首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The incidence of diabetes is increasing at an alarming rate to the point where it is becoming an epidemic. An ageing population, sedentary lifestyle and an unhealthy diet are considered to have contributed toward this. What we must now consider is not only the burden of the disease but the complications that arise from diabetes, in particular kidney and heart disease. Foremost, more than half of the diabetic population will die from cardiovascular-related causes. Whilst diabetes is most often associated with hypertension, dyslipidaemia and obesity, these factors do not fully account for the increased burden of cardiovascular disease in people with diabetes. This strengthens the need for comprehensive studies investigating the underlying mechanisms mediating diabetic cardiovascular disease, and more specifically, diabetes-associated atherosclerosis. In addition to the recognised metabolic abnormalities associated with diabetes, upregulation of putative pathological pathways such as advanced glycation endproducts, renin-angiotensin system, oxidative stress and increased expression of growth factors and cytokines have been observed in the setting of diabetes. All of these have been shown to play a causal role in atherosclerotic plaque formation and thus may explain the increased risk of macrovascular complications in those patients with diabetes. In this review the effect of inhibiting the renin-angiotensin system with angiotensin converting enzyme inhibition and a comparison to angiotensin II receptor antagonism is discussed, with the results of clinical trails reflecting the more recently discovered, non-haemodynamic, proatherogenic actions of angiotensin II. The need for experimental models of diabetes-associated atherosclerosis will be covered, with particular emphasis given to the streptozotocin-diabetic apolipoprotein E knockout mouse. Finally, growth factors, including vascular endothelial growth factor and platelet-derived growth factor are discussed in detail.  相似文献   

2.
The AGE/RAGE axis in diabetes-accelerated atherosclerosis   总被引:2,自引:0,他引:2  
1. There is increasing evidence that advanced glycation end-products (AGEs) and their interaction with the receptor RAGE play a pivotal role in atherosclerosis, in particular in the setting of diabetes. 2. Previous studies have shown that inhibition of AGE accumulation and RAGE expression in diabetes by either reduction of the formation of AGEs or cross-link breakers was associated with reduced atherosclerosis and renal disease. Advanced glycation end-products bind to RAGE, thereby leading to activation of a range of inflammatory and fibrotic pathways causing tissue injury. Different splice variants of RAGE exist, including a soluble form that lacks the intracellular domain and fails to induce signal transduction. Therapeutic approaches using soluble RAGE as a decoy binding protein for circulating AGE have been effective in preventing externally induced arterial injury and atherosclerosis in the absence and presence of diabetes. 3. In order to delineate the role of RAGE in vascular disease in more detail, it was necessary to create RAGE(-/-) mice, as well as transgenic mice overexpressing RAGE in endothelial cells. It was shown that RAGE overexpression was associated with increased vascular injury, nephropathy and retinopathy. 4. In contrast, RAGE deletion was associated with partial vascular protection, such as reduced neointima formation after arterial denudation, as well as protection from diabetic nephropathy. The present review summarizes the evidence for RAGE being a pro-inflammatory and pro-fibrotic receptor. 5. Further studies are needed to delineate the effect of RAGE deletion and overexpression in diabetic macrovascular disease. Based on these findings, RAGE could be a potential therapeutic target in combating inflammatory vascular diseases, including diabetes-associated atherosclerosis.  相似文献   

3.
Advanced glycation end-products (AGEs) are generated in the diabetic milieu, as a result of chronic hyperglycemia and enhanced oxidative stress. These AGEs, via direct and receptor dependent pathways promote the development and progression of cardiovascular disease. AGEs accumulate at many sites of the body including the heart and large blood vessels in diabetes. These modified proteins interact with receptors such as RAGE to induce oxidative stress, increase inflammation by promoting NFkappaB activation and enhance extracellular matrix accumulation. These biological effects translate to accelerated plaque formation in diabetes as well as increased cardiac fibrosis with consequent effects on cardiac function. Strategies to reduce the ligation of AGEs to their receptors such as agents which reduce AGE accumulation, soluble RAGE which acts as a competitive antagonist to the binding of AGEs to RAGE and genetic deletions of RAGE appear to attenuate diabetes associated atherosclerosis. Benefits on cardiac dysfunction with these inhibitors of the AGE/RAGE axis are not as well characterised. In conclusion, therapeutic strategies targeting AGEs appear to have significant clinical potential, often in combination with currently used agents such as inhibitors of the renin-angiotensin system, to reduce the major burden of diabetes, its associated cardiovascular complications.  相似文献   

