首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subarachnoid hemorrhage (SAH) often induces a long-term narrowing of the cerebral artery called cerebral vasospasm. Myosin light chain (MLC) in the spastic basilar artery was reported previously to be phosphorylated by Ca(2+)/calmodulin-dependent MLC kinase. Because Rho-kinase, which is activated by the small GTPase Rho, phosphorylates not only MLC but also myosin phosphatase at its myosin-binding subunit (MBS), thus inactivating myosin phosphatase, we examined whether Rho-kinase is involved in the development of vasospasm. Cerebral vasospasm was produced in the canine basilar artery by a 2-hemorrhage method, and vasocontractions were induced by topical application of 80 mmol/L KCl or 0.5 micromol/L serotonin to the canine basilar artery exposed transclivally. The phosphorylation of MLC in the basilar artery was increased concurrently with an enhancement in the intensity of vasospasm with the passage of time after SAH. In addition, Rho-kinase in the basilar artery was activated concurrently with an increase in the phosphorylation of MBS at Ser854 in vasospasm. The Rho-kinase activation levels in vasospasm on days 0 and 2 were comparable to those in KCl- and serotonin-induced sustained vasocontraction, respectively, and those in vasospasm on day 7 were markedly high. The topical application of Y-27632, a specific inhibitor of Rho-kinase, to the exposed spastic basilar artery on day 7 induced a dose-dependent dilation, and the intensities of vasospasm and the phosphorylation of MBS and MLC were simultaneously decreased by 10 micromol/L Y-27632, although the decrease in MBS phosphorylation was more marked than the decrease in MLC phosphorylation. These results indicate that the activation of Rho-kinase and the phosphorylation of MLC and MBS occur concomitantly during vasospasm induced by SAH and suggest that Rho-kinase is involved in the enhancement of cerebral vasospasm in addition to Ca(2+)/calmodulin-dependent MLC kinase by increasing the phosphorylation of MLC directly or indirectly as a result of the inhibition of myosin phosphatase by its phosphorylation.  相似文献   

2.
The purpose of the present study is to assess the roles of protein kinase C (PKC) isoforms, especially PKC delta and alpha, and 20-kD myosin light chain (MLC(20)) phosphorylation in the mechanism of cerebral vasospasm following subarachnoid hemorrhage (SAH). We had shown that those PKC isoforms are involved in the development of cerebral vasospasm. Using PKC isoform-specific inhibitors in a 'two- hemorrhage' canine model, we examined changes in the development of cerebral vasospasm, translocation of PKC isoforms and MLC(20) phosphorylation level in canine basilar arteries. A PKC inhibitor (5 microM rottlerin for PKC delta or chelerythrine for PKC alpha) was injected into the cisterna magna on day 4 before the second hemorrhage. The treatment was continued daily until day 7. Rottlerin inhibited the initial phase of vasospasm and PKC delta translocation, but did not significantly inhibit PKC alpha translocation. Chelerythrine inhibited cerebral vasospasm, and the translocation of both PKC delta and alpha throughout the entire course of the study. Although cerebral vasospasm after SAH was inhibited by each PKC inhibitor, the MLC(20) phosphorylation level remained elevated as in the untreated hemorrhage-control study. We conclude that cerebral vasospasm following SAH depends on PKC delta and alpha, while the enhancement of MLC(20) phosphorylation contributes little to this form of vasospasm.  相似文献   

