首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1. The objective of this study was to characterize the adenosine receptor mediating contraction in rat isolated colonic muscularis mucosae (RCMM). 2. Sequential additions of the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA; 0.01-10 microM) elicited reproducible, concentration-related contractions in RCMM. The effects of NECA were mimicked by the adenosine A1 receptor-selective agonists cyclopentyladenosine (CPA), R-phenylisopropyladenosine (R-PIA) and N-[1S, trans)2-hydroxycyclopentyl] adenosine (GR79236) and by S-PIA (the stereoisomer of R-PIA). The adenosine A2 agonists N-[(2-methylphenyl)methyl] adenosine (metrifudil) and 2-[p-(2-carboxyethyl)phenethylamine]-5'-N-ethylcarboxamidoadenosine (CGS21680) also produced contractions in RCMM but were 54 and 165 times less potent respectively than NECA. The rank order of agonist potency for contraction of RCMM was CPA > or = GR79236 = R-PIA > or = NECA > > S-PIA = metrifudil > CGS21680, which is identical to that reported for the inhibition of spontaneous rate in rat isolated right atria and inhibition of lipolysis in rat isolated adipocytes by these same agonists. 3. R-PIA, S-PIA and metrifudil behaved as partial agonists in RCMM. 4. The adenosine A1 receptor-selective antagonist 8-cyclopentyl-1,3- dipropylxanthine (DPCPX) inhibited the contractions produced by all the adenosine agonists tested, with pKB values between 9.2 and 9.5. The non-selective adenosine antagonist 8-phenyltheophylline (8-PT) antagonized the effects of NECA but also markedly potentiated (by 93.0 +/- 10.2% at 3 microM) the maximum contractile response to NECA in RCMM. Neither 8-PT (3 microM) nor DPCPX (0.1 microM) had any effect on the contractions produced by carbachol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We describe the effects of 5'-N-ethylcarboxamidoadenosine (NECA), a mixed A2a/A2b adenosine receptor agonist and 2-[p-(carboxyethyl)-phenylethylamino]-5'-N-ethylcarboxamidoaden osin e (CGS 21680), a selective A2a agonist, on cyclic AMP and N-acetylserotonin synthesis in rat pineal gland. NECA, 1 and 10 microM, increased cyclic AMP by 5- and 25-fold and N-acetylserotonin by 40- and 60-fold respectively, whereas CGS 21680 at the same concentrations was ineffective. These results argue for the presence of adenosine A2b receptors in rat pinealocytes.  相似文献   

3.
CGS 21680 (2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethyolcarboxamidoa denosine) is an adenosine agonist that has been reported recently to bind selectively to adenosine A2 receptors in rat brain. This adenosine agonist, and the parent compound NECA (5'-N-ethylcarboxamidoadenosine), were found to be potent vasorelaxants of prostaglandin F2 alpha (PGF2 alpha) precontracted porcine coronary smooth muscle with EC50s of 4.5 and 9.7 nM, respectively. Schild analysis of the inhibition of CGS 21680, NECA and 2-chloroadenosine induced relaxation of the porcine coronary artery by CGS 15943 (9-chloro-2-(2-furanyl)[1,2,4]triazolo[1,5-C]quinazolin-5-amine), an A2 receptor antagonist, yielded identical pA2 values for the antagonist (approximately 9.3). This indicates that the same receptor mediates the effects of these three adenosine agonists. NECA and CGS 21680 were equipotent in most vascular preparations except in the canine coronary artery. Porcine coronary arterial rings contracted with PGF2 alpha were relaxed by NECA or CGS 21680 as well as by nitroprusside; those contracted with KCl (40 mM) were relaxed only by nitroprusside. In rabbit aorta, contractions induced by phenylephrine or PGF2 alpha were inhibited by nitroprusside but not by NECA or CGS 21680. Thus, the adenosine A2 receptor agonists, NECA and CGS 21680, are potent vasorelaxants that display regional vascular and species variations that differ from those of nitroprusside.  相似文献   

4.
