首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:观察吗啡条件性位置偏爱(cPP)大鼠中脑腹侧被盖区-伏核-前额叶皮质(VTA—NAc—PFC)奖赏环路3个脑区多巴胺(DA)递质和多巴胺2受体(D2受体)的同步变化,从神经递质和受体层面探讨该环路中多巴胺能系统的阿片类精神依赖机制。方法:SD大鼠随机分为模型组和生理盐水组,吗啡剂量递增注射建立大鼠吗啡cPP模型;高效液相色谱法测定各脑区DA含量;免疫组化和Westernblot技术检测D2受体的表达。结果:模型组大鼠伴药箱停留时间增加;vTA、NAc、PFC的DA递质升高、D2受体平均吸光度值和平均光密度值均降低,同Ns组比较,差异有统计学意义(均P〈0.05)。结论:奖赏环路3个脑区多巴胺递质的增加和D2受体表达下调的同步改变,与吗啡精神依赖的形成具有一定的相关性。  相似文献   

2.
A prominent aspect of drug addiction is the ability of drug-associated cues to elicit craving and facilitate relapse. Understanding the factors that regulate cue reactivity will be vital for improving treatment of addictive disorders. Low availability of dopamine (DA) D2 receptors (D2Rs) in the striatum is associated with high cocaine intake and compulsive use. However, the role of D2Rs of nonstriatal origin in cocaine seeking and taking behavior and cue reactivity is less understood and possibly underestimated. D2Rs expressed by midbrain DA neurons function as autoreceptors, exerting inhibitory feedback on DA synthesis and release. Here, we show that selective loss of D2 autoreceptors impairs the feedback inhibition of DA release and amplifies the effect of cocaine on DA transmission in the nucleus accumbens (NAc) in vitro. Mice lacking D2 autoreceptors acquire a cued-operant self-administration task for cocaine faster than littermate control mice but acquire similarly for a natural reward. Furthermore, although mice lacking D2 autoreceptors were able to extinguish self-administration behavior in the absence of cocaine and paired cues, they exhibited perseverative responding when cocaine-paired cues were present. This enhanced cue reactivity was selective for cocaine and was not seen during extinction of sucrose self-administration. We conclude that low levels of D2 autoreceptors enhance the salience of cocaine-paired cues and can contribute to the vulnerability for cocaine use and relapse.  相似文献   

3.
Drug-seeking behavior is maintained by encounters with drug-associated cues. Preventing retrieval of drug-associated memories that these cues provoke would therefore limit relapse susceptibility; however, little is known regarding the mechanisms of retrieval. Here, we show that β-adrenergic receptor activation is necessary for the retrieval of a cocaine-associated memory. Using a conditioned place preference (CPP) procedure, rats were conditioned to associate one chamber, but not another, with cocaine. When administered before a CPP trial, propranolol, but not saline, prevented retrieval of a cocaine-associated CPP. In subsequent drug-free trials, rats previously treated with propranolol continued to show a retrieval deficit, as no CPP was evident. This retrieval deficit was long lasting and robust, as the CPP did not re-emerge during a test for spontaneous recovery 14 days later or reinstate following a priming injection of cocaine. Moreover, the peripheral β-adrenergic receptor antagonist sotalol did not affect retrieval. Thus, retrieval of cocaine-associated memories is mediated by norepinephrine acting at central β-adrenergic receptors. Our findings support the use of propranolol, a commonly prescribed β-blocker, as an adjunct to exposure therapy for the treatment of addiction by preventing retrieval of drug-associated memories during and long after treatment, and by providing protection against relapse.  相似文献   