3.
Watanabe Y  Ito M  Kataoka Y  Wada H  Koyama M  Feng J  Shiku H  Nishikawa M 《Blood》2001,97(12):3798-3805
Protein kinase C (PKC)-potentiated inhibitory phosphoprotein of myosin phosphatase (CPI) was detected in human platelets. Like smooth muscle CPI-17, in vitro phosphorylation of platelet CPI by PKC inhibited the activity of myosin phosphatase containing the PP1delta catalytic subunit and the 130-kd myosin-binding subunit (MBS). Treatment of intact platelets with thrombin or the stable thromboxane A(2) analog STA(2) resulted in increased phosphorylation of both CPI and MBS at Thr-696, whereas phorbol myristate acetate (PMA) and the Ca(++) ionophore ionomycin only induced CPI phosphorylation. PMA induced slow adenosine triphosphate (ATP) secretion of fura 2-loaded platelets with no change in cytosolic Ca(++). The PMA-induced increase in CPI phosphorylation preceded phosphorylation of 20-kd myosin light chain (MLC(20)) at Ser-19 and ATP secretion. The PKC inhibitor, GF109203X, inhibited PMA-induced phosphorylation of CPI and MLC(20) with similar IC(50) values. These findings suggest that the activation of PKC by PMA induces MLC(20) phosphorylation by inhibiting myosin phosphatase through phosphorylation of CPI. STA(2)-induced MLC(20) phosphorylation was also diminished but not abolished by GF109203X, even at high concentrations that completely inhibited STA(2)-induced CPI phosphorylation. A combination of the Rho-kinase inhibitor Y-27632 and GF109203X led to a further decrease in STA(2)-induced MLC(20) phosphorylation, mainly because of a significant inhibition of MBS phosphorylation at Thr-696. Inhibition of STA(2)-induced ATP release by Y-27632, GF109203X, or both appeared to correlate with the extent of MLC(20) phosphorylation. Thus, CPI phosphorylation by PKC may participate in inhibiting myosin phosphatase, in addition to the Rho-kinase-mediated regulation of myosin phosphatase, during agonist-induced platelet secretion. (Blood. 2001;97:3798-3805)  相似文献   

4.
Suzuki Y  Yamamoto M  Wada H  Ito M  Nakano T  Sasaki Y  Narumiya S  Shiku H  Nishikawa M 《Blood》1999,93(10):3408-3417
Human platelets contained about 15 times lower amounts of Rho-kinase than Ca2+/calmodulin-dependent myosin light chain (MLC) kinase. Anti-myosin-binding subunit (MBS) antibody coimmunoprecipitated Rho-kinase of human platelets, and addition of GTPgammaS-RhoA stimulated phosphorylation of the 130-kD MBS of myosin phosphatase and consequently inactivated myosin phosphatase. Two kinds of selective Rho-kinase inhibitors, HA1077 and Y-27632, reduced both GTPgammaS-RhoA-dependent MBS phosphorylation and inactivation of the phosphatase activity. Activation of human platelets with thrombin, a stable thromboxane A2 analog STA2, epinephrine, and serotonin resulted in an increase in MBS phosphorylation, and the agonist-induced MBS phosphorylation was prevented by pretreatment with the respective receptor antagonist. HA1077 and Y-27632 inhibited MBS phosphorylation in platelets stimulated with these agonists. These compounds also blocked agonist-induced inactivation of myosin phosphatase in intact platelets. In addition, HA1077 and Y-27632 inhibited 20-kD MLC phosphorylation at Ser19 and ATP secretion of platelets stimulated with STA2, thrombin (0.05 U/mL), and simultaneous addition of serotonin and epinephrine, whereas these compounds did not affect MLC phosphorylation or ATP secretion when platelets were stimulated with more than 0.1 U/mL thrombin. Thus, activation of Rho-kinase and the resultant phosphorylation of MBS is likely to be the common pathway for platelet activation induced by various agonists. These results also suggest that Rho-kinase-mediated MLC phosphorylation contributes to a greater extent to the platelet secretion induced by relatively weak agonists.  相似文献   