1. We have assessed the effects of adenosine receptor agonists and antagonists on collagen-induced 5-hydroxytryptamine (5-HT) release and cyclic AMP generation in human platelets. 2. 5'-N-ethylcarboxamidoadenosine (NECA) and CGS 21680 elicited accumulations of cyclic AMP with mean EC50 values of 2678 and 980 nM, respectively. The maximal response to CGS 21680 was approximately half that of the response to 10 microM NECA. 3. NECA and CGS 21680 inhibited collagen-induced 5-hydroxytryptamine release with mean EC50 values of 960 and 210 nM, respectively. The maximal response to CGS 21680 was approximately 25% of the response to 10 microM NECA. 4. The A1/A2a-selective adenosine receptor antagonist PD 115,199 was more potent as an inhibitor of NECA-elicited responses than the A1-selective antagonist DPCPX with calculated Ki values of 22-32 nM and > 10 microM, respectively. 5. In the presence of a cyclic AMP phosphodiesterase inhibitor, the effects of CGS 21680 on cyclic AMP accumulation and 5-HT release were enhanced to levels similar to those elicited by 10 microM NECA. In the absence of phosphodiesterase inhibition, CGS 21680 did not antagonise the effects of NECA. Furthermore, endogenous adenosine did not contribute to the effects of CGS 21680 when phosphodiesterase was inhibited. 6. We conclude that an A2a adenosine receptor appears to be involved in the NECA-elicited increases in cyclic AMP levels and inhibition of 5-HT release in human platelets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1. Adenosine receptor agonists were evaluated for their activity at the putative adenosine A3 receptor which mediates a 'xanthine-resistant' hypotensive response in the anaesthetized rat. The compounds tested were: the A1/A3 receptor agonist, N-[2-(4-aminophenyl)ethyl]adenosine (APNEA), the non-selective adenosine receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA), the adenosine A1 receptor-selective agonists, N-[(1S,trans)-2-hydroxycyclopentyl]adenosine (GR79236) and N6-cyclopentyl adenosine (CPA), the A2a receptor-selective agonists, 2-[[2-[4-(2-carboxyethyl) phenyl] ethyl] amino]-N- ethylcarboxamidoadenosine (CGS21680) and 2-phenylaminoadenosine (CV1808), and the moderately A2b selective agonist, N-[(2-methylphenyl)methyl]adenosine (metrifudil). 2. In confirmation of literature findings, APNEA (1-1000 nmol kg-1) induced hypotension and bradycardia; the hypotension was not blocked by pretreatment with the xanthine antagonist, 8-P-sulphophenyltheophylline (8-sPT; 40 mg kg-1, i.v.), whereas the bradycardia was attenuated. The non-xanthine antagonist, 9-fluoro-2-(2-furyl)-5,6-dihydro [1,2,4]triazolo[1,5-c]- quinazin-5-imine (CGS15943A; 3 mg kg-1 i.v.), also attenuated the bradycardia without affecting the hypotension. 3. The adenosine A1 receptor-selective agonists, GR79236 and CPA, both produced dose-dependent falls in blood pressure and heart rate which were antagonized by 8-sPT (40 mg kg-1) and CGS15943A (3 mg kg-1). 4. The adenosine A2a receptor-selective agonists, CGS21680 and CV1808, produced only a hypotensive response which was antagonized by 8-sPT (40 mg kg-1) and to a much greater extent by CGS15943A (3 mg kg-1), consistent with the response being mediated solely by A2a receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. The effects of adenosine receptor agonists on cyclic nucleotides accumulation were investigated in adult guinea-pig cerebellar slices by use of radioactive precursors. 2. Adenosine elicited a rapid and maintained increase in cyclic AMP, that was fully reversed upon addition of adenosine deaminase. Adenosine analogues stimulated cyclic AMP generation up to 40 fold with the rank order of potency: 5'-N-ethylcarboxamidoadenosine (0.6 microM) > 2-chloroadenosine (6 microM) > adenosine (13 microM). CGS 21680 (10 microM) elicited only a small stimulation (1.2 fold). 