4.
Cardiovascular disease in diabetes   总被引:1,自引:0,他引:1  
Diabetes is associated with a marked increase in the risk of atherosclerotic vascular disorders, including coronary, cerebrovascular, and peripheral artery disease. Cardiovascular disease (CVD) could account for disabilities and high mortality rates in patients with diabetes. In this paper, we review the molecular mechanisms for accelerated atherosclerosis in diabetes, especially focusing on postprandial hyperglycemia, advanced glycation end products (AGEs) and the renin-angiotensin system. We also discuss here the potential therapeutic strategy that specifically targets CVD in patients with diabetes.  相似文献   

5.
The creation of mouse models that recapitulate human diabetic cardiovascular disease remains a significant challenge. Part of the problem relates to the lack of a clear understanding of the human phenotype. Although improved insulin-treat of hyperglycemia reduces cardiovascular events in patients with type 1 diabetes, similar data are not available in type 2 diabetes. Moreover, whether human vascular disease is increased by hyperglycemia, defective insulin actions, or other factors is not known. Significant progress has been made in developing models of both type 1 and type 2 diabetes in mouse that can be used to study the relationship between hyperglycemia and atherosclerosis. This review describes mouse models that recapitulate specific aspects of diabetic dyslipidemia, hyperglycemia/insulin resistance, and diabetic vascular disease. Overall, the studies have clearly demonstrated that hyperlipidemia is a major driver of atherosclerotic vascular disease in the mouse. The effects of hyperglycemia and insulin resistance on murine atherosclerosis remain uncertain.  相似文献   

6.
The incidence and prevalence of diabetes mellitus are each increasing rapidly in our society. The majority of patients with diabetes succumb ultimately to heart disease, much of which stems from atherosclerotic disease and hypertension. However, cardiomyopathy can develop independent of elevated blood pressure or coronary artery disease, a process termed diabetic cardiomyopathy. This disorder is a complex diabetes-associated process characterized by significant changes in the physiology, structure, and mechanical function of the heart. Here, we review recently derived insights into mechanisms and molecular events involved in the pathogenesis of diabetic cardiomyopathy.  相似文献   

7.
Lipoproteins and diabetic microvascular complications   总被引:5,自引:0,他引:5  
Risk factors for the microvascular complications (nephropathy and retinopathy) of Type 1 and Type 2 diabetes mellitus and the associated accelerated atherosclerosis include: age, diabetes duration, genetic factors, hyperglycaemia, hypertension, smoking, inflammation, glycation and oxidative stress and dyslipoproteinaemia. Hypertriglyceridaemia, low HDL and small dense LDL are common features of Type 2 diabetes and Type 1 diabetes with poor glycaemic control or renal complications. With the expansion of knowledge and of clinical and research laboratory tools, a broader definition of 'lipid' abnormalities in diabetes is appropriate. Dyslipoproteinaemia encompasses alterations in lipid levels, lipoprotein subclass distribution, composition (including modifications such as non-enzymatic glycation and oxidative damage), lipoprotein-related enzymes, and receptor interactions and subsequent cell signaling. Alterations occur in all lipoprotein classes; chylomicrons, VLDL, LDL, HDL, and Lp(a). There is also emerging evidence implicating lipoprotein related genotypes in the development of diabetic nephropathy and retinopathy. Lipoprotein related mechanisms associated with damage to the cardiovascular system may also be relevant to damage to the renal and ocular microvasculature. Adverse tissue effects are mediated by both alterations in lipoprotein function and adverse cellular responses. Recognition and treatment of lipoprotein-related risk factors, supported by an increasing array of assays and therapeutic agents, may facilitate early recognition and treatment of high complication risk diabetic patients. Further clinical and basic research, including intervention trials, is warranted to guide clinical practice. Optimal lipoprotein management, as part of a multi-faceted approach to diabetes care, may reduce the excessive personal and economic burden of microvascular complications and the related accelerated atherosclerosis.  相似文献   