5.
BACKGROUND: The pleiotropic antiatherosclerotic effects of statins are believed to be associated with the inhibition of Rho-kinase. However, a systematic analysis of Rho-kinase activation in atherosclerotic lesions is missing. OBJECTIVES: To analyze the distribution and phosphorylation of target proteins of Rho-kinase, such as myosin light chain (MLC) and ezrin-radixin-moesin (ERM) proteins, in the apolipoprotein E (ApoE) knockout model of accelerated atherosclerosis, as well as the effects of treatment with the Rho-kinase inhibitor Y-27632. METHOD: Western diet-fed ApoE-deficient mice underwent carotid ligation and were sacrificed 14 days after surgery. One group of ligated mice was treated with the Rho-kinase inhibitor Y-27632. Nonligated C57Bl6/J mice on normal chow and ApoE-deficient mice on Western diet were used as controls. Lesion structure and size were analyzed using Masson-elastic stained cross-sections. The distribution and phosphorylation of Rho-kinase target proteins were studied immunohistochemically. RESULTS: Two weeks after surgery, atherosclerotic plaque-like lesions developed in ligated carotids. Lesion development was inhibited by Y-27632. ERM was expressed ubiquitously, but in the intact arteries, it was phosphorylated exclusively in the endothelium and periadventitial adipocytes. In the atherosclerotic lesions, foamy macrophages also exhibited a strong phospho-ERM signal. Y-27632 inhibited ERM phosphorylation in the plaques. MLC and phospho-MLC were associated with smooth muscle cells and did not respond to the Y-27632 treatment. CONCLUSIONS: A cell type-selective distribution and phosphorylation of target proteins of Rho-kinase were demonstrated in the carotid artery of the normal mouse model, as well as in the ApoE-knockout model of accelerated atherosclerosis. Various downstream targets of the same enzyme may be differentially involved in specific pathological processes in a cell type-specific manner.  相似文献   

6.
The small G protein Rho and its target Rho-kinase may participate in the mechanisms underlying vascular contractile tone via inhibition of myosin light chain phosphatase. The present study has tested the hypothesis that Rho-kinase activity normally contributes to cerebral vascular tone in vivo, and that this effect is augmented during chronic hypertension. Comparative studies also examined the role of protein kinase C (PKC) in regulation of cerebral artery tone. Two Rho-kinase inhibitors, Y-27632 (0.1 to 100 micromol/L) and HA1077 (1 to 10 micromol/L), caused marked concentration-dependent increases in basilar artery diameter of anesthetized normotensive rats (Sprague-Dawley and Wistar-Kyoto [WKY] strains), as measured using a cranial window approach. By comparison, the selective PKC inhibitors calphostin C (0.01 to 0.5 micromol/L) and Ro 31-8220 (5 micromol/L) had little or no effect on basilar artery diameter. Vasodilator responses to Y-27632 were unaffected by PKC inhibition or activation. In two models of chronic hypertension (spontaneously hypertensive rats and WKY rats treated with N-nitro-L-arginine methyl ester for 4 weeks), Y-27632 elicited cerebral vasodilator responses that were significantly greater than in control WKY rats (P<0.05), indicating that the chronically hypertensive state and not genetic factors contributed to the increased responses to Rho-kinase inhibition. PKC inhibition had no significant effect on basilar artery diameter in chronically hypertensive rats. These data suggest that Rho-kinase, but not PKC, activity contributes substantially to cerebral artery tone in vivo, and this effect is augmented in the cerebral circulation during chronic hypertension.  相似文献   

7.
Both Rho-kinase and the Ca(2+)/calmodulin-dependent myosin light chain (MLC) kinase increase the phosphorylation of MLC. We show that upon thrombin receptor stimulation by low-dose thrombin or the peptide ligand YFLLRNP, or upon thromboxane receptor activation by U46619, shape change and MLC phosphorylation in human platelets proceed through a pathway that does not involve an increase in cytosolic Ca(2+). Under these conditions, Y-27632, a specific Rho-kinase inhibitor, prevented shape change and reduced the stimulation of MLC-phosphorylation. In contrast, Y-27632 barely affected shape change and MLC-phosphorylation by adenosine diphosphate (ADP), collagen-related peptide, and ionomycin that were associated with an increase in cytosolic Ca(2+) and inhibited by BAPTA-AM/EGTA treatment. Furthermore, C3 exoenzyme, which inactivates Rho, inhibited preferentially the shape change induced by YFLLRNP compared with ADP and ionomycin. The results indicate that the Rho/Rho-kinase pathway is pivotal in mediating the MLC phosphorylation and platelet shape change by low concentrations of certain G protein-coupled platelet receptors, independent of an increase in cytosolic Ca(2+). Our study defines 2 alternate pathways, Rho/Rho-kinase and Ca(2+)/calmodulin-regulated MLC-kinase, that lead independently of each other through stimulation of MLC-phosphorylation to the same physiological response in human platelets (ie, shape change).  相似文献   

