首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since atrazine (ATR), a chlorotriazine herbicide, has been shown previously to alter the secretion of luteinizing hormone (LH) and prolactin (PRL) through a direct effect on the central nervous system (CNS), we hypothesized that exposure to ATR in the EDSTAC male pubertal protocol (juvenile to peripubertal) would alter the development of the male rat reproductive system. We dosed intact male Wistar rats from postnatal day (PND) 23 to 53 and examined several reproductive endpoints. ATR (0, 12.5, 25, 50, 100, 150, or 200 mg/kg) was administered by gavage and an additional pair-fed group was added to compare the effects of any decreased food consumption in the high dose group. Preputial separation (PPS) was significantly delayed in the 12.5, 50, 100, 150, and 200 mg/kg ATR dose groups. PPS was also delayed in the pair-fed group, although significantly less than in the high dose-ATR group. The males were killed on PND 53 or 54, and pituitary, thyroid, testes, epididymides, seminal vesicles, and ventral and lateral prostates were removed. ATR (50 to 200 mg/kg) treatment resulted in a significant reduction in ventral prostate weights, as did the reduced food consumption of the pair-fed group. Testes weights were unaffected by atrazine treatment. Seminal vesicle and epididymal weights were decreased in the high dose-ATR group and the control pair-fed group. However, the difference in epididymal weights was no longer significantly different when body weight was entered as a covariable. Intratesticular testosterone was significantly decreased in the high dose-ATR group on PND 45, but apparent decreases in serum testosterone were not statistically significantly on PND 53. There was a trend for a decrease in luteinizing hormone (LH) as the dose of ATR increased; however, dose group mean LH was not different from controls. Due to the variability of serum prolactin concentrations on PND 53, no significant difference was identified. Although prolactin is involved in the maintenance of LH receptors prior to puberty, we observed no difference in LH receptor number at PND 45 or 53. Serum estrone and estradiol showed dose-related increases that were significant only in the 200 mg/kg-ATR group. No differences were observed in thyroid stimulating hormone (TSH) and thyroxine (T4) between the ATR groups and the control; however triiodothyronine (T3) was elevated in the high dose-ATR group. No differences in hormone levels were observed in the pair-fed animals. These results indicate that ATR delays puberty in the male rat and its mode of action appears to be altering the secretion of steroids and having subsequent effects on the development of the reproductive tract, which appear to be due to ATR's effects on the CNS. Thus, ATR tested positive in the pubertal male screen that the Endocrine-Disrupter Screening and Testing Advisory Committee (EDSTAC) is considering as an optional screen for endocrine disrupters.  相似文献   

2.
We showed previously that the chlorotriazine herbicide, atrazine (ATR), delays the onset of pubertal development in female rats. ATR and its biotransformation by-products are present in soil and groundwater. Since current maximum contaminant levels are set only for ATR, it is important to determine whether these by-products can also alter pubertal development and possibly pose a cumulative exposure hazard. We evaluated the effects of two ATR by-products, diamino-s-chlorotriazine (DACT) and hydroxyatrazine (OH-ATR), and a structurally similar chlorotriazine, propazine (PRO), on female pubertal development. Rats were gavaged from postnatal days (PNDs) 22 through PND 41 with DACT (16.7, 33.8, 67.5, 135 mg/kg), OH-ATR (22.8, 45.7, 91.5, 183 mg/kg), or PRO (13, 26.7, 53, 106.7, 213 mg/kg). The dose range for each chemical was selected as the molar equivalent of ATR (12.5, 25, 50, 100, 200 mg/kg). The females were monitored daily for vaginal opening (VO) and killed on PND 41. DACT, a by-product of ATR that occurs in the environment and is also the primary chlorinated metabolite of ATR in animal tissue, delayed VO by 3.2, 4.8, and 7.6 days compared to the controls (33.1 +/- 0.4 (SE) days of age) following exposure to 33.8, 67.5, and 135 mg/kg, respectively. The no effect level (NOEL) for DACT (16.7 mg/kg) was identical to the equimolar NOEL for ATR (25 mg/kg). Although the body weight (BW) on PND 41 was reduced by the high dose of DACT (8.4% reduction), this reduction did not exceed the criteria for selecting the maximum tolerated dose (e.g., a dose that causes >10% decrease in BW at necropsy). None of the lower doses of DACT caused a significant difference in BW gain. Additionally, 33.8, 67.5, and 135 mg/kg of DACT significantly increased the BW on the day of VO. PRO (107 or 213 mg/kg) delayed VO by 4 days but did not alter the BW on PND 41. While no significant delays in pubertal development were observed in two separate dose-response studies with doses ranging up to 183 mg/kg (OH-ATR), a minor but statistically significant delay in the onset of puberty in a pilot study using OH-ATR raises the possibility that an effect might occur following exposure to higher doses. However, it is clear from these data that OH-ATR has a much lower potency when compared with equimolar doses of DACT and PRO. Together, these data demonstrate that PRO and DACT can delay the onset of puberty in the female rat at doses equimolar to ATR and provide the scientific basis for the use of additivity in the upcoming risk assessments.  相似文献   