8.
Nitric oxide (NO) is a well-recognized anti-atherogenic factor; it inhibits the inflammatory-proliferative processes in atherosclerosis. Indeed, endothelial dysfunction due to reduced synthesis and/or bioavailability of NO is thought to be an early step in the course of atherosclerotic cardiovascular disease (CVD). NO is synthesized from L-arginine via the action of NO synthase (NOS), which is known to be blocked by endogenous L-arginine analogues such as asymmetric dimethylarginine (ADMA), a naturally occurring amino acid found in plasma and various types of tissues. Recently, it has been demonstrated that plasma levels of ADMA are elevated in patients with diabetes. These findings suggest that the elevated ADMA in diabetes could contribute to acceleration atherosclerosis in this population. Further, since ADMA is mainly metabolized by dimethylarginine dimethylaminohydrolase (DDAH), it is conceivable that the inhibition of ADMA via up-regulation of DDAH may be a novel therapeutic target for the prevention of CVD in patients with diabetes. In this paper, we review the pathophysiological role of ADMA and DDAH system for accelerated atherosclerosis in diabetes and the therapeutic utility of ADMA suppression in CVD in diabetes.  相似文献   

9.
Diabetes mellitus is one of the major risk factors for cardiovascular disease which is the leading cause of death in the U.S. Increasing prevalence of diabetes and diabetic atherosclerosis makes identification of molecular mechanisms by which diabetes promotes atherogenesis an important task. Targeting common pathways may ameliorate both diseases. This review focuses on well known as well as newly discovered mechanisms which may represent promising therapeutic targets.  相似文献   

10.
Patients with diabetes mellitus (DM) have a high prevalence of coronary artery disease (CAD), as diabetes is implicated in the formation of atherosclerotic plaque. Endothelial dysfunction is one of the precursor key steps in the development of atherosclerosis in diabetic subjects. Decreased nitric oxide (NO) production, increased oxidative stress and impaired function of endothelial progenitor cells are the main mechanisms involved in the accelerated atherosclerotic process observed in type 2 DM patients. Therapeutic approaches including classic agents such as statins, angiotensinconverting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs), antioxidants and novel agents such as tetrahydrobiopterin (BH4), asymmetric dimethylarginine (ADMA) and homocysteine (tHcy), have been implicated in order to ameliorate endothelial function of diabetic patients.  相似文献   

11.
New potential agents in treating diabetic kidney disease: the fourth act   总被引:4,自引:0,他引:4  
Williams ME 《Drugs》2006,66(18):2287-2298
Despite the worldwide epidemic of chronic kidney disease complicating diabetes mellitus, current therapies directed against nephroprogression are limited to angiotensin conversion or receptor blockade. Nonetheless, additional therapeutic possibilities are slowly emerging. The diversity of therapies currently in development reflects the pathogenic complexity of diabetic nephropathy. The three most important candidate drugs currently in development include a glycosaminoglycan, a protein kinase C (PKC) inhibitor and an inhibitor of advanced glycation. In targeting primary mechanisms by which hyperglycaemia contributes to diabetic complications, these drugs could provide risk reduction complementary to the partial reduction proven for ACE inhibitors and angiotensin II receptor antagonists (angiotensin receptor blockers). Glycosaminoglycans act to restore glycoproteins present in reduced amounts in the glomerular basement membrane and mesangium of diabetic animal models. Components of the drug sulodexide prevent pathological changes and proteinuria in diabetic rats. Reductions in albuminuria, a hallmark of early diabetic kidney disease, have been reported in initial human trials. In the US, a multicentre phase II study has been completed, with an interim analysis indicating reduction in urinary albumin losses. Pivotal phase II trials have begun in patients with type 2 diabetes. A second metabolic pathway of diabetic complications is overexpression of PKC. Several activators of this family of intracellular kinases have been identified and PKC activation may result in tissue damage through a variety of mechanisms. In animal models, the inhibitor ruboxistaurin reduces albuminuria, diabetic histological changes and kidney injury. Like sulodexide, drug development of ruboxistaurin has reached completion of a phase II evaluation with mixed results. The third metabolic target is the nonenzymatic formulation of advanced glycation end-products (AGEs) through well described biochemical pathways. Multiple pathways lead to AGE accumulation in tissues in diabetes and diverse AGE products are formed. AGE deposition has been implicated in animal models of diabetic nephropathy. The leading AGE inhibitor currently in development is pyridoxamine, which has multiple actions that inhibit glycation. Pyridoxamine is an efficient AGE inhibitor in experimental diabetes. A phase II study in diabetic patients with nephropathy reported mixed efficacy results and a favourable safety profile. Phase III evaluation of pyridoxamine has not begun. These three classes of potential therapies, if successfully developed, will confirm that diabetic kidney disease has entered the era of biochemical treatments.  相似文献   

