共查询到20条相似文献,搜索用时 12 毫秒
1.
目的 研究乳腺癌耐药蛋白BCRP在人体正常和肿瘤组织中的表达及其意义.方法 采用半定量RT-PCR检测BCRP在人体正常组织和乳腺癌、胃癌组织中的表达水平。结果 研究发现BCRP mRNA在胎盘和肝脏组织中表达较高.在结肠、小肠、胃、乳腺和肾脏组织中表达较低.在胰腺、脾脏、外周血白细胞和卵巢组织中检测不到。20例乳腺癌中有5例(25%)BCRP阳性表达,而20例胃癌中BCRP均未表达。结论 乳腺癌耐药蛋白BCRP在人体的一些正常组织和乳腺癌中具有表达,其作用可能与该组织的外排功能有关。 相似文献
2.
Purpose: To establish a fluorescence-based assay for drug interactions with the ABC-export-protein BCRP (ABCG2). Methods: BCRP expression was verified by immunostaining and Western blots in intact porcine brain capillaries, isolated endothelial cells (PBCECs) and in MDCKII-cells over-expressing human wild-type BCRP (MDCKII-hBCRP). Transport of fluorescent mitoxantrone across cells was determined to assess a preferred transport direction. Sensitivity of cultured cells versus mitoxantrone in the absence and in the presence of transport modulators was examined at increasing concentrations of the cytostatic using the AlamarBlue™ assay. In addition, cells were incubated with mitoxantrone in the absence and presence of increasing concentrations of different compounds with the potential to interact with BCRP. Intracellular fluorescence accumulation was measured using a flow cytometer. Results: Isolated capillaries as well as 7-day old PBCECs showed expression of BCRP. Cell sensitivity to mitoxantrone significantly increased in the presence of the BCRP inhibitors KO143 and GF120918. Transport of mitoxantrone across PBCEC monolayers was directed with Papp (apical to basolateral) 5.6 × 10 −6 cm s −1 and with Papp (basolateral to apical) 2.8 × 10 −5 cm s −1. FACS analysis revealed a different extent of fluorescence accumulation dependent on the kind and concentration of BCRP modulating compounds. Conclusions: The mitoxantrone-based assay can be used as a rapid FACS screening system to assess drug interactions with BCRP at the blood-brain barrier and therefore represents a useful tool in drug profiling. 相似文献
3.
Accumulation of methotrexate (MTX) and its polyglutamates (PGs) has been recognized as an important factor in MTX efficacy. We have previously described a multidrug-resistant human breast cancer cell line, MCF7/MX, that exhibits reduced accumulation of total MTX as well as MTX-PGs, and that is resistant to continuous MTX exposure [Volk EL, Rohde K, Rhee M, McGuire JJ, Doyle LA, Ross DD, et al. Methotrexate cross-resistance in a mitoxantrone selected multidrug-resistant MCF7 breast cancer cell line is due to enhanced energy-dependent drug efflux. Cancer Res 2000;60:3514-21]. These cells express high levels of the breast cancer resistance protein (BCRP/ABCG2) that has been shown to actively transport MTX and short-chain MTX-PGs in vitro. However, the effect of BCRP on MTX-PG accumulation in intact cells was unclear. Here, we show that MTX transport by BCRP is required for the observed lower levels of MTX-PGs in the resistant cells. When BCRP was inhibited with fumitremorgin C, or in cells expressing a mutated form of BCRP that is unable to transport MTX, MTX-PG accumulation was similar or even higher than that in the parental cells that do not express BCRP. Concomitantly, there was increased inhibition of thymidylate synthase. It had previously been suggested that BCRP-mediated efflux of MTX-PGs contributed to the reduced MTX-PG accumulation. However, we found no evidence of BCRP-mediated efflux of MTX-PGs from intact cells, suggesting that direct efflux of MTX-PGs does not play a major role in MTX resistance. Together, these data show that BCRP overexpression can cause a reduction in total MTX accumulation as well as a reduction in the proportion of long-chain MTX-PGs. In contrast, BCRP overexpression did not affect natural folate accumulation or the relative distribution of folylpolyglutamates in the resistant, as compared to the parental, cells. Thus, it appears that BCRP overexpression affects the metabolism of the antifolate MTX, but not that of natural folates, although indirect effects cannot be excluded. 相似文献
4.
