首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Water droplets on rugged hydrophobic surfaces typically exhibit one of the following two states: (i) the Wenzel state [Wenzel RN (1936) Ind Eng Chem 28:988–994] in which water droplets are in full contact with the rugged surface (referred as the wetted contact) or (ii) the Cassie state [Cassie, ABD, Baxter S (1944) Trans Faraday Soc 40:546–551] in which water droplets are in contact with peaks of the rugged surface as well as the “air pockets” trapped between surface grooves (the composite contact). Here, we show large-scale molecular dynamics simulation of transition between Wenzel state and Cassie state of water droplets on a periodic nanopillared hydrophobic surface. Physical conditions that can strongly affect the transition include the height of nanopillars, the spacing between pillars, the intrinsic contact angle, and the impinging velocity of water nanodroplet (“raining” simulation). There exists a critical pillar height beyond which water droplets on the pillared surface can be either in the Wenzel state or in the Cassie state, depending on their initial location. The free-energy barrier separating the Wenzel and Cassie state was computed on the basis of a statistical-mechanics method and kinetic raining simulation. The barrier ranges from a few tenths of kBT0 (where kB is the Boltzmann constant, and T0 is the ambient temperature) for a rugged surface at the critical pillar height to ≈8 kBT0 for the surface with pillar height greater than the length scale of water droplets. For a highly rugged surface, the barrier from the Wenzel-to-Cassie state is much higher than from Cassie-to-Wenzel state. Hence, once a droplet is trapped deeply inside the grooves, it would be much harder to relocate on top of high pillars.  相似文献   

2.
A droplet deposited or impacting on a superhydrophobic surface rolls off easily, leaving the surface dry and clean. This remarkable property is due to a surface structure that favors the entrainment of air cushions beneath the drop, leading to the so-called Cassie state. The Cassie state competes with the Wenzel (impaled) state, in which the liquid fully wets the substrate. To use superhydrophobicity, impalement of the drop into the surface structure needs to be prevented. To understand the underlying processes, we image the impalement dynamics in three dimensions by confocal microscopy. While the drop evaporates from a pillar array, its rim recedes via stepwise depinning from the edge of the pillars. Before depinning, finger-like necks form due to adhesion of the drop at the pillar’s circumference. Once the pressure becomes too high, or the drop too small, the drop slowly impales the texture. The thickness of the air cushion decreases gradually. As soon as the water–air interface touches the substrate, complete wetting proceeds within milliseconds. This visualization of the impalement dynamics will facilitate the development and characterization of superhydrophobic surfaces.  相似文献   

3.
Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.  相似文献   

4.
Surface free energy of a chemically heterogeneous surface is often treated as an approximately additive quantity through the Cassie equation [Cassie ABD (1948) Discuss Faraday Soc 3:11-16]. However, deviations from additivity are common, and molecular interpretations are still lacking. We use molecular simulations to measure the microscopic analogue of contact angle, Θ(c), of aqueous nanodrops on heterogeneous synthetic and natural surfaces as a function of surface composition. The synthetic surfaces are layers of graphene functionalized with prototypical nonpolar and polar head group: methyl, amino, and nitrile. We demonstrate positive as well as negative deviations from the linear additivity. We show the deviations reflect the uneven exposure of mixture components to the solvent and the linear relation is recovered if fractions of solvent-accessible surface are used as the measure of composition. As the spatial variations in polarity become of larger amplitude, the linear relation can no longer be obtained. Protein surfaces represent such natural patterned surfaces, also characterized by larger patches and roughness. Our calculations reveal strong deviations from linear additivity on a prototypical surface comprising surface fragments of melittin dimer. The deviations reflect the disproportionately strong influence of isolated polar patches, preferential wetting, and changes in the position of the liquid interface above hydrophobic patches. Because solvent-induced contribution to the free energy of surface association grows as cos Θ(c), deviations of cos Θ(c) from the linear relation directly reflect nonadditive adhesive energies of biosurfaces.  相似文献   

5.
6.
Wettablity is one of the important characteristics defining a given surface. Here we show that the effective interface potential method of determining the wetting temperature, originally proposed by MacDowell and Müller for the surfaces exhibiting the first order wetting transition, can also be used to estimate the wetting temperature of the second order (continuous) wetting transition. Some selected other methods of determination of the wetting temperature are also discussed.  相似文献   