12.
Chronic complications of diabetes mellitus e.a. diabetic nephropathy, neuropathy and retinopathy develop in at least 30-50% of patients with both Type 1 (insulin-dependent) and Type 2 (non-insulin-dependent) diabetes, and are the major cause of increased morbidity and mortality. The ultimate consequences of diabetes complications include renal failure, foot ulceration and amputation, and blindness. The magnitude of the problem and its economic impact make extremely important to understand the natural history of chronic diabetes complications and to identify more successful preventive and therapeutic options. The pathogenesis of diabetes complications involves multiple mechanisms. The importance of vascular component is well recognized in diabetic retinopathy, which is primarily a vascular disease, as well as diabetic nephropathy developing as a result of complex interplay between hemodynamic and metabolic factors. The importance of vascular versus non-vascular mechanisms in the pathogenesis of diabetic neuropathy remains a subject of debate. Studies in animal and cell culture models revealed that such mechanisms as increased aldose reductase activity, non-enzymatic glycation/glycoxidation, activation of protein kinase C, impaired growth factor support, enhanced oxidative/nitrosative stress, and its downstream effectors such as mitogen-activated protein kinase activation, inflammatory response, endothelin-1 overexpression and impaired Ca(++) signaling, play an important role in all three tissue-targets for diabetes complications i.e. kidney, retina and peripheral nerve. Evidence for important role of the downstream effector of free radical and oxidant-induced DNA injury, poly(ADP-ribose) polymerase activation, is emerging. This review describes recent studies addressing the role for poly(ADP-ribose) polymerase activation in diabetic nephropathy, neuropathy and retinopathy.  相似文献   

13.
Hyperglycemic episodes, which complicate even well-controlled cases of diabetes, lead to increased polyol pathway flux, activation of protein kinase C and accelerated non-enzymatic formation of advanced glycation end products. Many of these pathways become activated in response to the production of superoxide anion. Superoxide can interact with nitric oxide, forming the potent cytotoxin peroxynitrite. Peroxynitrite attacks various biomolecules in the vascular endothelium, vascular smooth muscle and myocardium, eventually leading to cardiovascular dysfunction via multiple mechanisms. This review focuses on emerging evidence suggesting that peroxynitrite plays a key role in the pathogenesis of the cardiovascular complications of diabetes, which underlie the development and progression of diabetic retinopathy, neuropathy and nephropathy.  相似文献   