3.
Recently we reported that atrazine (ATR), a chlorotriazine herbicide, alters the onset of puberty in male Wistar rats. In this study, we examined the same reproductive parameters in the developing male rat following a similar exposure to the primary, chlorinated metabolites of atrazine. Intact male Wistar rats were gavaged from postnatal day (PND) 23 through PND 53 and several reproductive endpoints were examined. The doses selected were the molar equivalents to atrazine in our previous work. Deethylatrazine (DEA), deisopropyl-atrazine (DIA), and diaminochlorotriazine (DACT) were administered by gavage at doses equivalent to the atrazine equimolar doses (AED) of 6.25, 12.5, 25, 50, 100, or 200 mg/kg. Preputial separation (PPS) was significantly delayed by DEA at 25, 100, and 200 AED, by DIA at 25, 100, and 200 AED, and by DACT at 12.5 through 200 AED. When the males were killed on PND 53, DEA (100 and 200 AED), DIA (50 through 200 AED), and DACT (200 AED) treatments caused a significant reduction in ventral prostate weight, while only the highest doses of DIA and DEA resulted in a significant decrease in lateral prostate weight. Seminal vesicle weight was reduced by DEA (25, 100, and 200 AED), DIA (100 and 200 AED), and 100 and 200 AED of DACT. Epididymal weights were reduced in the DEA (200 AED), DIA (200 AED), and DACT (100 and 200 AED) treatment groups. Serum testosterone was reduced only in the males receiving the 2 highest doses of DIA. Serum estrone was increased in the 2 highest doses of the DACT group, while serum estradiol was not different in any group. No differences were observed in any of the thyroid measures. In summary, the metabolites of ATR delay puberty in a manner similar to that observed in the previous study testing atrazine. These data also suggest that the 3 chlorinated metabolites are similar to ATR, by affecting the CNS control of the pituitary/gonadal axis and subsequent development of the reproductive tract.  相似文献   

4.
The Endocrine Disrupter Screening and Testing Advisory Committee (EDSTAC) has recommended the rodent pubertal female assay as a Tier I test to detect potential endocrine disrupters (EDs). This assay is designed to screen estrogenic activity in immature rats exposed to chemicals during sexual maturation. The aim of this study was to evaluate whether this assay can detect the EDs with effects brought about through various mechanisms. Immature Sprague-Dawley female rats (21 days of age) were dosed daily for 20 days by oral gavage (DES, tamoxifen, and flutamide) or sc injection (testosterone). The mean age at vaginal opening (VO) was 32.3 +/- 0.5 days in control rats. Although VO was unaffected by DES at doses of 0.2 and 1.0 microg/kg, a high dose of DES (5.0 microg/kg) significantly advanced the age at VO to 24 days. Both tamoxifen (50 and 200 microg/kg) and flutamide (25 mg/kg) also significantly accelerated VO to 27.8 +/- 0.5, 25.1 +/- 0.1, and 26.1 +/- 0.1, respectively. However, testosterone dose-dependently delayed VO (exposure to 1.0 mg/kg extended VO to 37.3 +/- 0.8 days, and VO did not occur in 2 of 10 animals by the time of necropsy at 41 days of age). Estrous cyclicity was monitored in rats from VO to necropsy. Irregular cycles were observed in the groups treated with DES (5.0 microg/kg), tamoxifen (200 microg/kg), testosterone (1.0 mg/kg), and flutamide (25 mg/kg). High dose of DES showed a persistent estrus state throughout the entire observation period. In addition, the number of days in diestrus was increased by tamoxifen (200 microg/kg) and flutamide (25 mg/kg) treatments. Significant decreases in ovarian weight were observed in 5.0 microg/kg DES (64% of control), 25 mg/kg flutamide (76% of control), and 200 microg/kg tamoxifen (47% of control). Testosterone also significantly decreased the ovarian weights in all treatment groups. Uterine weights were also decreased significantly at high doses of tamoxifen (200 microg/kg, 39% of control) or testosterone (1.0 mg/kg, 47% of control). In hormone analysis, tamoxifen significantly increased serum E(2) levels at 50 microg/kg. The mean serum levels of TSH were significantly increased in tamoxifen (10 and 50 microg/kg), testosterone (0.2 mg/kg), and flutamide (1.0 and 25 mg/kg) treatment groups compared with the control. However, serum T(4) levels were significantly reduced by testosterone. Furthermore, serum T(3) levels were significantly increased in DES, tamoxifen (10 and 50 microg/kg), testosterone (1.0 mg/kg), and flutamide (1.0 and 5 mg/kg). Our data demonstrate that the rodent pubertal female assay is useful for identifying potential EDs having not only estrogenic/antiestrogenic but also androgenic/antiandrogenic activities. However, further validation study is necessary to identify chemicals that operate through other action mechanisms, including steroid biosynthesis inhibitors and thyroid inhibitors. Moreover, additional data on other compounds with weak endocrine disrupting activity will be required to further characterize the sensitivity of the female pubertal assay.  相似文献   