3. The cyclic AMP response to NECA was reversed by the 1,3-dipropylxanthine-based adenosine receptor antagonists 8-[4-[[[[(2-aminoethyl)amino]amino]carbonyl]methyl]oxy]- phenyl]-1,3-dipropylxanthine (XAC), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and N-[2-(dimethylamino)ethyl]N-methyl-4-(1,3-dipropylxanthine)benzene sulphonamide (PD 115,199) with estimated apparent inhibition constants of 15, 81 and 117 nM, respectively. 4. Pretreatment with adenosine also potentiated the cyclic GMP response to sodium nitroprusside, abolishing the decline in [3H]-cyclic GMP observed with sodium nitroprusside alone, and allowing [3H]-cyclic GMP levels to be maintained for at least an additional 10 min. This potentiation was fully reversed by adenosine deaminase. 5. Adenosine analogues potentiated the sodium nitroprusside-elicited cyclic GMP generation with the rank order of potency: 5'-N-ethylcarboxamidoadenosine (0.7 microM) > 2-chloroadenosine (6 microM) > adenosine (42 microM). 6. NECA potentiation of cyclic GMP formation was reversed by the antagonists XAC, DPCPX and PD 115,199 with apparent inhibition constants of 17, 102 and 242 nM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
There is increasing evidence to suggest that adenosine receptors can modulate the function of cells involved in the immune system. For example, human dendritic cells derived from blood monocytes have recently been described to express functional adenosine A1, A2A and A3 receptors. Therefore, in the present study, we have investigated whether the recently established murine dendritic cell line XS-106 expresses functional adenosine receptors. The selective adenosine A3 receptor agonist 1-[2-chloro-6[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-D-ribofuranuronamide (2-Cl-IB-MECA) inhibited forskolin-mediated [3H]cyclic AMP accumulation and stimulated concentration-dependent increases in p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation. The selective adenosine A2A receptor agonist 4-[2-[[-6-amino-9-(N-ethyl-beta-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzene-propanoic acid (CGS 21680) stimulated a robust increase in [3H]cyclic AMP accumulation and p42/p44 MAPK phosphorylation. In contrast, the selective adenosine A1 receptor agonist CPA (N6-cyclopentyladenosine) did not inhibit forskolin-mediated [3H]cyclic AMP accumulation or stimulate increases in p42/p44 MAPK phosphorylation. These observations suggest that XS-106 cells express functional adenosine A2A and A3 receptors. The non-selective adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) inhibited lipopolysaccharide-induced tumour necrosis factor-alpha (TNF-alpha) release from XS-106 cells in a concentration-dependent fashion. Furthermore, treatment with Cl-IB-MECA (1 microM) or CGS 21680 (1 microM) alone produced a partial inhibition of lipopolysaccharide-induced TNF-alpha release (when compared to NECA), whereas a combination of both agonists resulted in the inhibition of TNF-alpha release comparable to that observed with NECA alone. Treatment of cells with the adenosine A2A receptor selective antagonists 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5ylamino]ethyl)phenol (ZM 241385; 100 nM) and 5-amino-2-(2-furyl)-7-phenylethyl-pyrazolo[4,3-e]-1,2,4-triazolo[1,5c]pyrimidine (SCH 58261; 100 nM) and the adenosine A3 receptor selective antagonist N-[9-chloro-2-(2-furanyl)[1,2,4]-triazolo[1,5-c]quinazolin-5-benzeneacetamide (MRS 1220; 100 nM) partially blocked the inhibitory effects of NECA on lipopolysaccharide-induced TNF-alpha release. Combined addition of MRS 1220 and SCH 58261 completely blocked the inhibitory effects of NECA on lipopolysaccharide-induced TNF-alpha release. In conclusion, we have shown that the mouse dendritic cell line XS-106 expresses functional adenosine A2A and A3 receptors, which are capable of modulating TNF-alpha release.  相似文献   

8.