7.
Rough or textured hydrophobic surfaces are dubbed “superhydrophobic” due to their numerous desirable properties, such as water repellency and interfacial slip. Superhydrophobicity stems from an aversion of water for the hydrophobic surface texture, so that a water droplet in the superhydrophobic “Cassie state” contacts only the tips of the rough surface. However, superhydrophobicity is remarkably fragile and can break down due to the wetting of the surface texture to yield the “Wenzel state” under various conditions, such as elevated pressures or droplet impact. Moreover, due to large energetic barriers that impede the reverse transition (dewetting), this breakdown in superhydrophobicity is widely believed to be irreversible. Using molecular simulations in conjunction with enhanced sampling techniques, here we show that on surfaces with nanoscale texture, water density fluctuations can lead to a reduction in the free energetic barriers to dewetting by circumventing the classical dewetting pathways. In particular, the fluctuation-mediated dewetting pathway involves a number of transitions between distinct dewetted morphologies, with each transition lowering the resistance to dewetting. Importantly, an understanding of the mechanistic pathways to dewetting and their dependence on pressure allows us to augment the surface texture design, so that the barriers to dewetting are eliminated altogether and the Wenzel state becomes unstable at ambient conditions. Such robust surfaces, which defy classical expectations and can spontaneously recover their superhydrophobicity, could have widespread importance, from underwater operation to phase-change heat transfer applications.Surface roughness or texture can transform hydrophobic surfaces into “superhydrophobic” surfaces and endow them with properties such as water repellency, self-cleaning, interfacial slip, and fouling resistance (1, 2). Each of these remarkable properties stems from the reluctance of water to penetrate the hydrophobic surface texture, so that a drop of water sits atop an air cushion in the so-called Cassie state, contacting only the top of the surface asperities. However, water can readily penetrate the surface texture, yielding the Wenzel state (3, 4) at elevated pressures (4, 5) or temperatures (6), upon droplet impact (7, 8), as well as due to surface vibration (9), localized defects (10), or proximity to an electric field (11); superhydrophobicity is thus remarkably fragile and can break down due to the wetting of the surface texture under a wide variety of conditions. To facilitate the recovery of superhydrophobicity and to afford reversible control over surface properties, significant efforts have focused on inducing the reverse Wenzel-to-Cassie dewetting transition. However, a true Wenzel-to-Cassie transition has been elusive (12), with most reported instances making use of trapped air (11, 1315) or generating a gas film using an external energy source (16, 17) to jump-start the dewetting process. Insights into why achieving a Wenzel-to-Cassie transition remains challenging are provided by macroscopic interfacial thermodynamics (18), which suggests that the dewetting transition is impeded by a large free energetic barrier. This “classical” barrier is attributed to the work of adhesion for nucleating a vapor–liquid interface at the base of the textured surface. Consequently, the breakdown of superhydrophobicity upon wetting of the surface texture is widely believed to be irreversible (5, 12, 18), so that once the texture wets it remains in the wet state, even when the pressure is subsequently lowered or the electric field is switched off.By using atomistic simulations in conjunction with specialized sampling techniques, here we challenge this conventional wisdom and uncover principles for the design of nanotextured surfaces that can spontaneously recover their superhydrophobicity by dewetting their surface texture at ambient conditions. Our work builds upon recent theoretical and simulation studies that have shown that water density fluctuations, which are not captured in macroscopic mean-field models, are enhanced at hydrophobic surfaces (1924) and situate the interfacial waters at the edge of a dewetting transition (25). Such enhanced fluctuations have also been shown to modulate the pathways to dewetting and lead to reduced dewetting barriers in several confinement contexts (2634). To investigate how fluctuations influence Cassie–Wenzel transitions on nanotextured surfaces, here we perform atomistic simulations of water adjacent to pillared surfaces, and use the indirect umbrella sampling (INDUS) method (35) to characterize the free energetics of the transitions and the corresponding pathways, as well as their dependence on pressure. By comparing our results to macroscopic theory, we find that although water density fluctuations do not influence the pressure at which the Cassie-to-Wenzel wetting transition occurs, they are nevertheless crucial in the Wenzel-to-Cassie dewetting transition, that is, in the process of recovering superhydrophobicity when it breaks down. In particular, fluctuations stabilize a nonclassical dewetting pathway, which features cross-overs between a number of distinct dewetted morphologies that precede the formation of the classical vapor–liquid interface at the basal surface; the nonclassical pathway offers a lower resistance to dewetting, leading to reduced dewetting barriers. Importantly, by uncovering the nanoscale dewetting pathways, and in particular by finding regions of the surface texture that are hardest to dewet, our results provide strategies for augmenting the surface texture to further destabilize the Wenzel state and reduce the barriers to dewetting. On such rationally designed surfaces the barriers to dewetting the texture can be eliminated altogether, so that the Wenzel state is no longer metastable but has been rendered unstable at ambient conditions, and the superhydrophobic Cassie state can be spontaneously recovered from the wet Wenzel state.  相似文献   

