alive 7 days after surgery and serum enzyme levels were significantly decreased. Intermittent hypoxia or ischemia did not lead to JNK(1)/SAPK(1) activation, but at least 3 hypoxia-reoxygenation (H/R) sets were necessary to inhibit kinase activation. Consequently, caspase 3 activation and apoptosis were dramatically reduced. Intermittent ischemia is a powerful, protective way to reduce I/R damage of the liver, by reduction of JNK(1)/SAPK(1) activation associated with a down-regulation of caspase 3 activity, which leads to inhibition of hepatocyte apoptosis.  相似文献   

20.
BACKGROUND/AIMS: Epimorphin, expressed by hepatic stellate cells in the liver, directs normal morphogenesis in various organs. The aim of this study was to clarify the mechanism by which epimorphin functions as a morphogen in vitro. METHODS: Male Balb/c mice and Sprague-Dawley rats were used. First, we explored the relationship between epimorphin expression and distribution of protease-positive cells in carbon tetrachloride-induced acute liver injury. We then examined protease levels in cultured hepatocytes and signal transduction of epimorphin. Finally, we determined the requirement for proteases and NF-kappaB in spheroid formation induced by epimorphin. RESULTS: Epimorphin expression was enhanced in injured areas during late recovery phase, in which protease-positive hepatocytes were localized adjacent to epimorphin-expressing cells. In vitro, epimorphin induced matrix metalloproteinase (MMP) 9, MMP 3 and urokinase type plasminogen activator (uPA) in hepatocytes. NF-kappaB mediated these protease expressions in hepatocytes. These proteases were required for epimorphin-induced and Matrigel induced spheroid. An epimorphin-neutralizing antibody also blocked spheroid formation on Matrigel, which contained epimorphin. In addition, NF-kappaB activation was also required for spheroid formation. CONCLUSION: Epimorphin elicits hepatocyte spheroids by inducing proteases in rodent hepatocytes through NF-kappaB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号