4.
The dopamine (DA) D1 receptor (D1R) is critically involved in reward and drug addiction. Phosphorylation-mediated desensitization or internalization of D1R has been extensively investigated. However, the potential for upregulation of D1R function through phosphorylation remains to be determined. Here we report that acute cocaine exposure induces protein kinase D1 (PKD1) activation in the rat striatum, and knockdown of PKD1 in the rat dorsal striatum attenuates cocaine-induced locomotor hyperactivity. Moreover, PKD1-mediated phosphorylation of serine 421 (S421) of D1R promotes surface localization of D1R and enhances downstream extracellular signal-regulated kinase signaling in D1R-transfected HEK 293 cells. Importantly, injection of the peptide Tat-S421, an engineered Tat fusion-peptide targeting S421 (Tat-S421), into the rat dorsal striatum inhibits cocaine-induced locomotor hyperactivity and injection of Tat-S421 into the rat hippocampus or the shell of the nucleus accumbens (NAc) also inhibits cocaine-induced conditioned place preference (CPP). However, injection of Tat-S421 into the rat NAc shell does not establish CPP by itself and injection of Tat-S421 into the hippocampus does not influence spatial learning and memory. Thus, targeting S421 of D1R represents a promising strategy for the development of pharmacotherapeutic treatments for drug addiction and other disorders that result from DA imbalances.  相似文献   

5.
Increasing evidence suggests that enhanced dopamine (DA) neurotransmission in the nucleus accumbens (NAc) may play a role in mediating the reward and reinforcement produced by addictive drugs and in the attentional processing of drug-associated environmental cues. The meso-accumbens DA system is selectively enriched with DA D3 receptors, a DA receptor subtype increasingly implicated in reward-related brain and behavioural processes. From a variety of evidence, it has been suggested that selective DA D3 receptor antagonism may be a useful pharmacotherapeutic approach for treating addiction. The present experiments tested the efficacy of SB-277011A, a selective DA D3 receptor antagonist, in rat models of nicotine-enhanced electrical brain-stimulation reward (BSR), nicotine-induced conditioned locomotor activity (LMA), and nicotine-induced conditioned place preference (CPP). Nicotine was given subcutaneously within the dose range of 0.25-0.6 mg/kg (nicotine-free base). SB-277011A, given intraperitoneally within the dose range of 1-12 mg/kg, dose-dependently reduced nicotine-enhanced BSR, nicotine-induced conditioned LMA, and nicotine-induced CPP. The results suggest that selective D3 receptor antagonism constitutes a new and promising pharmacotherapeutic approach to the treatment of nicotine dependence.  相似文献   

6.
Cocaine acts as a reinforcer through its pharmacological effects on brain monoaminergic systems, which, through repeated pairings with environmental stimuli, lead to the development of conditioned effects of the drug. Both the pharmacological and conditioned aspects of cocaine are implicated in several facets of acquisition and maintenance of addiction, including drug craving. Here, we compare the effects of contingent (response dependent) and noncontingent (response independent) cocaine on rapid dopaminergic signaling in the core of the nucleus accumbens. Dopamine was monitored using fast-scan cyclic voltammetry. Noncontingent cocaine administered to both naive and animals with a history of self-administration resulted in a profound increase in the frequency of transient dopamine release events that are not time-locked to any specific environmental stimuli. Pharmacological effects were detectable approximately 40 s after cocaine administration. In contrast, when animals where allowed to self-administer cocaine on an FR-1 schedule, dopamine transients (69+/-12 nM) were consistently observed time-locked to each reinforced response (peaking approximately 1.5 s after response completion). Importantly, no pharmacological effect of cocaine was observed within the 10 s following noncontingent cocaine administration, indicating that dopamine signals time-locked to the reinforced response are a result of the pairing of the operant behavior, the drug-associated cues, and cocaine. These data demonstrate that this pharmacological action of cocaine occurs for an extended period following either contingent or noncontingent administration, but is distinct from those dopamine transients that are time-locked to each lever-press in self-administering animals.  相似文献   

