共查询到20条相似文献,搜索用时 11 毫秒
1.
PURPOSE: This study was designed to evaluate the feasibility of using a targeted array-CGH strategy for prenatal diagnosis of genomic imbalances in a clinical setting of current pregnancies. METHODS: Women undergoing prenatal diagnosis were counseled and offered array-CGH (BCM V4.0) in addition to routine chromosome analysis. Array-CGH was performed with DNA directly from amniotic fluid cells with whole genome amplification, on chorionic villus samples with amplification as necessary, and on cultured cells without amplification. RESULTS: Ninety-eight pregnancies (56 amniotic fluid and 42 CVS specimens) were studied with complete concordance between karyotype and array results, including 5 positive cases with chromosomal abnormalities. There was complete concordance of array results for direct and cultured cell analysis in 57 cases tested by both methods. In 12 cases, the array detected copy number variation requiring testing of parental samples for optimal interpretation. Array-CGH results were available in an average of 6 and 16 days for direct and cultured cells, respectively. Patient acceptance of array-CGH testing was 74%. CONCLUSION: This study demonstrates the feasibility of using array-CGH for prenatal diagnosis, including reliance on direct analysis without culturing cells. Use of array-CGH should increase the detection of abnormalities relative to the risk, and is an option for an enhanced level of screening for chromosomal abnormalities in high risk pregnancies. 相似文献
4.
AIM: To investigate overall chromosomal alterations using array-based comparative genomic hybridisation (CGH) of myxoid liposarcomas (MLSs) and myxofibrosarcomas (MFSs). Materials and methods: Genomic DNA extracted from fresh-frozen tumour tissues was labelled with fluorochromes and then hybridised on to an array consisting of 1440 bacterial artificial chromosome clones representing regions throughout the entire human genome important in cytogenetics and oncology. RESULTS: DNA copy number aberrations (CNAs) were found in all the 8 MFSs, but no alterations were found in 7 (70%) of 10 MLSs. In MFSs, the most frequent CNAs were gains at 7p21.1-p22.1 and 12q15-q21.1 and a loss at 13q14.3-q34. The second most frequent CNAs were gains at 7q33-q35, 9q22.31-q22.33, 12p13.32-pter, 17q22-q23, Xp11.2 and Xq12 and losses at 10p13-p14, 10q25, 11p11-p14, 11q23.3-q25, 20p11-p12 and 21q22.13-q22.2, which were detected in 38% of the MFSs examined. In MLSs, only a few CNAs were found in two sarcomas with gains at 8p21.2-p23.3, 8q11.22-q12.2 and 8q23.1-q24.3, and in one with gains at 5p13.2-p14.3 and 5q11.2-5q35.2 and a loss at 21q22.2-qter. CONCLUSIONS: MFS has more frequent and diverse CNAs than MLS, which reinforces the hypothesis that MFS is genetically different from MLS. Out-array CGH analysis may also provide several entry points for the identification of candidate genes associated with oncogenesis and progression in MFS. 相似文献
6.
G band cytogenetic analysis often leads to the discovery of unbalanced karyotypes that require further characterisation by molecular cytogenetic studies. In particular, G band analysis usually does not show the chromosomal origin of small marker chromosomes or of a small amount of extra material detected on otherwise normal chromosomes. Comparative genomic hybridisation (CGH) is one of several molecular approaches that can be applied to ascertain the origin of extra chromosomal material. CGH is also capable of detecting loss of material and thus is also applicable to confirming or further characterising subtle deletions. We have used comparative genomic hybridisation to analyse 19 constitutional chromosome abnormalities detected by G band analysis, including seven deletions, five supernumerary marker chromosomes, two interstitial duplications, and five chromosomes presenting with abnormal terminal banding patterns. CGH was successful in elucidating the origin of extra chromosomal material in 10 out of 11 non-mosaic cases, and permitted further characterisation of all of the deletions that could be detected by GTG banding. CGH appears to be a useful adjunct tool for either confirming deletions or defining their breakpoints and for determining the origin of extra chromosomal material, even in cases where abnormalities are judged to be subtle. We discuss internal quality control measures, such as the mismatching of test and reference DNA in order to assess the quality of the competitive hybridisation effect on the X chromosome. 相似文献
8.
Molecular karyotyping holds the promise of improving genotype-phenotype correlations for frequent chromosome conditions such as the 18p- syndrome. In spite of more than 150 reported cases with deletions in 18p, no reliable phenotype map for the characteristic clinical findings such as mental retardation, post-natal growth retardation and typical facial features has been established yet. Here, we report on four patients with partial monosomy 18p of different sizes owing to unbalanced translocations that were thoroughly characterised clinically and by molecular karyotyping. One patient had a terminal deletion of 1.6 Mb in 18p and a trisomy of 8q24.23-qter as determined by array-based comparative genomic hybridisation and large insert clone fluorescent in situ hybridisation. In two sibs and a fourth patient, cytogenetic and molecular-cytogenetic analyses showed the terminal deletions in 18p (8.0 and 13.84 Mb, respectively) to be accompanied by partial trisomies of 20p. Literature analyses of typical phenotypic features of 18p-, 8q+ and 20p+ syndromes allowed the attribution of clinical findings in our patients to the respective chromosomal aberration. Based on these data, we propose a phenotype map for several clinical features of the 18p- syndrome: Round face was tentatively mapped to the distal 1.6 Mb of 18p; post-natal growth retardation and seizures to the distal 8 Mb and ptosis and short neck to the proximal half of 18p. 相似文献
10.