The 72-kDa breast cancer resistance protein (BCRP) is the second member of the subfamily G of the human ATP binding cassette (ABC) transporter superfamily and thus also designated as ABCG2. Unlike P-glycoprotein and MRP1, which are arranged in 2 repeated halves, BCRP is a half-transporter consisting of only 1 nucleotide binding domain followed by 1 membrane-spanning domain. Current experimental evidence suggests that BCRP may function as a homodimer or homotetramer. Overexpression of BCRP is associated with high levels of resistance to a variety of anticancer agents, including anthracyclines, mitoxantrone, and the camptothecins, by enhancing drug efflux. BCRP expression has been detected in a large number of hematological malignancies and solid tumors, indicating that this transporter may play an important role in clinical drug resistance of cancers. In addition to its role to confer resistance against chemotherapeutic agents, BCRP actively transports structurally diverse organic molecules, conjugated or unconjugated, such as estrone-3-sulfate, 17beta-estradiol 17-(beta-D-glucuronide), and methotrexate. BCRP is highly expressed in the placental syncytiotrophoblasts, in the apical membrane of the epithelium in the small intestine, in the liver canalicular membrane, and at the luminal surface of the endothelial cells of human brain microvessels. This strategic and substantial tissue localization indicates that BCRP also plays an important role in absorption, distribution, and elimination of drugs that are BCRP substrates. This review summarizes current knowledge of BCRP and its relevance to multidrug resistance and drug disposition. 相似文献
5.
The breast cancer resistance protein (BCRP, ABCG2) is an efflux transporter that removes xenobiotics that cross the placenta back to the maternal circulation, thereby limiting exposure of the fetus to drugs and chemicals. Currently, variability of BCRP expression within the placenta is not known. Ten placentas were collected from healthy women undergoing elective Cesarean sections at term. Villous samples were dissected in defined regions (medial, intermediate, and peripheral) and BCRP mRNA and protein were quantified. There were no regional differences in mRNA expression of housekeeping genes (GAPDH, RPL13a, PRL, 18S). GAPDH had the lowest correlation with BCRP Ct values and was used for BCRP mRNA normalization. No differences in placental BCRP mRNA and protein were observed among the sample sites (<20% variability). Sampling site does not affect the expression of BCRP, supporting the utility of single site sampling protocols to assess the interindividual regulation of this transporter in human placentas. 相似文献
6.
肿瘤细胞的多药耐药严重影响肿瘤化疗的疗效,研究肿瘤细胞耐药相关蛋白的生理功能及其转运药物的机制,寻找高效的多药耐药蛋白抑制剂是提高肿瘤化疗效果的重要途径。乳腺癌耐药蛋白(BCRP/ABCG2)是一种介导乳腺癌细胞耐药的重要蛋白,在乳腺癌细胞多药耐药的形成中起关键作用。本文将就BCRP/ABCG2蛋白的结构特点、生理功能、在多药耐药中的作用及其抑制剂等方面的研究进展作一综述。 相似文献
8.
PURPOSE: The aim of the current study was to identify the effect of single nucleotide polymorphisms (SNPs) in breast cancer resistance protein (BCRP/ABCG2) on its localization, expression level, and transport activity. METHODS: The cellular localization was identified using the wild type and seven different SNP variants of BCRP (V12M, Q141K, A149P, R163K, Q166E, P269S, and S441N BCRP) after transfection of their cDNAs in plasmid vector to LLC-PK1 cells. Their expression levels and transport activities were determined using the membrane vesicles from HEK293 cells infected with the recombinant adenoviruses containing these kinds of BCRP cDNAs. RESULTS: Wild type and six different SNP variants of BCRP other than S441N BCRP were expressed on the apical membrane, whereas S441N BCRP showed intracellular localization. The expression levels of Q141K and S441N BCRP proteins were significantly lower compared with the wild type and the other five variants. Furthermore, the transport activity of E1S, DHEAS, MTX, and PAH normalized by the expression level of BCRP protein was almost the same for the wild type, V12M, Q141K, A149P, R163K, Q166E, and P269S BCRP. CONCLUSIONS: These results suggest that Q141K SNPs may associate with a lower expression level, and S441N SNPs may affect both the expression level and cellular localization. It is possible that subjects with these polymorphisms may have lower expression level of BCRP protein and, consequently, a reduced ability to export these substrates. 相似文献
9.