8.
Superrepellent surfaces, such as micro/nanostructured surfaces, are of key importance in both academia and industry for emerging applications in areas such as self-cleaning, drag reduction, and oil repellence. Engineering these surfaces is achieved through the combination of the required surface topography, such as porosity, with low-surface-energy materials. The surface topography is crucial for achieving high liquid repellence and low roll-off angles. In general, the combination of micro- and nanostructures is most promising in achieving high repellence. In this work, we report the enhancement of wetting properties of porous polymers by replication from wrinkled Parylene F (PF)-coated polydimethylsiloxane (PDMS). Fluorinated polymer foam “Fluoropor” serves as the low-surface-energy polymer. The wrinkled molds are achieved via the deposition of a thin PF layer onto the soft PDMS substrates. Through consecutive supercritical drying, superrepellent surfaces with a high surface porosity and a high water contact angle (CA) of >165° are achieved. The replicated surfaces show low roll-off angles (ROA) <10° for water and <21° for ethylene glycol. Moreover, the introduction of the micro-wrinkles to Fluoropor not only enhances its liquid repellence for water and ethylene glycol but also for liquids with low surface tension, such as n-hexadecane.  相似文献   

9.
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.  相似文献   

10.
Biofilms, surface-bound communities of microbes, are economically and medically important due to their pathogenic and obstructive properties. Among the numerous strategies to prevent bacterial adhesion and subsequent biofilm formation, surface topography was recently proposed as a highly nonspecific method that does not rely on small-molecule antibacterial compounds, which promote resistance. Here, we provide a detailed investigation of how the introduction of submicrometer crevices to a surface affects attachment of Escherichia coli. These crevices reduce substrate surface area available to the cell body but increase overall surface area. We have found that, during the first 2 h, adhesion to topographic surfaces is significantly reduced compared with flat controls, but this behavior abruptly reverses to significantly increased adhesion at longer exposures. We show that this reversal coincides with bacterially induced wetting transitions and that flagellar filaments aid in adhesion to these wetted topographic surfaces. We demonstrate that flagella are able to reach into crevices, access additional surface area, and produce a dense, fibrous network. Mutants lacking flagella show comparatively reduced adhesion. By varying substrate crevice sizes, we determine the conditions under which having flagella is most advantageous for adhesion. These findings strongly indicate that, in addition to their role in swimming motility, flagella are involved in attachment and can furthermore act as structural elements, enabling bacteria to overcome unfavorable surface topographies. This work contributes insights for the future design of antifouling surfaces and for improved understanding of bacterial behavior in native, structured environments.  相似文献   

11.
In order to accurately and effectively obtain the contact performance of the mating surface under the material surface topography characteristics, a numerical simulation method of rough surface based on the real topography characteristics and a multi-scale hierarchical algorithm of contact performance is studied in this paper. Firstly, the surface topography information of materials processed by different methods was obtained and characterized by a measuring equipment; Secondly, a non-Gaussian model considering kurtosis and skewness was established by Johnson transform based on Gaussian theory, and a rough surface digital simulation method based on real surface topography was formed; Thirdly, a multi-scale hierarchical algorithm is given to calculate the contact performance of different mating surfaces; Finally, taking the aeroengine rotor as the object, the non-Gaussian simulation method was used to simulate the mating surfaces with different topographies, and the multi-scale hierarchical algorithm was used to calculate the contact performance of different mating surfaces. Analysis results showed that the normal contact stiffness and elastic–plastic contact area between the mating surfaces of assembly 1 and assembly 2 are quite different, which further verifies the feasibility of the method. The contents of this paper allow to perform the fast and effective calculation of the mechanical properties of the mating surface, and provide a certain analysis basis for improving the surface microtopography characteristics of materials and the product performance.  相似文献   

12.
DNA condensation in two dimensions   总被引:8,自引:0,他引:8       下载免费PDF全文
We have found that divalent electrolyte counterions common in biological cells (Ca(2+), Mg(2+), and Mn(2+) ) can condense anionic DNA molecules confined to two-dimensional cationic surfaces. DNA-condensing agents in vivo include cationic histones and polyamines spermidine and spermine with sufficiently high valence (Z) 3 or larger. In vitro studies show that electrostatic forces between DNA chains in bulk aqueous solution containing divalent counterions remain purely repulsive, and DNA condensation requires counterion valence Z >/= 3. In striking contrast to bulk behavior, synchrotron x-ray diffraction and optical absorption experiments show that above a critical divalent counterion concentration the electrostatic forces between DNA chains adsorbed on surfaces of cationic membranes reverse from repulsive to attractive and lead to a chain collapse transition into a condensed phase of DNA tethered by divalent counterions. This demonstrates the importance of spatial dimensionality to intermolecular interactions where nonspecific counterion-induced electrostatic attractions between the like-charged polyelectrolytes overwhelm the electrostatic repulsions on a surface for Z = 2. This new phase, with a one-dimensional counterion liquid trapped between DNA chains at a density of 0.63 counterions per DNA bp, represents the most compact state of DNA on a surface in vitro and suggests applications in high-density storage of genetic information and organo-metallic materials processing.  相似文献   