14.
Atherosclerosis is characterized by chronic inflammation and enrichment of inflammatory cells in the vessel wall. Acute inflammation can lead to damaged endothelium triggering the coagulation cascade and thrombus formation. Likewise, the clotting cascade may elicit an inflammatory response. The vascular endothelium regulates vascular tone, permeability, inflammation, thrombosis, and coagulation. Dysfunction of the vascular endothelium can promote atherosclerotic disease processes. Prostanoids (prostaglandins, thromboxane, and prostacyclin) have been established as inflammatory mediators in vascular endothelial function and there continues to be growing insights into their role in atherosclerotic disease. This review examines the role of prostanoids as paracrine inflammatory mediators of atherosclerotic vascular disease, highlighting the relevant physiology of eicosanoid production and endothelial dysfunction. We consider the role of prostanoids in systemic diseases associated with high cardiovascular morbidity and mortality, including diabetes mellitus, coronary artery disease, peripheral arterial disease, rheumatologic disorders, and dyslipidemia. We present emerging evidence that cardio-protective and lipid lowering medications, such as irbesartan and simvastatin may exert their effects via prostanoid mediated pathways. Both serum and urinary prostanoids may be utilized as diagnostic predictors of disease; for example 8-iso-PGF(2alpha) in the serum has recently been reported as an independent predictor of symptomatic peripheral arterial disease. In addition, we discuss current recommendations on established therapeutic uses of prostanoids for atherosclerotic diseases, such as the use of PGE(1) for the treatment of peripheral arterial disease. Finally, we investigate original therapeutic modalities of various prostanoids involved in the aforementioned diseases.  相似文献   

15.
Dipeptidyl peptidase-4 (DPP-4 or CD26) inhibitors, a new class of antidiabetic compounds, are effective in the treatment of hyperglycemia. Because atherosclerosis-related cardiovascular diseases are the major complications of diabetes, it is important to determine the effect of DPP-4 inhibitors on atherosclerosis. In this study, nondiabetic and diabetic apolipoprotein E-deficient mice were treated with DPP-4 inhibitor alogliptin for 24 weeks, and atherosclerotic lesions in aortic origins were examined. Results showed that diabetes significantly increased atherosclerotic lesions, but alogliptin treatment reduced atherosclerotic lesions in diabetic mice. Metabolic studies showed that diabetes increased plasma glucose and that alogliptin treatment reduced glucose. Furthermore, immunohistochemistry study showed that diabetes increased interleukin-6 (IL-6) and IL-1β protein expression in atherosclerotic plaques, but alogliptin treatment attenuated diabetes-augmented IL-6 and IL-1β expression. In consistence with the observations from the mouse models, our in vitro studies showed that alogliptin-inhibited toll-like receptor 4 (TLR-4)-mediated upregulation of IL-6, IL-1β, and other proinflammatory cytokines by mononuclear cells. Taken together, our findings showed that alogliptin-inhibited atherosclerosis in diabetic apolipoprotein E-deficient mice and that the actions of alogliptin on both glucose and inflammation may contribute to the inhibition.  相似文献   

16.
Type 2 diabetes mellitus (T2DM) is a disease characterized by inadequate beta-cell response due to progressive insulin resistance that typically accompanies physical inactivity and weight gain. T2DM is associated with substantial morbidity and mortality related to the associated atherosclerotic cardiovascular risks and diabetic vasculopathies, including microangiopathies (e.g., blindness and renal failure) and macroangiopathies (atherosclerosis). The increasing global prevalence of T2DM is linked to the rising rates of obesity, especially abdominal obesity. Visceral fat accumulation is upstream of obesity-related disorders including atherosclerotic cardiovascular disease (ACVD), and is associated with impaired insulin sensitivity and atherosclerosis through dysregulated production of adipocytokines, especially hypoadiponectinemia. This review article discusses the pathophysiological mechanisms responsible for T2DM and atherosclerosis, focusing on adiponectin. Clinical and experimental studies have shown that hypoadiponectinemia contributes to a variety of life style-related diseases including T2DM and atherosclerosis. It is likely that life-style modification, visceral fat reduction and use of medications that increase serum adiponectin levels (e.g., rimonabant, thiazolidinediones, fibrates, angiotensin receptor blocker and mineralocorticoid receptor blockade) when provided in combination can improve hypoadiponectinemia and thus prevent the development of life style-related diseases including T2DM and ACVD.  相似文献   

17.
Angiotensin converting enzyme (ACE) inhibitors have proved effective in preventing or ameliorating clinical manifestations of atherosclerosis, such as myocardial infarction (MI) and heart failure. Experimental evidence demonstrates their anti-atherogenic potential; ACE inhibitors do not only suppress the formation of proatherogenic angiotensin II (AII), but also enhance the formation and release of anti-atherogenic nitric oxide (NO) at local tissue sites; both mechanisms are implicated in the suppression of neointima formation in the balloon-injured vessel wall. A similar anti-atherogenic potential is provided by the blockade of the renin-angiotensin system (RAS) at the level of the angiotensin type-1 (AT1) receptor. AT1 receptor antagonists do not only block the proatherogenic actions of AII, but also induce an enhanced formation and release of anti-atherogenic NO at local tissue sites. AT1 receptor antagonists may therefore prove as effective as ACE inhibitors in patients with manifest atherosclerosis.  相似文献   