The effects of A(2) adenosine receptor agonists upon phenylephrine-stimulated contractility in preparations of rat epididymis were investigated. Preparations responded to phenylephrine (3 microM) with submaximal contractions. Adenosine and the stable agonists 5'-N-ethylcarboxamido-adenosine (NECA) and 2-p-(2-carboxyethyl) phenethylamino-N-ethylcarboxamide adenosine (CGS 21680) inhibited phenylephrine-induced contractions (potency order, NECA>CGS 21680>adenosine). The A(2A) receptor-selective antagonist, 4-(2-[7-amino-2-(2-furyl)[1,2,4]-triazolo-[2,3-a][1,3, 5]triazin-5-ylamino]ethyl)phenol (ZM 241385, 30 microM) blocked the response to NECA. The A(2A) adenosine receptor-mediated inhibitory responses to NECA were reduced by the K(ATP) channel blocker, glibenclamide (3 microM) and abolished by charybdotoxin (100 nM). The diterpene forskolin elicited a concentration-dependent inhibition of phenylephrine (3 microM)-stimulated contractility (by 62+/-8% of control at 100 microM). Charybdotoxin (100 nM), but not glibenclamide (3 microM) blocked the forskolin (10 microM) inhibition of phenylephrine-stimulated contractility. NECA elicited concentration-dependent increases in both cyclic AMP and cyclic GMP accumulation which were antagonized by ZM 241385 (30 nM). The protein kinase G activator, APT-cyclic GMP (8-(-Aminophenylthio) guanosine-3',5'-cyclic monophosphate) and the protein kinase A activator (Sp)-8-bromoadenosine-3',5'-cyclic monophosphorothioate (Sp-8-Br-cyclic AMPs), inhibited phenylephrine (3 microM) induced contractions of rat epididymis. Glibenclamide (3 microM), but not charybdotoxin (100 nM), inhibited ATP-cyclic GMP responses. Charybdotoxin (100 nM), but not glibenclamide (3 microM) reduced the effect of Sp-8-Br-cyclic AMPs. This study shows that the A(2A) adenosine receptor inhibition of epididymal contractility may be mediated through the activation of charybdotoxin- and glibenclamide-sensitive potassium channels and may involve the activation of both protein kinases A and G.  相似文献   

9.
1. The effects of adenosine receptor agonists and antagonists on the accumulation of cyclic AMP have been investigated in primary cultures of rat astrocytes. 2. Adenosine A2-receptor stimulation caused a concentration-dependent increase in the accumulation of [3H]-cyclic AMP in cells prelabelled with [3H]-adenine. The rank order of agonist potencies was 5'-N-ethylcarboxamidoadenosine (NECA; EC50 = 1 microM) > adenosine (EC50 = 5 microM) > 2-chloroadenosine (EC50 = 20 microM) >> CGS 21680 (EC50 > 10 microM). The presence of 0.5 microM dipyridamole, an adenosine uptake blocker, had no effect on the potency of adenosine. 3. The response to 10 microM NECA was antagonized in a concentration-dependent manner by the non-selective adenosine receptor antagonists, xanthine amine congener (apparent KD = 12 nM), PD 115,199 (apparent KD = 134 nM) and 8-phenyltheophylline (apparent KD = 126 nM). However, the A1-receptor-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine, had no significant effect on the responses to NECA or 2-chloroadenosine at concentrations up to 1 microM. 4. Stimulation of A1-receptors with the selective agonist, N6-cyclopentyladenosine, did not alter the basal accumulation of [3H]-cyclic AMP but inhibited a forskolin-mediated elevation of [3H]-cyclic AMP accumulation by a maximal value of 42%. This inhibition was fully reversed in the presence of 0.1 microM, 8-cyclopentyl-1,3-dipropylxanthine. 5. The time course for NECA-mediated [3H]-cyclic AMP accumulation was investigated. The results suggest that there is a substantial efflux of cyclic AMP from the cells in addition to the rapid and sustained elevation of intracellular cyclic AMP (5 fold over basal) which was also observed. 6. These data indicate that rat astrocytes in primary culture express an A2B-adenosine receptor coupled positively to adenylyl cyclase. Furthermore, the presence of A1-receptors negatively coupled to adenylyl cyclase appears to have no significant effect on the A2B-receptor-mediated cyclic AMP responses to NECA and 2-chloroadenosine.  相似文献   

10.
1. The effects of A1 and A2a adenosine receptor agonists on the veratridine-evoked release of [3H]-acetylcholine ([3H]-ACh) from rat striatal synaptosomes was investigated by use of the A1-selective agonist, R-PIA and the 185 fold selective A2a agonist, CGS 21680. The effects of NECA, which is equipotent at both receptor subtypes, were also studied. 2. The evoked release of [3H]-ACh was significantly enhanced by the A2a agonist CGS 21680 but decreased by the A1 agonist, R-PIA. The effects of NECA were dependent on the concentration used, with high concentrations inhibiting and low concentrations enhancing the evoked release of [3H]-ACh. In the absence of any antagonists, the rank order of potency for these three drugs on increasing [3H]-ACh release was CGS 21680 > NECA > R-PIA. 3. The stimulatory effects of CGS 21680 and low NECA concentrations on evoked [3H]-ACh release were antagonized by the A2a receptor antagonists, CP66,713 (300 nM) and CGS 15943A (50 nM) whilst the inhibitory effects of R-PIA were reversed by the selective A1 antagonist, DPCPX (4 nM). In the presence of DPCPX, NECA greatly enhanced the evoked release of [3H]-ACh at all concentrations studied when, during such A1 receptor blockade, the rank order of potency was NECA >> CGS 21680 > R-PIA. 4. These results demonstrate that both A1 and A2a adenosine receptors modulate the veratridine-evoked release of [3H]-ACh from rat striatal synaptosomes.  相似文献   

11.