5.
Considerable attention has recently been focused on environmental chemicals that disrupt the reproductive system by altering steroid receptor function. Although numerous in vitro and in vivo methods have been shown to be useful approaches for identifying chemicals that can disrupt reproduction through a direct interaction with the estrogen receptor, it is imperative that the protocols selected be capable of detecting chemicals with a broad range of estrogenic activity. Here we evaluate the reliability of the 3-day uterotrophic assay for detecting chemicals with strong or weak estrogenic activity in both prepubertal and ovariectomized adult Long Evans rats. These data were compared to additional measures of estrogenic activity, which included the age of vaginal opening, the induction of cornified vaginal epithelial cells in ovariectomized adult rats, and estrous cyclicity in intact adult rats. Test chemicals selected for these studies included 17-beta-estradiol, ethynyl estradiol, methoxychlor, 4-tert-octylphenol, 4-nonylphenol and bisphenol A. Data from in vitro receptor binding assays compared the ability of the test chemicals to compete with [3H]-estradiol or [3H]-promegestone for binding to estrogen or progesterone receptors. As expected, the binding affinities for the estrogen receptor ranged from high to low, as reflected by Ki concentrations of 0.4 nM for 17-beta-estradiol and ethynyl estradiol, and 0.05-65 microM for 4-tert-octyphenol, 4-nonylphenol, and methoxychlor. Although none of the test chemicals demonstrated a high affinity for binding to the progesterone receptor, 4-tert-octylphenol and 4-nonylphenol exhibited a weak affinity, with Ki concentrations ranging from 1.2 to 3.8 microM. In vivo studies indicated that the 3-day uterotrophic assay in prepubertal rats was the best method for detecting estrogenic activity when compared with all other end points, based upon the dose-response data for ethynyl estradiol (0.01-0.1 mg/kg), 4-tert-octylphenol (50-200 mg/kg, oral), and 4-nonylphenol (25-100 mg/kg, oral). Although oral doses of ethynyl estradiol (0.01 mg/kg) and 4-nonylphenol (50 mg/kg) induced a significant increase in uterine weight in the prepubertal rats, these doses were ineffective for stimulating a similar response in ovariectomized adult rats. The age of vaginal opening was advanced following oral exposure from postnatal days 21-35 to ethynyl estradiol (0.01 mg/kg), methoxychlor (50 mg/kg), 4-tert-octylphenol (200 mg/kg), and 4-nonylphenol (50 mg/kg). Although bisphenol A (200 mg/kg, oral) induced a significant uterotrophic response within 3 days in prepubertal rats, doses up to 400 mg/kg failed to advance the age of vaginal opening. Monitoring changes in the vaginal epithelium of ovariectomized adult rats was the least effective method for detecting estrogenic activity for 4-tert-octylphenol and bisphenol A. The number of 4-5 day estrous cycles was reduced during a 25-day exposure to ethynyl estradiol (0.01 mg/kg), methoxychlor (50 mg/ kg), 4-tert-octylphenol (200 mg/kg), 4-nonylphenol (100 mg/kg), and bisphenol A (100 mg/kg) by oral gavage. Although long periods of extended diestrus (7-14 days) were generally correlated with exposure to ethynyl estradiol and 4-tert-octylphenol, the cycling patterns following exposure to methoxychlor, 4-nonylphenol and bisphenol A were not as clearly defined, with shorter periods of extended diestrus (4-7 days) and/or estrus (3-5 days) intermittently observed throughout the exposure period. Together these data provide a comparison of the 3-day uterotrophic assay with alternative measures of estrogenic activity for a group of test chemicals with a broad range of affinities for the estrogen receptor. These data can be useful during the assessment and validation of methods for screening environmental chemicals for endocrine disrupting activity.  相似文献   