We report the use of comparative genomic hybridisation (CGH) to define the origin of a supernumerary ring chromosome which conventional cytogenetic banding and fluorescence in situ hybridisation (FISH) methods had failed to identify. Targeted FISH using whole chromosome 19 library arm and site specific probes then confirmed the CGH results. This study shows the feasibility of using CGH for the identification of supernumerary marker chromosomes, even in fewer than 50% of cells, where no clinical or cytogenetic clues are present. 相似文献
11.
Background: Schwannomas are benign tumours of the nervous system that are usually sporadic but also occur in the inherited disorder neurofibromatosis type 2 (NF2). The NF2 gene is a tumour suppressor on chromosome 22. Loss of expression of the NF2 protein product, merlin, is universal in both sporadic and NF2 related schwannomas. The GTPase signalling molecules RhoA and Rac1 regulate merlin function, but to date only mutation in the NF2 gene has been identified as a causal event in schwannoma formation. Methods: Comparative genomic hybridisation (CGH) was used to screen 76 vestibular schwannomas from 76 patients (66 sporadic and 10 NF2 related) to identify other chromosome regions that may harbour genes involved in the tumorigenesis. Results: The most common change was loss on chromosome 22, which was more frequent in sporadic than in NF2 related tumours. Importantly, eight tumours (10%) showed gain of copy number on chromosome 9q34. Each of the two NF2 patients who had received stereotactic radiotherapy had non-chromosome 22 changes, whereas only one of eight non-irradiated NF2 patients had any chromosome changes. Three tumours had gain on 17q, which has also been reported in malignant peripheral nerve sheath tumours that are associated with neurofibromatosis type 1. Other sites that were identified in three or fewer tumours were regions on chromosomes 10, 11, 13, 16, 19, 20, X, and Y. Conclusions: These findings should be verified using techniques that can detect smaller genetic changes, such as microarray-CGH. 相似文献
12.
BACKGROUND/AIM: The pathogenetic relation between liver cell dysplasia and hepatocellular carcinoma (HCC) is poorly understood. The aim of this study was to determine whether there is a genetic link between liver cell dysplasia and HCC that could support the role of dysplasia as a tumour precursor lesion. METHODS: Microdissection from paraffin wax embedded sections and degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR) were combined to analyse chromosomal imbalances by comparative genomic hybridisation (CGH) in nine HCCs and nodules containing liver cell dysplasia and cirrhosis adjacent to the tumours. Seven cases of large cell changes (LCC) and three cases of small cell changes (SCC) were analysed. The genetic abnormalities detected in liver cell dysplasia were then compared with those present in the corresponding HCC. RESULTS: No abnormalities were detected in LCC and cirrhotic nodules, arguing against the preneoplasic nature of these cell foci. In contrast, a subset of chromosomal alterations present in HCCs was found in the adjacent SCC. CONCLUSIONS: These findings support the preneoplastic status of SCC in human hepatocarcinogenesis. 相似文献
14.
目的 探讨微阵列比较基因组杂交技术(array-based comparative genomic hybridization,array-CGH)在诊断不平衡染色体畸变中的应用价值.方法 选取4例常规G显带染色体核型分析未能确诊的不平衡染色体畸变病例,按照标准的Affymetrix SNP 6.0微阵列的操作手册进行杂交、洗涤及全基因组扫描,并通过相应的计算机软件分析结果.结果 通过array-CGH技术分析,明确了所有4例染色体不平衡畸变的诊断并且进行精确定位,其中对2例患者镜下染色体出现无法确定来源的额外条带进行了自身直接重复的确诊;对2例患者G显带无法识别的缺失合并重复的衍生染色体进行了精确诊断.结论 array-CGH技术在DNA水平上对染色体不平衡畸变的诊断具有独特的高分辨率、高敏感性和高特异性,并且能够精确定位,对染色体疾病作出基因型-表型关系的诊断具有重大的应用价值. 相似文献
16.
We report on three male infants with de novo terminal deletions of chromosome 9q34.3. The clinical features are compared to the nine cases described in the literature. Case 1 and 3 were ascertained following the use of subtelomeric FISH to screen for a chromosomal anomaly, case 2 was confirmed by FISH probe following detection of a 9q deletion on standard karyotyping. Deletions in this region result in severe developmental delay, a distinct facial phenotype, cardiac anomalies, obesity, and respiratory failure, which may result in premature death. The delineation of the 9q deletion phenotype will aid diagnosis and genetic counseling as subtelomere FISH screening becomes more widely available. 相似文献
17.