1. P1-purinoceptors mediating relaxation of the rat duodenum longitudinal muscle and contraction of the rat duodenum muscularis mucosae were characterized by the use of adenosine and its analogues, 5'-N-ethylcarboxamidoadenosine (NECA), N6-cyclopentyl-adenosine (CPA), N6-(phenylisopropyl)adenosine (R-PIA), 2-chloroadenosine (2-CADO) and 2-p-((carboxyethyl)phenethylamino)-5'-carboxamidoadenosine (CGS21680), as well as the P1-purinoceptor antagonist 8-phenyltheophylline (8-PT) and the A1-selective antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). 2. In the rat duodenum longitudinal muscle, the order of potency of the adenosine agonists was CPA > NECA > adenosine > CGS21680. DPCPX antagonized responses to CPA and NECA at a concentration of 1 nM suggesting that they are acting at A1 receptors. A Schild plot versus CPA gave a slope near to unity (slope = 0.955) and a pA2 of 9.8 confirming that CPA was acting via A1 receptors. Schild analysis for DPCPX versus NECA, however, gave a slope of 0.674 suggesting that NECA was acting on both A1 and A2 receptors. CGS21680, a selective A2a agonist, was much less potent than adenosine suggesting that the A2 receptors are of the A2b subtype. 3. In the rat duodenum muscularis mucosae, the order of potency of the adenosine agonists was NECA > or = R-PIA = CPA > 2-CADO > adenosine, and DPCPX antagonized responses to CPA and NECA at a concentration of 1 microM. CGS21680, at a concentration of 10 microM, had no effect on this tissue. This suggests the presence of A2 receptors in this tissue and that they are of the A2b subtype. 4. These results are in agreement with previous studies in the whole duodenum showing the presence of A1 and A2b receptors causing relaxation, and this shows that the longitudinal muscle dominates the response of the whole tissue. In addition, a contractile A2b receptor has been revealed on the muscularis mucosae, the first time this subtype has been reported to elicit an excitatory response in a smooth muscle preparation.  相似文献   

12.
1 The aim of this study was to characterize the adenosine receptor mediating vasodilation in the microvasculature of the hamster cheek pouch in vivo. A range of adenosine agonists was used including N6-cyclopentyladenosine (CPA) (A1 agonist), 5'-N-ethylcarboxamidoadenosine (NECA) (non-selective), 2-chloroadenosine (2CADO) (non-selective), 2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) (A2A agonist), N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IBMECA) (A3 agonist) and adenosine, as well as the adenosine antagonists 8-sulphophenyltheophylline (8-SPT) (A1/A2 antagonist), 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (A1 antagonist) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) (A2A antagonist). 2 All the adenosine analogues used induced vasodilation at concentrations between 10 nm and 1 microm, and the potency order was NECA > CGS 21680 > 2CADO > CPA=IBMECA > adenosine, indicating an action at A2A receptors. 8-SPT (50 microm) antagonized vasodilator responses to NECA with an apparent pKB of 5.4, consistent with an action at A1 or A2 receptors and confirming that A3 receptors are not involved in this response. 3 DPCPX (10 nm) had no effect on vasodilation evoked by NECA, suggesting that this response was not mediated via A1 receptors, while ZM 241385 (10 nm) antagonized dilator responses to NECA with an apparent pKB of 8.9 consistent with an action via A2A receptors. 4 Overall these results suggest that adenosine A2A receptors mediate vasodilation in the hamster cheek pouch in vivo.  相似文献   

13.