6.
The U.S. Environmental Protection Agency is currently validating assays that will be used in a Tier I Screening Battery to detect endocrine disrupting chemicals. A primary concern with the Protocols for the Assessment of Pubertal Development and Thyroid Function in Juvenile Male and Female Rats is that a nonspecific reduction in body weight (BWT) during the exposure period may potentially confound the interpretation of effects on the endocrine endpoints. Wistar rats were underfed 10, 20, 30, or 40% less than the ad libitum food consumed by controls from postnatal days (PNDs) 22 to 42 (females) or PNDs 23 to 53 (males). Terminal BWT of females and males were 2, 4, 12, and 19% and 2, 6, 9, and 19% lower than controls, respectively. In the females, neither the age of pubertal onset nor any of the thyroid hormone endpoints were affected by food restriction (FR) that led to a 12% decrease in BWT. Similarly, none of the male reproductive endpoints examined were altered by FR that led to a 9% BWT decrease. However, decreased triiodothyronine and thyroxin was observed in FR males with a 9% reduced BWT. While these data support the use of the maximum tolerated dose for BWT (10%) for the female protocol, effects on the male thyroid endpoints indicate that a slightly lower limit (相似文献   

7.
To establish a test protocol for the rodent 20-d thyroid/pubertal assay, flutamide, a non-steroidal androgen antagonist, was administered to intact male Sprague-Dawley rats from postnatal d 33 for 20 d, and several reproductive endpoints were examined to assess the sensitivity of a number of parameters with respect to the detection of endocrine-related effects. Immature male rats were divided into 4 groups and given flutamide once daily by oral gavage at doses of 0, 1, 5, or 25 mg/kg/d. Prepuce separation was significantly delayed in flutamide-treated rats (5 and 25 mg/kg/d). One day after the last dose, the rats were sacrificed. Flutamide treatment resulted in a significant reduction in the weights of epididymides, ventral prostate, seminal vesicles plus coagulating glands and fluid, levator ani plus bulbocavernosus muscles, Cowper's glands, and glans penis. The weight of adrenal glands decreased at 25 mg/kg/d, while testes and any other organ weights were unaffected. No microscopic changes were observed in the thyroid glands. Serum levels of testosterone were significantly increased in the flutamide-treated groups (5 and 25 mg/ kg/d) and serum levels of estradiol were also increased (25 mg/kg/d). No differences were observed in the serum thyroxine levels. These results indicate that flutamide delays puberty in the male rat, and its mode of action appears to be via altered secretion of steroids, which subsequently affect the development of the reproductive tract. Thus, this assay might be used as an alternative for screening antiandrogenic activities of chemicals.  相似文献   

8.
Manganese (Mn), an essential element considered important for normal growth and reproduction, has been shown in adults to be detrimental to reproductive function when elevated. Because Mn can cross the blood-brain barrier and accumulate in the hypothalamus, and because it has been suggested that infants and children are potentially more sensitive to Mn than adults, we wanted to determine the effects of Mn exposure on puberty-related hormones and the onset of female puberty. We demonstrated that MnCl(2) when administered acutely into the third ventricle of the brain acts dose-dependently to stimulate luteinizing hormone (LH) release in prepubertal female rats. Incubation of hypothalami in vitro showed that this effect was due to a Mn-induced stimulation of luteinizing hormone releasing hormone (LHRH). Further demonstration that this is a hypothalamic site of action was shown by in vivo blockade of LHRH receptors and lack of a direct pituitary action of Mn to stimulate LH in vitro. To assess potential short-term effects, animals were supplemented with MnCl(2) (10 mg/kg) by gastric gavage from day 12 until day 29, or, in other animals, until vaginal opening (VO). Mn caused elevated serum levels of LH, follicle stimulating hormone, and estradiol, and it initiated a moderate but significant advancement in age at VO. Our results are the first to show that Mn can stimulate specific puberty-related hormones and suggest that it may facilitate the normal onset of puberty. They also suggest that Mn may contribute to precocious puberty if an individual is exposed to elevated levels of Mn too early in development.  相似文献   