The breast cancer resistance protein, BCRP/ABCG2, is a half-molecule ATP-binding cassette transporter that facilitates the efflux of various anticancer agents from the cell, including 7-ethyl-10-hydroxycamptothecin, topotecan and mitoxantrone. The expression of BCRP can thus confer a multidrug resistance phenotype in cancer cells, and its transporter activity is involved in the in vivo efficacy of chemotherapeutic agents. Thus, the elucidation of the substrate preferences and structural relationships of BCRP is essential to understanding its in vivo functions during chemotherapeutic treatments. Single nucleotide polymorphisms (SNPs) have also been found to be key factors in determining the efficacy of chemotherapeutics, and those therapeutics that inhibit BCRP activity, such as the SNP that results in a C421A mutant, may result in unexpected side effects of the BCRP- anticancer drugs interaction even at normal dosages. In order to modulate the BCRP activity during chemotherapy, various compounds have been tested as inhibitors of this protein. Estrogenic compounds including estrone, several tamoxifen derivatives in addition to phytoestrogens and flavonoids have been shown to reverse BCRP-mediated drug resistance. Intriguingly, recently developed molecular targeted cancer drugs, such as the tyrosine kinase inhibitors imatinib mesylate, gefitinib and others, can also interact with BCRP. Since both functional SNPs and inhibitory agents of BCRP modulate the in vivo pharmacokinetics and pharmacodynamics of its substrate drugs, BCRP activity is an important consideration in the development of molecular targeted chemotherapeutics. 相似文献
10.
Recent studies have shown that a number of microRNAs (miRNA or miR) may regulate human breast cancer resistance protein (BCRP/ABCG2), an important efflux transporter responsible for cellular drug disposition, whereas their effects on ABCG2 protein expression are not compared. In this study, we first identified a new proximal miRNA response element (MRE) for hsa-miR-519c within ABCG2 3′-untranslated region (3′UTR) through computational analyses. This miR-519c MRE site was confirmed using dual luciferase reporter assay and site-directed mutagenesis. Immunoblot analyses indicated that ABCG2 protein expression was significantly down-regulated in MCF-7/MX100 cells after transfection with hsa-miR-328- or -519c expression plasmids, and was markedly up-regulated in MCF-7 cells after transfection with miR-328 or -519c antagomir. However, ABCG2 protein expression was unchanged in MCF-7/MX100 cells after transfection with hsa-miR-520h expression plasmids, which was associated with undetectable miR-520h expression. Furthermore, ABCG2 mRNA degradation was accelerated dramatically in cells transfected with miR-519c expression plasmid, suggesting the involvement of mRNA degradation mechanism. Intervention of miR-328 or -519c signaling led to significant change in intracellular mitoxantrone accumulation, as determined by flow cytometry analyses. In addition, we separated RB143 human retinoblastoma cells into stem-like (ABCG2+) and non-stem-like (ABCG2−) populations through immunomagnetic selection, and found that miR-328, -519c and -520h levels were 9-, 15- and 3-fold lower in the ABCG2+ cells, respectively. Our data suggest that miR-519c and -328 have greater impact on ABCG2 expression than miR-520h in MCF-7 human breast cancer cells, and the presence of proximal miR-519c MRE explains the action of miR-519c on shortened ABCG2 3′UTR. 相似文献
11.