Binding assays and assays of activation of adenylate cyclase with the agonists 5'-N-ethylcarboxyamidoadenosine (NECA) and CGS21680 have been used to compare adenosine receptors in rat pheochromocytoma PC12 cells and in rat striatum. The [3H]NECA binding showed two components, whereas [3H]CGS21680 bound to one component in both tissues. The Kd value for the high affinity site labeled with [3H]NECA in PC12 cell membranes (2.3 nM) was lower than that in striatum (6.5 nM). The [3H]CGS21680 binding site showed a Kd value of 6.7 nM and 11.3 nM in PC12 cells and striatum, respectively. In the presence of GTP the KD values of [3H]NECA and [3H]CGS21680 for the high affinity site were increased severalfold, whereas the low affinity sites for [3H]NECA were no longer detected with filtration assays. A comparison of the ability of a series of agonists and antagonists to inhibit high affinity binding of [3H]NECA to A2 receptors in PC12 cell and striatal membranes indicated that agonists had higher affinities and antagonists had lower affinities in PC12 cells, compared with affinities in striatal membranes. Analysis of activation of adenylate cyclase in PC12 cell membranes suggested that the dose-dependent stimulation by NECA involved two components, whereas CGS21680 stimulated via one component. The maximal stimulation by NECA significantly exceeded that caused by CGS21680. In intact PC12 cells, NECA caused a greater accumulation of AMP than did CGS21680, as was the case in membranes. In striatal membranes, NECA and CGS21680 showed similar maximal stimulations of adenylate cyclase. Both NECA and CGS21680 were more potent in PC12 cell membranes than in striatal membranes, in agreement with binding data. However, in contrast to binding data, antagonists were not less potent versus stimulation of adenylate cyclase by NECA or CGS21680 in PC12 cell membranes, compared with striatal membranes. In toto, the results suggest that A2A receptors in striatum are virtually identical to the A2A receptors in PC12 cells. But, in addition to an A2A receptor, it appears that a lower affinity functional receptor, probably an A2B receptor, is present in PC12 cells and PC12 cell membranes, whereas such a functional low affinity receptor is not detectable in striatal membrane.  相似文献   

14.
1. The P1-purinoceptors mediating relaxation of the rat duodenum and inhibition of contraction of the rat urinary bladder were characterized by use of adenosine and its analogues 5'-N-ethylcarboxamidoadenosine (NECA), N6-cyclopentyladenosine (CPA) and 2-p-((carboxyethyl)phenethylamino)-5'- carboxamidoadenosine (CGS 21680), as well as the A1-selective antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). The stable analogue of adenosine 5'-triphosphate (ATP), adenylyl 5'-(beta,gamma-methylene)diphosphonate (AMPPCP), was also used as previous work had indicated that it has a direct action on some P1 receptors in addition to its P2-purinoceptor activity. 2. In the rat duodenum, the order of potency of the adenosine agonists was NECA greater than or equal to CPA greater than AMPPCP = adenosine greater than CGS 21680, and DPCPX antagonized CPA and AMPPCP at a concentration of 1 nM whereas equivalent antagonism of NECA and adenosine required a concentration of 1 microM. This suggests the presence of a mixture of A1 and A2 receptors in this tissue, with CPA and AMPPCP acting on the A1 and NECA and adenosine acting on the A2 receptors. 3. In the rat bladder, the order of potency of the adenosine agonists for inhibition of carbachol-induced contractions was NECA much greater than adenosine greater than CPA = CGS 21680, and a concentration of DPCPX of 1 microM was required to antagonize responses to NECA and adenosine. This suggests the presence of A2 receptors in this tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. Adenosine is a regulator of mesenteric vasodilation involved in auto-regulation and post-prandial hyperemia, but the adenosine receptor subtype involved in this relaxant effect is poorly characterized. We have now pharmacologically characterized this receptor in rabbit mesenteric arteries and investigated how this adenosine receptor response changes in portal hypertensive animals since the adenosine response is decreased. 2. The closest non-metabolisable adenosine analogue, 2-chloroadenosine (CADO), the mixed A(1)/A(2) receptor agonist, 5'-ethylcarboxamidoadenosine (NECA), and the selective A(2A) receptor agonist, 2-[4-(2-p-carbonyethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine (CGS 21680) (1 pM -- 1 mM) relaxed noradrenaline pre-contracted arteries with a rank order of potency of CGS 21680 (EC(50)=20 nM) > or = NECA (60 nM)>CADO (640 nM). 3. The selective A(2A) receptor antagonist, 4-(2-[7-amino-2-(2-furyl)-[1,2,4]-triazolo[2,3-a][1,3,5]-triazin-5-ylamino]ethyl)phenol (ZM 241385, 100 nM), shifted to the right the CADO concentration-response curve. 4. In portal hypertensive animals, there was mainly a decreased potency but also a decreased efficacy of all tested adenosine agonists compared to normal animals. Concomitantly, there was a decreased adenosine plasma level and a decreased binding density of [(3)H]-CGS 21680 and [(3)H]-ZM 241385 to mesenteric artery membranes from portal hypertensive compared to normal rabbits. 5. These results indicate that A(2A) receptor activation is required for the adenosine-induced mesenteric relaxation and that the decreased density of A(2A) receptors may contribute to the decreased relaxation induced by adenosine of mesenteric arteries in portal hypertensive animals.  相似文献   

16.