9.
Thiazole-Zn is a newly chinese-created systemic fungicide, and belongs to the sort of thiadiazole compounds, some of which have been found to be thyroid disrupters. To determine the probable adverse effects of thiazole-Zn on thyroid gland and development function, the rodent 20-day Pubertal Female Assay in this study was used. Postnatal days (PND) 22-old Sprague–Dawley rats were administered with thiazole-Zn daily by oral gavage at doses 0, 40, 100, 200 mg/kg/day for 20 days. The thyroid endpoints and development endpoints were assessed. The results indicated that serum TT4 and TSH levels were significantly increased at all concentrations, serum TT3 levels were significantly reduced only at 40 mg/kg thiazole-Zn, but had no difference from controls at the other doses. Thyroid histology was significantly altered at all doses with a clear dose-dependent hypertrophy and hyperplasia of thyroid cell. No histological changes were observed in any of the other observed organs. In addition, this study also found that ovarian weights were significantly decreased, but age and weight at vaginal opening (VO), serum E2 levels were unaffected in all treatment groups. These results demonstrate that thiazole-Zn is likely a thyroid disrupter, but did not demonstrate that it has estrogenic/anti-estrogenic activity.  相似文献   

10.
Atrazine (ATR) is an herbicide that has been shown to have adverse reproductive effects including alterations in levels of pituitary hormones such as prolactin (prl) and luteinizing hormone (LH) in female LE rats when administered at doses of 200 mg/kg/day for 1 and 3 days. Because the action of prl in promotion of progesterone secretion is essential for the initiation of pregnancy in rats, this study was designed to examine the effect of exposure to ATR during early pregnancy on implantation and short-term pregnancy maintenance. Rats were divided into two groups representing periods of dosing with ATR prior to the diurnal or nocturnal surges of prl. Within each group, four groups consisting of four strains of rats [Holtzman (HLZ); Sprague Dawley (SD); Long Evans (LE); Fischer 344 (F344)] were each further subdivided into four ATR dosages. Rats were dosed by gavage with 0, 50, 100, or 200 mg/kg/day ATR on days 1-8 of pregnancy (day 0 = sperm +). All animals were necropsied on day 8 or 9 of pregnancy. The 200 mg/kg dose of ATR reduced body weight gain in all but one group. Two groups of animals dosed at 100 and 200 mg/kg/day in the nocturnal dosing period showed an increase in percent preimplantation loss, and both of these were F344 rats. HLZ rats were the only strain to show a significant level of postimplantation loss and a decrease in serum progesterone at 200 mg/kg/day both following diurnal and nocturnal dosing. Doses of 100 mg/kg/day also produced postimplantation loss following diurnal and nocturnal dosing, but progesterone levels were decreased only after nocturnal dosing. Alterations in serum LH were seen in several groups. Serum estradiol was significantly increased only in SD rats dosed at the diurnal interval with 200 mg/kg ATR. We conclude that F344 rats are most susceptible to preimplantation effects of ATR and that HLZ rats appear most sensitive to the postimplantation effects of the chemical. LE and SD rats were least sensitive to effects of ATR during very early pregnancy.  相似文献   

11.
No information exists on reproductive/developmental effects in mice exposed to dietary 17beta-estradiol (E2) over multiple generations. Therefore, under OECD Test Guideline 416 with enhancements, CD-1 mice (F0 generation, 25 mice/sex/group) were exposed to dietary E2 at 0, 0.001, 0.005, 0.05, 0.15, or 0.5 ppm ( approximately 0, 0.2, 1, 10, 30, or 100 mug E2/kg body weight/day) for 8 weeks prebreed, 2 weeks mating, approximately 3 weeks gestation, and 3 weeks lactation. At weaning, selected F1 offspring (F1 parents; 25/sex/group) and extra retained F1 males (one per litter) were exposed to the same dietary concentrations and durations as the F0 generation; study termination occurred at F2 weaning; F1/F2 weanlings (up to three per sex per litter) were necropsied with organs weighed. At 0.5 ppm, effects were increased F1/F2 perinatal loss, prolonged F0/F1 gestational length, reduced numbers of F2 (but not F1) litters/group, reduced F1/F2 litter sizes, accelerated vaginal patency (VP) and delayed preputial separation (PPS), increased uterus + cervix + vagina weights (UCVW) in F0/F1 adults and F1/F2 weanlings, and decreased testes and epididymides weights (TEW) in F1/F2 weanlings. At 0.15 ppm, effects were increased UCVW in F0/F1 adults and F1/F2 weanlings, accelerated VP, delayed PPS, and reduced TEW in F1/F2 weanlings. At 0.05 ppm, UCVW were increased in F1/F2 weanlings, and PPS was delayed only in extra retained F1 males. There were no biologically significant or treatment-related effects on F0/F1 parental body weights, feed consumption, or clinical observations, or on F0/F1 estrous cyclicity, F0/F1 andrology, or F1/F2 anogenital distance at any dose. The no observable effect level was 0.005 ppm E2 ( approximately 1 mug/kg/day). Therefore, the mouse model is sensitive to E2 by oral administration, with effects on reproductive development at doses of 10- 100 mug/kg/day.  相似文献   