Introduction: P-glycoprotein (P-gp)/ABCB1 and breast cancer resistance protein (BCRP)/ABCG2 are highly expressed in the placenta and fetus throughout gestation and can modulate exposure and toxicity of drugs and xenobiotics to the vulnerable fetus during the sensitive times of growth and development. We aim to provide an update on current knowledge on placental and fetal expressions of the two transporters in different species, and to provide insight on interpreting transporter expression and fetal exposure relative to the concept of fraction of drug transported. Areas covered: Comprehensive literature review through PubMed (primarily from July 2010 to February 2018) on P-gp and BCRP expression and function in the placenta and fetus of primarily human, mouse, rat, and guinea pig. Expert opinion: While there are many commonalities in the expression and function of P-gp and BCRP in the placenta and fetal tissues across species, there are distinct differences in expression levels and temporal changes. Further studies are needed to quantify protein abundance of these transporters and functionally assess their activities at various gestational stages. Combining the knowledge of interspecies differences and the concept of fraction of drug transported, we may better predict the magnitude of impact these transporters have on fetal drug exposure. 相似文献
12.
Multidrug resistance-associated protein (MRP-1/ABCC1) transports a wide range of therapeutic agents and may play a critical role in the development of multidrug resistance (MDR) in tumor cells. However, the regulation of MRP-1 remains controversial. To explore whether miRNAs are involved in the regulation of MRP-1 expression and modulate the sensitivity of tumor cells to chemotherapeutic agents, we analyzed miRNA expression levels in VP-16-resistant MDR cell line, MCF-7/VP, in comparison with its parent cell line, MCF-7, using a miRNA microarray. MCF-7/VP overexpressed MRP-1 mRNA and protein not MDR-1 and BCRP. miR-326 was downregulated in MCF-7/VP compared to MCF-7. Additionally, miR-326 was downregulated in a panel of advanced breast cancer tissues and consistent reversely with expression levels of MRP-1. Furthermore, the elevated levels of miR-326 in the mimics-transfected VP-16-resistant cell line, MCF-7/VP, downregulated MRP-1 expression and sensitized these cells to VP-16 and doxorubicin. These findings demonstrate for the first time the involvement of miRNAs in multidrug resistance mediated by MRP-1 and suggest that miR-326 may be an efficient agent for preventing and reversing MDR in tumor cells. 相似文献
13.
目的探讨乳腺癌组织中乳腺癌耐药蛋白表达与临床常用化疗药物敏感性之间的关系。方法选取42例乳腺癌组织标本,采用免疫组织化学S-P法检测标本中BCRP表达,对同一标本应用胶滴肿瘤药敏检测技术进行体外药物敏感性试验。结果乳腺癌组织中BCRP阳性表达率为33.33%(14/42),BCRP阳性表达者中5-氟尿嘧啶、阿霉素耐药组所占比例明显高于BCRP阴性组(P<0.05)。结论 BCRP蛋白表达可以作为预测化疗效果的一个重要参考指标,根据药物敏感试验结果进行药物筛选,实现乳腺癌化疗的个体化,对于提高患者生存质量,具有十分特殊的意义。 相似文献
14.
The A421 ABCG2 genotype is a frequent polymorphism encoding the K141 transporter, which is associated with a significant decrease in transporter expression and function when compared to the wild type (wt) C421 allele encoding the Q141 ABCG2. Here we show that during the acquisition of resistance to the novel triazoloacridone antitumor agent C-1305 in lung cancer cells harboring a heterozygous C421A genotype, a marked C421 allele-specific ABCG2 gene amplification occurred. This monoallelic C421 ABCG2 gene amplification brought about the overexpression of both C421 ABCG2 mRNA and the transporter at the plasma membrane. This resulted in the lack of cellular drug accumulation due to increased efflux of both C1305 and C-1311, a fluorescent imidazoacridone homologue of C-1305, as well as marked resistance to these antitumor agents and to established ABCG2 substrates including mitoxantrone and SN-38. Consistently, the accumulation and sensitivity to these drugs were restored upon incubation with the potent and specific ABCG2 transport inhibitors Ko143 and fumitremorgin C. Moreover, upon transfection into HEK293 cells, the wt Q141 ABCG2 allele displayed a significantly decreased accumulation of C-1311 and increased resistance to C-1305, C-1311 and mitoxantrone, when compared to the K141 ABCG2 transfectant. Hence, the current study provides the first evidence that during the exposure to anticancer drugs, an allele-specific Q141 ABCG2 gene amplification occurs that confers a drug resistance advantage when compared to the K141 ABCG2. These findings have important implications for the selection and expansion of malignant anticancer drug resistant clones during chemotherapy with ABCG2 drugs. 相似文献
15.