In this study, 23 ovarian cancer cell lines were screened using array-comparative genomic hybridization (aCGH) based on large-insert clones at about 1 Mb density from throughout the genome. The most frequent recurrent changes at the level of the chromosome arm were loss of chromosome 4 or 4q, loss of 18q and gain of 20 or 20q; other recurrent changes included losses of 6q, 8p, 9p, 11p, 15q, 16q, 17p, and 22q, and gain of 7q. Losses of 4q and 18q occurred together more often than expected. Evidence was found for two types of ovarian cancer, one typically near-triploid and characterized by a generally higher frequency of chromosomal changes (especially losses of 4p, 4q, 13q, 15q, 16p, 16q, 18p and 18q), and the other typically near-diploid/tetraploid and with fewer changes overall, but with relatively high frequencies of 9p loss, 9q gain, and 20p gain. Multiple novel changes (amplifications, homozygous deletions, discrete regions of gain or loss, small overlapping regions of change and frequently changed clones) were also detected, each of which might indicate the locations of oncogenes or tumour suppressor loci. For example, at least two regions of amplification on chromosome 11q13, one including cyclin D1 and the other the candidate oncogene PAK1, were found. Amplification on 11q22 near the progesterone receptor gene and a cluster of matrix metalloproteinase loci was also detected. Other potential oncogenes, which mapped to regions found by this study, included cyclin E and PIK3C2G. Candidate tumour suppressor genes in regions of loss included CDKN2C, SMAD4-interacting protein and RASSF2. 相似文献
18.
目的 确定1例生长发育迟缓、语言发育障碍患儿的核型,分析其染色体畸变与表型的相关性,探讨微阵列比较基因组杂交(array-based comparative genomic hybridization,array-CGH)在临床分子遗传学诊断中的应用及其优越性.方法 应用G显带对患儿及其父母进行核型分析,进一步采用array-CGH技术对患儿进行全基因组高分辨率扫描分析,确定其衍生染色体片段的来源.结果 G显带染色体分析显示患儿及其母亲均为inv(9)(p13q13)携带者,患儿13号染色体存在一衍生片段.array-CGH结果证实患儿衍生片段源自9号染色体短臂,确定为9p13.1-p24.3三体.患儿母亲array-CGH结果未见异常.结论 inv(9)(p13q13)与患儿异常表型无关,患儿的异常表型可归因于9p13.1-p24.3三体.同传统细胞遗传分析方法相比,array-CGH具有高分辨率和高精确性的优点. 相似文献
19.
AIMS: To investigate the status of chromosome 17 in a series of medulloblastomas using comparative genomic hybridisation (CGH) and fluorescence in situ hybridisation (FISH). METHODS: Frozen tissue and formalin fixed, paraffin was embedded tissue from 27 medulloblastomas were analysed by CGH and FISH, respectively. CGH ratio profiles for chromosome 17 were compared with the results of FISH, for which loss or gain of 17p or 17q was assessed in two distinct ways using a combination of differentially labelled subtelomeric and centromeric probes and analysing 200 nuclei in each tumour. RESULTS: CGH revealed imbalances consistent with isochromosome 17q in eight of 27 tumours. Either loss of 17p or gain of 17q was identified in a further nine tumours, whereas 10 tumours were apparently balanced. Using control results from preparations of paraffin wax embedded tonsils, thresholds for the detection of abnormalities by FISH were established, either by determining the dominant pattern of signals in each case, or the mean ratio of subtelomeric to centromeric signals. Results by CGH and FISH were concordant in 21 of 27 tumours. In the remainder, most discrepancies related to methodological differences. CONCLUSIONS: CGH has a role in disclosing common, genome wide chromosomal gains or losses in tumours, the clinical relevance of which can then be studied in large archival series of paraffin wax embedded tumours using FISH. 相似文献
20.
The use of metaphase comparative genomic hybridization (CGH) to screen all human chromosomes for aneuploidy in preimplantation embryos is hindered by the time required to perform the analysis. We report in this paper a novel approach to manufacture a DNA microarray for CGH for the detection of aneuploidy in single cells. We spotted human chromosome-specific libraries on glass slides that were depleted of repetitive sequences and tested our array CGH method in 14 experiments using either single male and/or single female lymphocytes. For the autosomes, the mean normalized ratios were all close to the expected ratio of 1.0 with overall 300/308 (97%) of the normalized ratios falling within the range 0.75 to 1.25. It was possible to deduce the correct copy number of the X chromosome in 13/14 (92.9%) separate array CGH experiments but the Y chromosome in only 4/14 (29%). We tested our microarray CGH method on a single fibroblast from each of three cell lines containing a specific chromosome aneuploidy (trisomy 13, 15 or 18) and in each case our microarray analysis was able to obtain a diagnosis based on the fact that the aneuploid chromosome gave the highest ratio (1.32, 1.27 and 1.27 respectively) with the ratios of all other chromosomes falling within the range 0.75-1.25. Requiring just 30 h, our method may be more suitable for PGD aneuploidy screening than metaphase CGH. 相似文献
|