7.
A major concern in adolescent psychostimulant abuse is the long-term consequence of this practice, because early drug exposure may cause long-term adaptations, which render the organism more susceptible to drug abuse later in life. The incentive value of drug and natural reward in rodents is commonly assessed by the conditioned place preference (CPP) paradigm, which involves Pavlovian learning. The aims of the present study were to investigate: a) the acquisition, expression, maintenance and reinstatement of cocaine CPP from periadolescence (PD24-45) through adulthood (PD70); b) potential sexual dimorphism in adolescence and adulthood in response to cocaine-induced CPP; and c) the role of the neuronal nitric oxide synthase (nNOS) gene in long-term neural plasticity underlying responsiveness to cocaine and cocaine-associated cues. Adolescent wild type (WT) mice acquired significant cocaine (20 mg/kg) CPP that was maintained from PD24 through PD43. Upon extinction, CPP was reinstated in adulthood (PD70) following a priming injection of cocaine (5 mg/kg). In contrast, cocaine CPP acquired between PD26 and PD31 in adolescent nNOS knockout (KO) mice, was neither maintained nor reinstated by cocaine. There was no sexual dimorphism in adolescent WT and KO mice. Genotype differences and sexual dimorphism were observed in adult mice. Cocaine CPP in adult WT males (PD89-94) was maintained for 4 weeks post training, and subsequently reinstated by cocaine priming; the magnitude of CPP in adult WT males was lower than in female counterparts. CPP in adult KO males (PD88-93) was neither maintained nor reinstated by cocaine priming; in contrast, CPP in adult KO females was not significantly different from adult WT females. Results suggest that the nNOS gene is essential during adolescence of both sexes for the development of long-term neural plasticity underlying responsiveness to the incentive value of cocaine reward. Sexual dimorphism in response to cocaine CPP emerges in adulthood; nNOS contribution to long-term plasticity is therefore sexually dimorphic and age-dependent in female but not in male subjects.  相似文献   

8.
Repeated psychostimulant exposure progressively increases their potency to stimulate motor activity in rodents. This behavioral or locomotor sensitization is considered a model for some aspects of drug addiction in humans, particularly drug craving during abstinence. However, the role of increased motor behavior in drug reward remains incompletely understood. Intracranial self-stimulation (ICSS) was measured concurrently with locomotor activity to determine if acute intermittent cocaine administration had distinguishable effects on motor behavior and perception of brain stimulation-reward (BSR) in the same mice. Sensitization is associated with changes in neuronal activity and glutamatergic neurotransmission in brain reward circuitry. Expression of AMPA receptor subunits (GluR1 and GluR2) and CRE binding protein (CREB) was measured in the ventral tegmental area (VTA), dorsolateral striatum (STR) and nucleus accumbens (NAc) before and after a sensitizing regimen of cocaine, with and without ICSS. Repeated cocaine administration sensitized mice to its locomotor-stimulating effects but not its ability to potentiate BSR. ICSS increased GluR1 in the VTA but not NAc or STR, demonstrating selective changes in protein expression with electrical stimulation of discrete brain structures. Repeated cocaine reduced GluR1, GluR2 and CREB expression in the NAc, and reductions of GluR1 and GluR2 but not CREB were further enhanced by ICSS. These data suggest that the effects of repeated cocaine exposure on reward and motor processes are dissociable in mice, and that reduction of excitatory neurotransmission in the NAc may predict altered motor function independently from changes in reward perception.  相似文献   

9.
Dopamine neurons respond to cues to reflect the value of associated outcomes. These cue-evoked dopamine responses can encode the relative rate of reward in rats with extensive Pavlovian training. Specifically, a cue that always follows the previous reward by a short delay (high reward rate) evokes a larger dopamine response in the nucleus accumbens (NAc) core relative to a distinct cue that always follows the prior reward by a long delay (low reward rate). However, it was unclear if these reward rate dopamine signals are evident during early Pavlovian training sessions and across NAc subregions. To address this, we performed fast-scan cyclic voltammetry recordings of dopamine levels to track the pattern of cue- and reward-evoked dopamine signals in the NAc core and medial NAc shell. We identified regional differences in the progression of cue-evoked dopamine signals across training. However, the dopamine response to cues did not reflect the reward rate in either the NAc core or the medial NAc shell during early training sessions. Pharmacological experiments found that dopamine-sensitive conditioned responding emerged in the NAc core before the medial NAc shell. Together, these findings illustrate regional differences in NAc dopamine release and its control over behavior during early Pavlovian learning.Subject terms: Classical conditioning, Reward  相似文献   

10.