Since cloning of the ATP-binding cassette (ABC) family member breast cancer resistance protein (BCRP/ABCG2) and its characterization as a multidrug resistance efflux transporter in 1998, BCRP has been the subject of more than two thousand scholarly articles. In normal tissues, BCRP functions as a defense mechanism against toxins and xenobiotics, with expression in the gut, bile canaliculi, placenta, blood-testis and blood-brain barriers facilitating excretion and limiting absorption of potentially toxic substrate molecules, including many cancer chemotherapeutic drugs. BCRP also plays a key role in heme and folate homeostasis, which may help normal cells survive under conditions of hypoxia. BCRP expression appears to be a characteristic of certain normal tissue stem cells termed "side population cells," which are identified on flow cytometric analysis by their ability to exclude Hoechst 33342, a BCRP substrate fluorescent dye. Hence, BCRP expression may contribute to the natural resistance and longevity of these normal stem cells. Malignant tissues can exploit the properties of BCRP to survive hypoxia and to evade exposure to chemotherapeutic drugs. Evidence is mounting that many cancers display subpopulations of stem cells that are responsible for tumor self-renewal. Such stem cells frequently manifest the "side population" phenotype characterized by expression of BCRP and other ABC transporters. Along with other factors, these transporters may contribute to the inherent resistance of these neoplasms and their failure to be cured. 相似文献
16.
Nilotinib, a BCR-Abl tyrosine kinase inhibitor (TKI), was developed to surmount resistance or intolerance to imatinib in patients with Philadelphia positive chronic myelogenous leukemia. Recently, it was shown that several human multidrug resistance (MDR) ATP-binding cassette (ABC) proteins could be modulated by specific TKIs. MDR can produce cancer chemotherapy failure, typically due to overexpression of ABC transporters, which are involved in the extrusion of therapeutic drugs. Here, we report for the first time that nilotinib potentiates the cytotoxicity of widely used therapeutic substrates of ABCG2, such as mitoxantrone, doxorubicin, and ABCB1 substrates including colchicine, vincristine, and paclitaxel. Nilotinib also significantly enhances the accumulation of paclitaxel in cell lines overexpressing ABCB1. Similarly, nilotinib significantly increases the intracellular accumulation of mitoxantrone in cells transfected with ABCG2. Furthermore, nilotinib produces a concentration-dependent inhibition of the ABCG2-mediated transport of methotrexate (MTX), as well as E 217βG a physiological substrate of ABCG2. Uptake studies in membrane vesicles overexpressing ABCG2 have indicated that nilotinib inhibits ABCG2 similar to other established TKIs as well as fumitremorgin C. Nilotinib is a potent competitive inhibitor of MTX transport by ABCG2 with a Ki value of 0.69 ± 0.083 μM as demonstrated by kinetic analysis of nilotinib. Overall, our results indicate that nilotinib could reverse ABCB1- and ABCG2-mediated MDR by blocking the efflux function of these transporters. These findings may be used to guide the design of present and future clinical trials with nilotinib, elucidating potential pharmacokinetic interactions. Also, these findings may be useful in clinical practice for cancer combination therapy with nilotinib. 相似文献
17.