Adenosine receptors involved in the modulation of noradrenaline release from postganglionic sympathetic nerves in rat tail artery were characterized by studying the effects of adenosine-receptor agonists and antagonists on electrically evoked tritium overflow (100 pulses, 5 Hz) and by immunohistochemistry. The adenosine A1 receptor-selective agonist N6-cyclopentyladenosine (CPA; 1-100 nM) and the non-selective adenosine receptor agonist N-ethylcarboxamidoadenosine (NECA; 1-10 microM) decreased tritium overflow. These effects were blocked by the adenosine A1 receptor-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 30 nM). The adenosine A(2A) receptor-selective agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido adenosine (CGS 21680; 1-100 nM) enhanced tritium overflow, an effect blocked by the adenosine A(2A) receptor-selective antagonist 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261; 20 nM) but not changed by the adenosine A(2B) receptor-selective antagonist N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl) phenoxy]acetamide (MRS 1706; 20 nM). In the presence of DPCPX (30 nM), NECA enhanced tritium overflow, an effect abolished by MRS 1706 but not influenced by SCH 58261. Immunohistochemistry revealed immunoreactivity for all adenosine-receptor subtypes. Areas of co-localization were found for neurofilament with adenosine A1, A(2A) and A(2B) but not A3 receptors. In conclusion, the present study provides functional and morphological evidence for the occurrence of multiple adenosine receptor-mediated modulation of noradrenaline release in the rat tail: inhibition mediated by adenosine A1 receptors and facilitation mediated by both adenosine A(2A) and A(2B) receptors.  相似文献   

17.
We describe the effects of 5′-N-ethylcarboxamidoadenosine (NECA), a mixed A2a/A2b adenosine receptor agonist and 2-[p-(carboxyethyl)-phenylethylamino]-5′-N-ethylcarboxamidoadenosine (CGS 21680), a selective A2a agonist, on cyclic AMP and N-acetylserotonin synthesis in rat pineal gland. NECA, 1 and 10 μM, increased cyclic AMP by 5- and 25-fold and N-acetylserotonin by 40- and 60-fold respectively, whereas CGS 21680 at the same concentrations was ineffective. These results argue for the presence of adenosine A2b receptors in rat pinealocytes.  相似文献   

18.
Selective A2A agonists (CGS 21680 and DPMA) produce a moderate neuroprotector effect with respect to the complete global cerebral ischemia (GCI). At the same time, selective A2A antagonists 8-(3-chlorostyrylcaffeine (CSC) and ZM 241385 somewhat reduce the brain resistance to complete GCI, completely prevent the neuroprotector effect of CGS 21680, partly suppress the neuroprotector activity of adenosine and 5'-N-ethylcarboxamidoadenosine (NECA), and do not affect (CSC) or potentiate (ZM 241385) the neuroprotector effect of N6-cyclopentyladenosine. The A2A-receptors are probably mediating in the neuroprotector activity of CGS 21680 and participating in the natural brain stability with respect to complete GCI, as well as in the effects of NECA and adenosine.  相似文献   

19.