Rationale and objectives

Drug reinforcement and the reinstatement of drug seeking are associated with the pathological processing of drug-associated cue memories that can be disrupted by manipulating memory consolidation and reconsolidation. Ras-related C3 botulinum toxin substrate (Rac) is involved in memory processing by regulating actin dynamics and neural structure plasticity. The nucleus accumbens (NAc) and amygdala have been implicated in the consolidation and reconsolidation of emotional memories. Therefore, we hypothesized that Rac in the NAc and amygdala plays a role in the consolidation and reconsolidation of cocaine-associated cue memory.

Methods

Conditioned place preference (CPP) and microinjection of Rac inhibitor NSC23766 were used to determine the role of Rac in the NAc and amygdala in the consolidation and reconsolidation of cocaine-associated cue memory in rats.

Results

Microinjections of NSC23766 into the NAc core but not shell, basolateral (BLA), or central amygdala (CeA) after each cocaine-conditioning session inhibited the consolidation of cocaine-induced CPP. A microinjection of NSC23766 into the BLA but not CeA, NAc core, or NAc shell immediately after memory reactivation induced by exposure to a previously cocaine-paired context disrupted the reconsolidation of cocaine-induced CPP. The effect of memory disruption on cocaine reconsolidation was specific to reactivated memory, persisted at least 2 weeks, and was not reinstated by a cocaine-priming injection.

Conclusions

Our findings indicate that Rac in the NAc core and BLA are required for the consolidation and reconsolidation of cocaine-associated cue memory, respectively.  相似文献   

11.
A prominent feature of drug addiction is that drug-associated cues can elicit drug-seeking behaviors and contribute significantly to the high propensity to relapse. We have been investigating the notion that the dopamine D1 receptor and the immediate early gene product c-Fos expressed in D1 receptor-bearing neurons mediate the development of persistent neuroadaptation in the brain dopamine system by regulating cell signaling and gene expression. We generated and analyzed genetically engineered mouse models and found that the D1 receptor and c-Fos expressed in D1 receptor-bearing neurons mediate the locomotor sensitization and reinforcing effects of cocaine. Moreover, these molecules regulate cocaine-induced dendritic remodeling, electrophysiological responses, and changes in cell signaling and gene expression in the brain. Notably, a lack of Fos expression in D1 receptor-bearing neurons in mice results in no change in the induction but a significantly delayed extinction of cocaine-induced conditioned place preference. These findings suggest that D1 receptor-mediated and c-Fos-regulated changes in cell signaling and gene expression may play key roles in the extinction process, and they provide a foundation for further exploring mechanisms underlying extinction of cue-elicited cocaine seeking.  相似文献   

12.
Lu L  Grimm JW  Hope BT  Shaham Y 《Neuropharmacology》2004,47(Z1):214-226
Using a rat model of drug craving and relapse, we recently found that cocaine seeking induced by re-exposure to drug-associated cues progressively increases over the first 2 months after withdrawal from cocaine self-administration, suggesting that drug craving incubates over time [Nature 412 (2001) 141]. Here, we summarize data from studies that further characterized this incubation phenomenon and briefly discuss its implications for drug addiction. The main findings of our ongoing research are: 1. Incubation of cocaine craving is long-lasting, but not permanent: cocaine seeking induced by exposure to cocaine cues remains elevated for up to 3 months of withdrawal, but decreases after 6 months. 2. Incubation of reward craving is not drug specific: sucrose seeking induced by re-exposure to the reward cues also increases after withdrawal, but for a time period that is shorter than that of cocaine. 3. Incubation of cocaine craving is not evident after acute re-exposure to cocaine itself: cocaine seeking induced by cocaine priming injections remains essentially unchanged over the first 6 months of withdrawal. 4. Incubation of cocaine craving after withdrawal is associated with increases in the levels of brain-derived neurotrophic factor (BDNF) in mesolimbic dopamine areas.  相似文献   