13.
Hot work tool steels (HWS) are widely used for high performance components as dies and molds in hot forging processes, where extreme process-related mechanical and thermal loads limit tool life. With the functionalizing and modification of tool surfaces with tailored surfaces, a promising approach is given to provide material flow control resulting in the efficient die filling of cavities while reducing the process forces. In terms of fatigue properties, the influence of surface modifications on surface integrity is insufficiently studied. Therefore, the potential of the machining processes of high-feed milling, micromilling and grinding with regard to the implications on the fatigue strength of components made of HWS (AISI H11) hardened to 50 ± 1 HRC was investigated. For this purpose, the machined surfaces were characterized in terms of surface topography and residual stress state to determine the surface integrity. In order to analyze the resulting fatigue behavior as a result of the machining processes, a rotating bending test was performed. The fracture surfaces were investigated using fractographic analysis to define the initiation area and to identify the source of failure. The investigations showed a significant influence of the machining-induced surface integrity and, in particular, the induced residual stress state on the fatigue properties of components made of HWS.  相似文献   

14.
Leaf surfaces provide the ecologically relevant landscapes to those organisms that encounter or colonize the leaf surface. Leaf surface topography directly affects microhabitat availability for colonizing microbes, microhabitat quality and acceptability for insects, and the efficacy of agricultural spray applications. Prior detailed mechanistic studies that examined particular fungi-plant and pollinator-plant interactions have demonstrated the importance of plant surface topography or roughness in determining the outcome of the interactions. Until now, however, it has not been possible to measure accurately the topography--i.e., the three-dimensional structure--of such leaf surfaces or to record precise changes in patterns of leaf surface elevation over time. Using contact mode atomic force microscopy, we measured three-dimensional coordinates of upper leaf surfaces of Vaccinium macrocarpon (cranberry), a perennial plant, on leaves of two age classes. We then produced topographic maps of these leaf surfaces, which revealed striking differences between age classes of leaves: old leaves have much rougher surfaces than those of young leaves. Atomic force microscope measurements were analyzed by lag (1) autocorrelation estimates of leaf surfaces by age class. We suggest that the changes in topography result from removal of epicuticular lipids and that the changes in leaf surface topography influence phylloplane ecology. Visualizing and mapping leaf surfaces permit detailed investigations into leaf surface-mediated phenomena, improving our understanding of phylloplane interactions.  相似文献   

15.
Water droplet impact on nanowires/nanowalls’ textured hydrophobic silicon surfaces was examined by assessing the influence of texture on the droplet impact dynamics. Silicon wafer surfaces were treated, resulting in closely packed nanowire/nanowall textures with an average spacing and height of 130 nm and 10.45 μm, respectively. The top surfaces of the nanowires/nanowalls were hydrophobized through the deposition of functionalized silica nanoparticles, resulting in a droplet contact angle of 158° ± 2° with a hysteresis of 4° ± 1°. A high-speed camera was utilized to monitor the impacting droplets on hydrophobized nanowires/nanowalls’ textured surfaces. The nanowires/nanowalls texturing of the surface enhances the pinning of the droplet on the impacted surface and lowers the droplet spreading. The maximum spreading diameter of the impacting droplet on the hydrophobized nanowires/nanowalls surfaces becomes smaller than that of the hydrophobized as-received silicon, hydrophobized graphite, micro-grooved, and nano-springs surfaces. Penetration of the impacted droplet fluid into the nanowall-cell structures increases trapped air pressure in the cells, acting as an air cushion at the interface of the droplet fluid and nanowalls’ top surface. This lowers the droplet pinning and reduces the work of droplet volume deformation while enhancing the droplet rebound height.  相似文献   