Coronary responses to adenosine agonists were assessed in perfused mouse and rat hearts. The roles of nitric oxide (NO) and ATP-dependent K(+) channels (K(ATP)) were studied in the mouse. Resting coronary resistance was lower in mouse vs rat, as was minimal resistance (2.2+/-0.1 vs 3.8+/-0.2 mmHg ml(-1) min(-1) g(-1)). Peak hyperaemic flow after 20 - 60 s occlusion was greater in mouse. Adenosine agonists induced coronary dilation in mouse, with pEC(50)s of 9.4+/-0.1 for 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethyl carboxamidoadenosine (CGS21680, A(2A)-selective agonist), 9.3+/-0.1 for 5'-N-ethylcarboxamidoadenosine (NECA, A(1)/A(2) agonist), 8.4+/-0.1 for 2-chloroadenosine (A(1)/A(2) agonist), 7.7+/-0.1 for N(6)-(R)-(phenylisopropyl)adenosine (R-PIA, A(1)/A(2B) selective), and 6.8+/-0.2 for adenosine. The potency order (CGS21680=NECA>2-chloroadenosine>R-PIA>adenosine) supports A(2A) adenosine receptor-mediated dilation in mouse coronary vessels. 0.2 - 2 microM of the A(2B)-selective antagonist alloxazine failed to alter CGS21680 or 2-chloroadenosine responses. pEC(50)s in rat were 6.7+/-0.2 for CGS21680, 7.3+/-0.1 for NECA, 7.6+/-0.1 for 2-chloroadenosine, 7.2+/-0.1 for R-PIA, and 6.2+/-0.1 for adenosine (2-chloroadenosine>NECA=R-PIA>CGS21680> adenosine), supporting an A(2B) adenosine receptor response. NO-synthase antagonism with 50 microM N(G)-nitro L-arginine (L-NOARG) increased resistance by approximately 25%, and inhibited responses to CGS21680 (pEC(50)=9.0+/-0.1), 2-chloroadenosine (pEC(50)=7.3+/-0.2) and endothelial-dependent ADP, but not sodium nitroprusside (SNP). K(ATP) channel blockade with 5 microM glibenclamide increased resistance by approximately 80% and inhibited responses to CGS21680 in control (pEC(50)=8.3+/-0.1) and L-NOARG-treated hearts (pEC(50)=7.3+/-0.1), and to 2-chloroadenosine in control (pEC(50)=6.7+/-0.1) and L-NOARG-treated hearts (pEC(50)=5.9+/-0.2). In summary, mouse coronary vessels are more sensitive to adenosine than rat vessels. A(2A) adenosine receptors mediate dilation in mouse coronary vessels vs A(2B) receptors in rat. Responses in the mouse involve a sensitive NO-dependent response and K(ATP)-dependent dilation.  相似文献   

20.
The hypothesis that the coronary vasodilator effects of adenosine receptor agonists are independent of the vascular endothelium or mediators derived therefrom was examined in guinea-pig isolated working hearts. Adenosine receptor agonists, 5'-(N-ethylcarboxamido)-adenosine (NECA; two-fold selective for A2 over A1 receptors), 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680; A2A selective), N6-cyclopentyl-adenosine (CPA; A1 selective) and N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; A3 selective), were infused (3 x 10(-7) M) after endothelium removal by passing oxygen through the coronary circulation. In spontaneously beating hearts, CGS21680 and NECA increased, while CPA decreased, coronary flow. NECA and CPA reduced heart rate, left ventricular pressure and aortic output. The nitric oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine (L-NOARG; 3 x 10(-5) M) abolished the vasodilatation by NECA but not CGS21680, indicating that nitric oxide (NO) of a non-endothelial source mediated the NECA response. Coronary vasodilatation by CGS21680 was inhibited bythe A2A receptor antagonist, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo [2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385). Indometacin (10(-6) M) attenuated the coronary vasodilatation to CGS21680, suggesting a partial role for cyclooxygenase products. IB-MECA had no effect, indicating no A3 receptor involvement. In paced working hearts, the responses were similar except CPA had no effect on coronary flow or aortic output and CGS21680 increased left ventricular pressure and the maximum rate of ventricular pressure rise. This study has demonstrated functionally effective removal of the endothelium by a novel method of passing oxygen through the coronary vasculature. A coronary vasodilator action of adenosine receptor agonists mediated via A2A receptors is endothelium- and NO-independent, but partially involves cyclooxygenase products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号