13.
Stress exposure increases the risk of addictive drug use in human and animal models of drug addiction by mechanisms that are not completely understood. Mice subjected to repeated forced swim stress (FSS) before cocaine develop significantly greater conditioned place preference (CPP) for the drug-paired chamber than unstressed mice. Analysis of the dose dependency showed that FSS increased both the maximal CPP response and sensitivity to cocaine. To determine whether FSS potentiated CPP by enhancing associative learning mechanisms, mice were conditioned with cocaine in the absence of stress, then challenged after association was complete with the κ-opioid receptor (KOR) agonist U50,488 or repeated FSS, before preference testing. Mice challenged with U50,488 60 min before CPP preference testing expressed significantly greater cocaine–CPP than saline-challenged mice. Potentiation by U50,488 was dose and time dependent and blocked by the KOR antagonist norbinaltorphimine (norBNI). Similarly, mice subjected to repeated FSS before the final preference test expressed significantly greater cocaine–CPP than unstressed controls, and FSS-induced potentiation was blocked by norBNI. Novel object recognition (NOR) performance was not affected by U50,488 given 60 min before assay, but was impaired when given 15 min before NOR assay, suggesting that KOR activation did not potentiate CPP by facilitating memory retrieval or expression. The results from this study show that the potentiation of cocaine–CPP by KOR activation does not result from an enhancement of associative learning mechanisms and that stress may instead enhance the rewarding valence of cocaine-associated cues by a dynorphin-dependent mechanism.  相似文献   

14.
Addictive drugs such as cocaine induce synaptic plasticity in discrete regions of the reward circuit. The aim of the present study is to investigate whether cocaine-evoked synaptic plasticity in the ventral tegmental area (VTA) and nucleus accumbens (NAc) is causally linked. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of long-term synaptic plasticity, learning, and drug addiction. We examined whether blocking CaMKII activity in the VTA affected cocaine conditioned place preference (CPP) and cocaine-evoked synaptic plasticity in its target brain region, the NAc. TatCN21 is a CaMKII inhibitory peptide that blocks both stimulated and autonomous CaMKII activity with high selectivity. We report that intra-VTA microinjections of tatCN21 before cocaine conditioning blocked the acquisition of cocaine CPP, whereas intra-VTA microinjections of tatCN21 before saline conditioning did not significantly affect cocaine CPP, suggesting that the CaMKII inhibitor blocks cocaine CPP through selective disruption of cocaine-cue-associated learning. Intra-VTA tatCN21 before cocaine conditioning blocked cocaine-evoked depression of excitatory synaptic transmission in the shell of the NAc slices ex vivo. In contrast, intra-VTA microinjection of tatCN21 just before the CPP test did not affect the expression of cocaine CPP and cocaine-induced synaptic plasticity in the NAc shell. These results suggest that CaMKII activity in the VTA governs cocaine-evoked synaptic plasticity in the NAc during the time window of cocaine conditioning.  相似文献   

15.
Drug addiction is marked by pathological drug seeking and intense drug craving, particularly in response to drug-related stimuli. Repeated psychostimulant administration is known to induce long-term alterations in mesolimbic dopamine (DA) signaling that are hypothesized to mediate this heightened sensitivity to environmental stimuli. However, there is little direct evidence that drug-induced alteration in mesolimbic DA function underlies this hypersensitivity to motivational cues. In the current study, we tested this hypothesis using fast-scan cyclic voltammetry to monitor phasic DA signaling in the nucleus accumbens core of cocaine-pretreated (6 once-daily injections of 15 mg/kg, i.p.) and drug-naive rats during a test of cue-evoked incentive motivation for food—the Pavlovian-to-instrumental transfer task. We found that prior cocaine exposure augmented both reward seeking and DA release triggered by the presentation of a reward-paired cue. Furthermore, cue-evoked DA signaling positively correlated with cue-evoked food seeking and was found to be a statistical mediator of this behavioral effect of cocaine. Taken together, these findings provide support for the hypothesis that repeated cocaine exposure enhances cue-evoked incentive motivation through augmented phasic mesolimbic DA signaling. This work sheds new light on a fundamental neurobiological mechanism underlying motivated behavior and its role in the expression of compulsive reward seeking.  相似文献   