12.
The mammalian hazard assessment of the herbicide atrazine (ATR) has focused on the induction of mammary tumors and accelerated reproductive aging of adult rats, and the relationship of these effects to the inhibition of leutinizing hormone (LH) release from the pituitary, an effect itself caused by inhibition of GnRH signaling by the adult rat hypothalamus. In earlier studies, Laws et al. (Toxicol. Sci., 58, 366-376, 2000) demonstrated a delay in female rat sexual maturation induced by ATR, effects that could equally have been caused by inhibition of hypothalamic GnRH release. The present studies were designed to compare the doses that interfere with GnRH signaling seen in previous studies in adult Sprague-Dawley (SD) rats (LH surge suppression) with doses that impair GnRH signaling in peripubertal rats, as indicated by delayed sexual maturation. The studies evaluated the effects of ATR treatment on the timing of uterine growth and vaginal opening (VO) in peripubertal female Wistar (Alderley Park, AP) and SD rats. Doses of 10, 30, and 100 mg/kg ATR were administered daily from postnatal day (pnd) 21 to up to pnd 46. Determinations of uterine weight were made at pnd 30, 33, 43 (AP), and 46 (SD) and the timing of VO was also assessed in the last two of these experiments. The centrally acting GnRH antagonist Antarelix (ANT) was used as a positive control agent as it has previously been shown to prevent uterine growth and to delay VO in peripubertal AP rats. Uterine growth and VO were completely prevented in AP rats exposed to ANT. Uterine growth was delayed at pnd 30 and 33 in AP rats exposed to 100 mg/kg ATR, but this growth inhibition had been overcome by pnd 43. VO was significantly delayed in AP rats for the 100 mg/kg ATR dose. By pnd 46, VO was significantly delayed in SD rats exposed to both 30 and 100 mg/kg ATR, but uterine weights were unaffected by that time (as for AP rats). It is concluded that the no-effect level for the effects of ATR on sexually immature rats (10 mg/kg in SD; 30 mg/kg AP) is approximately the same as reported previously by Laws et al. in peripubertal Wistar rats (25 mg/kg). However, the no-effect level in peripubertal female SD rats is nearly an order of magnitude greater than the no-observed effect level observed in female SD rats fed ATR for 6 months (1.8 mg/kg) where LH suppression was used as an indicator of effect on the pituitary/hypothalamic axis (USEPA, Atrazine-DACT Fourth Report of the Hazard Identification and Review Committee, April 5, 2002). These results support the conclusion that the pituitary/hypothalamic axis in peripubertal female SD rats is less sensitive than that in adult female SD rats.  相似文献   

13.
Atrazine (ATR) is an herbicide that exerts negative reproductive effects. We examined the effects of vehicle or ATR (1, 5, 20 and 100 mg/kg-d), administered to Sprague-Dawley rats on gestational days 14-21, once daily or divided into two doses per day, on female offspring reproductive indices. Offspring body weights at birth were reduced and mortality increased in the 100 mg/kg-d group shortly after birth; by PND 21 there were no significant effects. Vaginal opening was delayed in this group, indicating delayed puberty. No significant differences in mammary gland development were apparent at PND 45, or estrous cyclicity through PND 272. There were no differences between dosing regimens. Lower ATR doses (0-20 mg/kg-d) showed few effects in females prenatally exposed to ATR, while the high dose (100 mg/kg-d) reduced offspring body weight and delayed vaginal opening. Nonetheless, it is unlikely that environmental exposure comparable to the high dose would be encountered.  相似文献   

14.
We evaluated the effects of inhaled di(2-ethylhexyl)phthalate (DEHP) on the onset of puberty and on postpubertal reproductive functions in prepubertal female rats. DEHP was administered by inhalation at doses of 0, 5, and 25 mg/m3 to groups of female rats for 6 h/day, 5 contiguous days/week from postnatal days (PNDs) 22 to 41 and to PND 84. The onset of puberty was determined by daily examination for vaginal opening (VO) and first estrous cycle. Reproductive function was evaluated by observing estrous cyclicity from PNDs 49 to 84. Upon completion of exposure, the rats were sacrificed at PND 42 and PNDs 85-88 during the diestrous stage. DEHP exposure advanced the age of VO and first estrous cycle, and serum cholesterol, luteinizing hormone, and estradiol levels were significantly elevated in the 25-mg/m3 DEHP group. Irregular estrous cycles were observed more frequently in DEHP-exposed rats, and serum cholesterol decreased in DEHP-exposed rats in adulthood; RT-PCR showed that the expression of aromatase mRNA, encoding a rate-limiting enzyme that catalyzes the conversion of testosterone to estradiol, was elevated in the 25-mg/m3 DEHP group. These data suggest that inhaled DEHP may advance the onset of puberty and alter postpubertal reproductive functions.  相似文献   