目的研究乳腺癌耐药蛋白BCRP在人体正常和肿瘤组织中的表达及其意义. 方法采用半定量RT-PCR检测BCRP在人体正常组织和乳腺癌、胃癌组织中的表达水平. 结果研究发现BCRP mRNA在胎盘和肝脏组织中表达较高,在结肠、小肠、胃、乳腺和肾脏组织中表达较低,在胰腺、脾脏、外周血白细胞和卵巢组织中检测不到.20例乳腺癌中有5例(25%)BCRP阳性表达,而20例胃癌中BCRP均未表达.结论乳腺癌耐药蛋白BCRP在人体的一些正常组织和乳腺癌中具有表达,其作用可能与该组织的外排功能有关. 相似文献
18.
Breast cancer resistance protein (BCRP/ABCG2) belongs to the ATP-binding cassette (ABC) transporter superfamily. It is able to efflux a broad range of anti-cancer drugs through the cellular membrane, thus limiting their anti-proliferative effects. Due to its relatively recent discovery in 1998, and in contrast to the other ABC transporters P-glycoprotein (MDR1/ABCB1) and multidrug resistance-associated protein (MRP1/ABCC1), only a few BCRP inhibitors have been reported. This review summarizes the known classes of inhibitors that are either specific for BCRP or also inhibit the other multidrug resistance ABC transporters. Information is presented on structure-activity relationship aspects and how modulators may interact with BCRP. 相似文献
19.
Chalcones are biosynthetic precursors of flavonoids found to possess cytotoxic and chemopreventive activities. In this study, 17 non-basic chalcone analogues were synthesized and evaluated for their ability to modulate the function of either the human wild-type (482R) or mutant (482T) breast cancer resistance protein (BCRP/ABCG2) stably expressed in breast cancer MDA-MB-231 cells. At 5muM, chalcones with 2,4-dimethoxy groups or 2,4-dihydroxyl groups on ring A were found to increase mitoxantrone accumulation to a greater extent than an established BCRP inhibitor, fumitremorgin C. At the same time, these chalcones had negligible effect on calcein accumulation in P-glycoprotein overexpressing MDCKII cells, indicating their potential as selective BCRP inhibitors. Functionally, these compounds were able to increase the sensitivity of BCRP-overexpressing cancer cells to mitoxantrone by 2-5-fold. The effect of chalcone compounds on both wild-type and mutant BCRP ATPase activity was also examined and variable effects were observed. A stimulatory effect was mostly observed with chalcones with 2,4-dimethoxy substitution on ring A which were earmarked as good BCRP inhibitors in the MX accumulation and cytotoxicity assays. These findings underscore the potential of methoxylated and hydroxylated chalcones as selective and potent inhibitors of BCRP whose mode of action may not involve the inhibition of ATPase activity. 相似文献
20.
The aim of the study was to investigate the role of breast cancer resistance protein (BCRP, ABCG2) in the transport of biochanin A and its metabolites. Transport studies were carried out in MDCK/bcrp1 as well as in control cells, and samples were analysed for biochanin A aglycone and metabolites using LC/MS/MS. In bidirectional transport studies biochanin A sulfate was detected in both apical and basolateral chambers after the addition of biochanin A. Analysis by RT-PCR revealed that the enzyme sulfotransferase 1A1 is expressed in Madin-Darby canine kidney (MDCK)-II cells. After its intracellular formation, biochanin A sulfate was preferentially transported to the basolateral side in MDCK/Mock cells, whereas apical transport of biochanin A sulfate was predominant in MDCK/Bcrp1 cells. Genistein, an additional metabolite of biochanin A formed intracellularly, was also found to be a bcrp1 substrate. Studies with MDCK/MRP2 (ABCC2) cells demonstrated that both genistein and biochanin A sulfate are not MRP2 substrates. In contrast, biochanin A aglycone was not transported by murine or human BCRP; nor is it a substrate of MRP2 or P-glycoprotein. Therefore, BCRP may play an important role in the enteric cycling of biochanin A sulfate and through this mechanism may alter the bioavailability of its non-substrate parent compound biochanin A. Moreover, MDCK-II cells might be a suitable model to investigate the synergistic role of sulfotransferase enzymes with efflux transporters. 相似文献
|