16.
The surface topography of dental implants plays an important role in cell-surface interaction promoting cell adhesion, proliferation and differentiation influencing osseointegration. A hydrophilic implant leads to the absorption of water molecules and subsequently promotes the adhesion of cells to the implant binding protein. Dried salts on the implant surfaces allow one to store the implant surfaces in a dry environment while preserving their hydrophilic characteristics. This process has been identified as “dry technology”. The aim of the present study is to describe from a micrometric and nanometric point of view the characteristics of this new bioactivated surface obtained using salts dried on the surface. Topographic analysis, energy-dispersive X-ray spectroscopy, and contact angle characterization were performed on the samples of a sandblasted and dual acid-etched surface (ABT), a nanosurface (Nano) deriving from the former but with the adding of salts air dried and a nanosurface with salts dissolved with distilled water (Nano H2O). The analysis revealed promising results for nanostructured surfaces with increased wettability and a more articulated surface nanotopography than the traditional ABT surface. In conclusion, this study validates a new promising ultra-hydrophilic nano surface obtained by sandblasting, double acid etching and surface salt deposition using dry technology.  相似文献   

17.
Due to their excellent synergistic properties, Aluminum Matrix Composites (AMC) have achieved a high degree of prominence in different industries. In addition to strength, the wear resistance of materials is also an important criterion for numerous applications. The wear resistance depends on the surface topography as well as the working conditions of the interacting parts. Therefore, extensive experiments are being conducted to improve the suitability of engineering materials (including AMC) for different applications. This paper presents research on manufactured aluminum metal matrix composites reinforced with 10 wt.% of Al2SiO5 (aluminum sillimanite). The manufactured and prepared samples were subjected to surface topography measurements and to tribological studies both with and without lubricant using a block-on-ring tester. Based on the results, analyses of the surface topography (i.e., surface roughness parameters, Abbott–Firestone curve, and surface defects) as well as of the tribological characteristics (i.a. friction coefficient, linear wear, and wear intensity) were performed. Differences in the surface topography of the manufactured elements were shown. The surface topography had a significant impact on tribological characteristics of the sliding joints in the tests where lubrication was and was not used. Better tribological characteristics were obtained for the surfaces characterized by greater roughness (determined on the basis of both the profile and surface texture parameters). In the case of tribological tests with lubrication, the friction coefficient as well as the wear intensity was significantly lower compared to tribological tests without lubrication. However, lower values of the friction coefficient and wear intensity were still recorded for the surfaces that were characterized by greater roughness. The obtained results showed that it is important to analyze the surface topography because surface characteristics influence tribological properties.  相似文献   

18.
Intermolecular interactions between charged membranes and biological polyelectrolytes, tuned by physical parameters, which include the membrane charge density and bending rigidity, the membrane spontaneous curvature, the biopolymer curvature, and the overall charge of the complex, lead to distinct structures and morphologies. The self-assembly of cationic liposome-microtubule (MT) complexes was studied, using synchrotron x-ray scattering and electron microscopy. Vesicles were found to either adsorb onto MTs, forming a "beads on a rod" structure, or undergo a wetting transition and coating the MT. Tubulin oligomers then coat the external lipid layer, forming a tunable lipid-protein nanotube. The beads on a rod structure is a kinetically trapped state. The energy barrier between the states depends on the membrane bending rigidity and charge density. By controlling the cationic lipid/tubulin stoichiometry it is possible to switch between two states of nanotubes with either open ends or closed ends with lipid caps, a process that forms the basis for controlled chemical and drug encapsulation and release.  相似文献   

19.
Robust omniphobic surfaces   总被引:2,自引:0,他引:2       下载免费PDF全文
Superhydrophobic surfaces display water contact angles greater than 150° in conjunction with low contact angle hysteresis. Microscopic pockets of air trapped beneath the water droplets placed on these surfaces lead to a composite solid-liquid-air interface in thermodynamic equilibrium. Previous experimental and theoretical studies suggest that it may not be possible to form similar fully-equilibrated, composite interfaces with drops of liquids, such as alkanes or alcohols, that possess significantly lower surface tension than water (γlv = 72.1 mN/m). In this work we develop surfaces possessing re-entrant texture that can support strongly metastable composite solid-liquid-air interfaces, even with very low surface tension liquids such as pentane (γlv = 15.7 mN/m). Furthermore, we propose four design parameters that predict the measured contact angles for a liquid droplet on a textured surface, as well as the robustness of the composite interface, based on the properties of the solid surface and the contacting liquid. These design parameters allow us to produce two different families of re-entrant surfaces— randomly-deposited electrospun fiber mats and precisely fabricated microhoodoo surfaces—that can each support a robust composite interface with essentially any liquid. These omniphobic surfaces display contact angles greater than 150° and low contact angle hysteresis with both polar and nonpolar liquids possessing a wide range of surface tensions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号