15.
High oral doses of atrazine (ATRA) disrupt normal neuroendocrine function, resulting in suppression of the luteinizing hormone (LH) surge in adult, ovariectomized (OVX) estrogen-primed female rats. While the mechanism by which ATRA inhibits LH secretion is not known, current data indicate that ATRA does have anti-estrogenic properties in vitro and in vivo. In the body, ATRA is rapidly converted to diaminochlorotriazine (DACT). The present study was conducted to investigate the effects of ATRA and DACT on the estradiol benzoate (EB)/progesterone (P) induced LH surge and to determine if such changes correlate with impaired estrogen receptor (ER) function. ATRA, administered by gavage for five consecutive days to adult OVX, female Sprague-Dawley rats, caused a dose-dependent suppression of the EB/P induced LH surge. Although to a lesser degree than ATRA, DACT significantly suppressed total plasma LH and peak LH surge levels in EB/P primed animals by 60 and 58%, respectively. DACT treatment also decreased release of LH from the pituitary in response to exogenous gonadotropin releasing hormone (GnRH) by 47% compared to control. Total plasma LH secretion was reduced by 37% compared to control, suggesting that in addition to potential hypothalamic dysfunction, pituitary function is altered. To further investigate the mechanism by which hypothalamic function might be altered, potential anti-estrogenicity of ATRA and DACT were assessed by evaluating ER function treated rats. Using an in vitro receptor binding assay, ATRA, but not DACT, inhibited binding of [(3)H]-estradiol to ER. In contrast, ATRA, administered to female rats under dosing conditions which suppressed the LH surge, neither changed the levels of unoccupied ER nor altered the estrogen induced up-regulation of progesterone receptor mRNA. Collectively, these results indicate that although ATRA is capable of binding ER in vitro, the suppression of LH after treatment with high doses of ATRA is not due to alterations of hypothalamic ER function.  相似文献   

16.
17.
Soy products containing phytoestrogens have received much attention as dietary components to promote better health. Daidzein, an isoflavone and phytoestrogen component of soy, was investigated for its potential to alter fertility and cause developmental toxicity to the reproductive tract in female rats, for chemoprevention to the mammary gland, and to study its bioavailability. Diets containing 0 mg, 250 mg (low dose), and 1000 mg (high dose) daidzein/kg feed were fed to virgin female rats, starting 2 weeks prior to breeding and continued until the offspring were 50 days postpartum. The serum daidzein concentrations in adult female rats fed the low and high daidzein-containing diets were determined to be 6- and 13-fold higher than serum daidzein concentrations of Asians eating a traditional diet high in soy. Both daidzein doses had no significant effect on fertility, numbers of male and female offspring, and anogenital distances. The high, but not the low, daidzein dose resulted in reduced body weight, a fact that may be explained by reduced feed consumption. Circulating progesterone, but not estrogen, levels were statistically reduced with the high, but not low daidzein-containing diet. Both daidzein doses resulted in slight, but not significant, decreases in ovarian and uterine weights, and mammary gland size. Histomorphological analysis of the reproductive tracts of female offspring 50 days of age exposed perinatally to daidzein did not reveal any pathology in the vaginal, uterine, ovarian, and mammary tissues. Perinatal exposure of female offspring to 250 mg daidzein/kg diet did not alter mammary gland development or ontogeny of chemically induced mammary tumors in rats treated with dimethylbenz(a)anthracene on day 50. With the low dietary daidzein dose, total equol (major metabolite) and daidzein concentrations in the blood of pregnant females, 7-day-old, 21-day-old, and 50-day-old female offspring were 529 and 303 nM, 163 and 982 nM, 1188 and 1359 nM, and 3826 and 630 nM, respectively. With the high daidzein diet, equol and daidzein concentrations in the blood of pregnant females, 7-day-old, 21-day-old, and 50-day-old female offspring were 4462 and 407 nM, 1013 and 3841 nM, 6472 and 3308 nM, and 7228 and 1430 nM, respectively. Eighty-nine to 99% of daidzein and equol were in the conjugated form. In the 21-day-old postconceptus exposed to the low and high daidzein diets, total equol and daidzein blood concentrations were 59 and 34 nM, and 358 and 132 nM, respectively. Virtually all of the daidzein in the milk of 7-day-old rats exposed to the low and high daidzein-containing diet were unconjugated, 2.6 microM and 7.3 microM, respectively. Total milk equol concentrations were 654 nM and 3.8 microM, of which 94% and 44% were unconjugated. In mammary glands of 7-day-old offspring exposed to 250 mg daidzein/kg diet, total daidzein concentrations were 407 nM (98% aglycone). We conclude that supraphysiological concentrations of daidzein administered via the diet did not cause significant toxicity to the female reproductive tract or provide a protective effect against chemically induced mammary cancer.  相似文献   