16.
The discovery and evaluation of high affinity dopamine transport inhibitors with low abuse liability is an important step toward the development of efficacious medications for cocaine addiction. We examined in mice the behavioural effects of (N-(n-butyl)-3α-[bis(4′-fluorophenyl)methoxy]-tropane) (JHW 007), a benztropine (BZT) analogue that blocks dopamine uptake, and assessed its potential to influence the actions of cocaine in clinically-relevant models of cocaine addiction. In the conditioned place preference (CPP) paradigm, JHW 007 exposure did not produce place conditioning within an ample dose range but effectively blocked the CPP induced by cocaine administration. Similarly, in the CPP apparatus JHW 007 treatment failed to stimulate locomotor activity at any dose but dose-dependently suppressed the hyperactivity evoked by cocaine treatment. In locomotor sensitization assays performed in the open field, JHW 007 did not produce sensitized locomotor behaviour when given alone, but it prevented the sensitized component of the locomotor response elicited by subchronic (8-day) cocaine exposure. In the elevated plus maze (EPM), acute treatment with JHW 007, cocaine and combinations of the BZT analogue and cocaine produced an anxiogenic-like profile. Re-test in the EPM following subchronic (8-day) exposure enhanced the anxiogenic-like effect of the same drug treatments. The present findings indicate that JHW 007 exposure counteracts some critical behavioural correlates of cocaine treatment, including conditioned reward, locomotor stimulation and sensitization, and lend support to the further development of BZT analogues as potential replacement medications in cocaine addiction.  相似文献   

17.
An important goal of cocaine addiction research is to understand the neurobiological mechanisms underlying this disease state. Here, we review studies from our laboratory that examined nucleus accumbens (NAc) cell firing and rapid dopamine signaling using electrophysiological and electrochemical recordings in behaving rodents. A major advantage of these techniques is that they allow for the characterization of NAc activity and rapid dopamine release during specific phases of motivated behavior. Moreover, each approach enables an examination of the dynamic nature of NAc signaling as a function of factors such as hedonics and associative learning. We show that NAc neurons differentially respond to rewarding and aversive stimuli and their predictors in a bivalent manner. This differential responding is modifiable and can be altered by the presentation of other natural rewards or cocaine. Likewise, the dynamic nature of NAc cell firing is also reflected in the differential activation of distinct populations of NAc neurons during goal-directed behaviors for natural versus drug rewards, and the heightened activation of some NAc neurons following cocaine abstinence. Our electrochemical data also show that rapid dopamine signaling in the NAc reflects primary rewards and their predictors and appears to modulate specific NAc neuronal responses. In some cases, these influences are observed in a regionally specific manner that matches previous pharmacological manipulations. Collectively, these findings provide critical insight into the functional organization of the NAc that can be used to guide additional studies aimed at dissecting the neural code underlying compulsive drug-seeking behavior.  相似文献   

18.
Introduction: Alterations in dopamine neurotransmission has been implicated in pathophysiology of neuropsychiatric and neurodegenerative disorders, and DARPP-32 plays a pivotal role in dopamine neurotransmission. DARPP-32 likely influences dopamine-mediated behaviors in animal models of neuropsychiatric and neurodegenerative disorders and therapeutic effects of pharmacological treatment.