18.
The formation and progression of atherosclerotic plaques followed by rupture, thrombus formation and vessel blockage leads to ischemic tissue damage and the clinical condition underlying most cardiovascular disease. Therapeutic agents for the prevention of atherosclerosis have all targeted epidemiologically-identified and relatively easily measured risk factors (e.g. lipids and blood pressure). This strategy has proven somewhat effective but is of less than optimal efficacy as rates of cardiovascular disease remain high. Treatment targeting the mechanisms of atherosclerosis in the vessel wall is a conceptually attractive proposition to complement the risk factor directed strategy. Vascular smooth muscle cells (VSMC) are the major cellular component of the vascular media and migration and proliferation leads to the formation of the neointima the development of which renders the vessels particularly sensitive to atherosclerosis. Numerous hormones and growth factors act on VSMC to cause migration, proliferation and the secretion of extracellular matrix and modulation or dysfunction of these processes is the most likely cause of atherosclerosis. Endothelin-1 (ET-1) is a 21 amino acid peptide that acts on 7 transmembrane G protein coupled receptors to elicit a plethora of responses that can modulate the behaviour of VSMCs and thus impact on the development of atherosclerosis. ET-1 is elevated in atherosclerotic plaques. People with diabetes have accelerated atherosclerosis and also show elevated plasma levels of ET-1. This review addresses the actions of ET-1 on VSMC and the signalling pathways through which it mediates its effects as the latter represent potential therapeutic targets for the prevention of atherosclerosis.  相似文献   

19.
The study of the role of glycemia in the causation of cardiovascular disease has been limited by several factors, above all by its measurement over time. Non enzymatic glycated proteins in the blood, the product of the non enzymatic reaction of a reducing sugar with the reactive amino acid of a target protein, are an integrated measure of blood glucose over days to weeks. They have been used in the management of clinical diabetes mellitus, but are still infrequently used in epidemiological studies in non diabetic subjects. There are few epidemiological studies that show that glycated hemoglobin, fructosamine, an index of total non enzymatic glycated proteins in the blood, and glycated apolipoprotein B and other non enzymatic glycated proteins in the blood in non diabetic subjects are associated with cardiovascular diseases. In this paper we review: 1) the overall mechanisms of non enzymatic glycation of proteins; 2) the measurement of glycated hemoglobin, fructosamine, and glycated apolipoprotein B and their relationship with blood glucose levels in non diabetic subjects; 3) the association of glycated hemoglobin, fructosamine and glycated apolipoprotein B with cardiovascular disease. We conclude that non enzymatic glycation of protein in the blood is associated with cardiovascular disease also in non diabetic subjects, and could be used to define dietary risk factors of cardiovascular disease.  相似文献   

20.
Despite recent advances, cardiovascular disease continues to be the leading cause of death among patients with diabetes. Diabetes-related heart disease makes up the majority of the cardiovascular morbidity and mortality and this clinical entity results from synergistic interaction amongst various overlapping mechanisms. Diabetes-related heart disease is characterised by a propensity to develop premature, diffuse atherosclerotic disease, structural and functional abnormalities of the microvasculature, autonomic dysfunction and intrinsic myocardial dysfunction (the so-called diabetic 'cardiomyopathy'), all of which are exacerbated by hypertension and diabetic nephropathy. The renin-angiotensin-aldosterone system possesses various autocrine and paracrine effects which drive most of the pathophysiological mechanisms in diabetes-related heart disease. This review aims to describe the expanding role of the renin-angiotensin-aldosterone system, the complex entity of diabetes-related heart disease and the (emerging) evidence for specific inhibition of the renin-angiotensin-aldosterone system in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号