18.
Previous studies have revealed that one of the major metabolites of PCBs detected in human blood, 4-OH-2,3,3',4',5-pentaCB (4-OH-CB107), accumulated in fetal liver, brain, and plasma and reduced maternal and fetal thyroid hormone levels after prenatal exposure to pregnant rats from gestational days (GD) 10-16. In the present study, the effects of 4-OH-CB-107 on developmental landmarks, steroid hormone levels, and estrous cyclicity of rat offspring after in utero exposure to 4-OH-CB107 was investigated. Pregnant rats were exposed to 0, 0.5, and 5.0 mg 4-OH-CB107 per kg bw from GD 10 to GD 16. Another group of rats was exposed to Aroclor 1254 (25 mg/kg bw) to study the differences between effects caused by parent PCB congeners and the 4-OH-CB107 alone. A significant, dose-dependent prolongation of the estrous cycle was observed in 75% and 82% of female offspring exposed to 0.5 and 5.0 mg 4-OH-PCB107, respectively, compared to 64% of Aroclor 1254 (25 mg/kg) exposed offspring. The diestrous stage of the estrous cycle was prolonged, resembling a state of pseudopregnancy, which might reflect early signs of reproductive senescence. Plasma estradiol concentrations in female rat offspring were significantly increased (50%) in the proestrous stage after exposure to 5 mg 4-OH-CB107 per kg bw. No effects on estradiol levels were observed in Aroclor 1254 treated animals. These results indicate that in utero exposure to 4-OH-CB107 leads to endocrine-disrupting effects, especially in female offspring. The possible impact on neurobehavior following exposure to 4-OH-CB107 will be reported elsewhere.  相似文献   

19.
Chlormequat Chloride (CCC) is a plant growth regulator that is widely applied in agriculture. Previous studies have shown that long-term exposure of CCC could decrease body weight in animals. However, the underlying mechanisms have not been studied. In this study, CCC was administered to rats daily by gavage on postnatal days 23–60 at doses of 0, 75, 150 and 300 mg/kg bw/d. The results showed that body weight and the length of the right femur were significantly decreased in the 300 mg/kg bw/d group. Histological analysis of proximal growth plates of the right femurs showed narrowed proliferative zones and hypertrophic zones in CCC-treated groups. The mRNA expression of growth hormone, growth hormone receptor and insulin like growth factor 1 were decreased in the CCC-treated group. The results indicated that CCC may affect the expression of growth hormone and insulin-like growth factor 1 and subsequently cause a decrease in body weight and bone length.  相似文献   

20.
This study determined the effects of feed restriction (FR) during in utero and postnatal life on standard reproductive toxicity and developmental immunotoxicity end points. Groups of 26 time-mated CD rats were fed various amounts of Purina 5002 diet from gestation day 7 through lactation. Control rats were fed once per day in amounts based on historical control feed consumption data, while the amounts fed to the FR groups were reduced by 10% (10% FR), 30% (30% FR), or 50% (50% FR) relative to controls. Selected F1 weanlings were necropsied on postnatal day (PND) 22, assessed for immunotoxicity end points between PND 22 and 27 or PND 52 and 56, or maintained on FR through PND 70. Thereafter, half the remaining F1 rats in each group were fed ad lib (recovery subgroup), while the rest continued on FR. Both subgroups were necropsied at 21 weeks of age. In the 10% FR group, slight decreases in maternal body weight had no effect on F1 offspring body weights, but did decrease F1 liver weights. FR at the 30% level reduced maternal body weights by 10-20%, reduced F1 offspring body weights by as much as 21%, caused changes in numerous weanling organ weights, but did not affect reproductive or immune system function. Dams in the 50% FR group were 17-32% lighter than controls, resulting in F1 body weights that were 12-47% lower than controls. F1 estrous cycle length was increased, puberty was delayed by 6 days (males and females), and anogenital distance, epididymal sperm counts, and all organ weights were decreased in this group. Antibody responses were unaffected despite decreased spleen and thymus weights. Essentially all effects of feed restriction showed evidence of reversibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号