Areas covered: We will review animal studies on the biochemical and behavioral roles of DARPP-32 in drug addiction, schizophrenia and Parkinson’s disease. In general, under physiological and pathophysiological conditions, DARPP-32 in D1 receptor expressing (D1R) -medium spiny neurons (MSNs) promotes dopamine/D1 receptor/PKA signaling, whereas DARPP-32 in D2 receptor expressing (D2R)-MSNs counteracts dopamine/D2 receptor signaling. However, the function of DARPP-32 is differentially regulated in acute and chronic phases of drug addiction; DARPP-32 enhances D1 receptor/PKA signaling in the acute phase, whereas DARPP-32 suppresses D1 receptor/PKA signaling in the chronic phase through homeostatic mechanisms. Therefore, DARPP-32 plays a bidirectional role in dopamine neurotransmission, depending on the cell type and experimental conditions, and is involved in dopamine-related behavioral abnormalities.

Expert opinion: DARPP-32 differentially regulates dopamine signaling in D1R- and D2R-MSNs, and a shift of balance between D1R- and D2R-MSN function is associated with behavioral abnormalities. An adjustment of this imbalance is achieved by therapeutic approaches targeting DARPP-32-related signaling molecules.  相似文献   


19.
BACKGROUND AND PURPOSE The modulatory activity of the orphan receptor GPR3 in the brain has been related to the control of emotional behaviours. Limbic structures that express GPR3 have been associated with the effects of drug abuse. EXPERIMENTAL APPROACH The role of GPR3 in different cocaine-elicited behaviours including locomotor activity, behavioural sensitization, conditioned place preference (CPP) and intravenous self-administration was evaluated in Gpr3-/- mice and their Gpr3+/+ littermates. Cocaine-induced dopamine release in the nucleus accumbens was also evaluated to elucidate the effect of Gpr3 deletion on extracellular levels of dopamine. KEY RESULTS Gpr3-/- mice exhibited higher rewarding responses in the CPP paradigm. Gpr3-/- mice self-administered more cocaine, especially during the first days of training. No differences were found between genotypes regarding behavioural sensitization and the maximal effort required to obtain a cocaine infusion. Non-contingent priming injections of cocaine before operant training eliminated enhanced cocaine self-administration in Gpr3-/- mice. Extracellular levels of dopamine in the nucleus accumbens induced by cocaine did not differ between genotypes. CONCLUSIONS AND IMPLICATIONS The increased responsiveness of Gpr3-/- mice to the acute locomotor effects of cocaine and the inconsistency to further increase this effect reflected an 'already maximally sensitized' basal state. Enhanced responsiveness of Gpr3-/- mice to cocaine reward and to early phases of reinforcement suggests that an initial alteration increased vulnerability to this type of drug abuse. Overall, altered signalling pathways of GPR3 could contribute to the neurobiological substrate involved in developing addiction to cocaine.  相似文献   

20.
Neuroimaging studies using positron emission tomography suggest that reduced dopamine(DA) D2 receptor(D2R) availability in the striatum is associated with increased vulnerability to drug addiction in humans and experimental animals.However,the role of D3R in the neurobiology of addiction remains unclear.Here we report that D3R-knockout(D3-/-) mice display enhanced cocaine(and sucrose) taking observed during the acquisition and maintenance of cocaine self-administration and enhanced motivation for cocaine(and sucrose) seeking observed during progressive-ratio cocaine self-administration and extinction from cocaine self-administration.This increased vulnerability to cocaine was accompanied by decreased DA response to cocaine secondary to increased basal levels of extracellular DA in the nucleus accumbens,suggesting that enhanced cocaine-taking and cocaine-seeking behavior could be a compensatory response to decreased cocaine reward in D3-/-mice.In addition,D3-/-mice also displayed up-regulation of DA transporter in the striatum,suggesting that a neuroadaptative change occurred D3-/-mice to restore elevated basal levels of extracellular DA.These findings,for the first time,suggest that deletion of D3R increases vulnerability to cocaine-taking and cocaine-seeking behavior.Thus,reduced D3R availability in the brain constitutes an important risk factor for the development of cocaine addiction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号