8.
OBJECTIVES: Rho-kinase plays a crucial role in various cellular functions. To elucidate molecular mechanisms of Rho-kinase-mediated cardiovascular remodeling in vivo, we evaluated whether a signaling pathway through Rho is involved, and whether Y-27632, a specific Rho-kinase inhibitor, stimulates endothelial nitric oxide synthase (eNOS) and suppresses the oxidative stress and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) pathway in the left ventricle of Dahl salt-sensitive hypertensive (DS) rats. METHODS: Y-27632 (3 mg/kg per day) or vehicle were given for 5 weeks, from age 6 weeks to a stage of left ventricular hypertrophy (11 weeks). Age-matched Dahl salt-resistant (DR) rats fed the same diet served as a control group. RESULTS: Increased left ventricular weight in the hypertrophy stage was significantly ameliorated by Y-27632. Upregulated RhoA protein, Rho-kinase gene expression and myosin light-chain phosphorylation in the hypertrophy stage were suppressed by Y-27632. Increased expression of NAD(P)H oxidase p22phox, p47phox, gp91phox and LOX-1 in DS rats were inhibited by Y-27632. Upregulated protein kinase Cepsilon and p65 nuclear factor-kappaB phosphorylation in DS rats was reduced by Y-27632. In contrast, downregulated eNOS expression in hypertrophy stage was upregulated by Y-27632. Y-27632 effectively inhibited vascular lesion formation, such as medial thickness and perivascular fibrosis, and suppressed transforming growth factor-beta1, type I and III collagen, and fibronectin gene expression. CONCLUSIONS: Inhibiting the Rho-kinase pathway may play a key role in the cardioprotective effect on cardiovascular remodeling associated with eNOS and the oxidative stress-LOX-1 pathway in DS rats, and may be at least a potential therapeutic strategy for hypertension with cardiac hypertrophy.  相似文献   

9.
10.
Although recent investigations have suggested that a Rho-kinase-mediated Ca2+ sensitization of vascular smooth muscle contraction plays a critical role in the pathogenesis of cerebral and coronary vasospasm, the upstream of this signal transduction has not been elucidated. In addition, the involvement of protein kinase C (PKC) may also be related to cerebral vasospasm. We recently reported that sphingosylphosphorylcholine (SPC), a sphingolipid, induces Rho-kinase-mediated Ca2+ sensitization in pig coronary arteries. The purpose of this present study was to examine the possible mediation of SPC in Ca2+ sensitization of the bovine middle cerebral artery (MCA) and the relation to signal transduction pathways mediated by Rho-kinase and PKC. In intact MCA, SPC induced a concentration-dependent (EC50=3.0 micromol/L) contraction, without [Ca2+]i elevation. In membrane-permeabilized MCA, SPC induced Ca2+ sensitization even in the absence of added GTP, which is required for activation of G-proteins coupled to membrane receptors. The SPC-induced Ca2+ sensitization was blocked by a Rho-kinase inhibitor (Y-27632) and a dominant-negative Rho-kinase, but not by a pseudosubstrate peptide for conventional PKC, which abolished the Ca2+-independent contraction induced by phorbol ester. In contrast, phorbol ester-induced Ca2+ sensitization was resistant to a Rho-kinase inhibitor and a dominant-negative Rho-kinase. In primary cultured vascular smooth muscle cells, SPC induced the translocation of cytosolic Rho-kinase to the cell membrane. We propose that SPC is a novel messenger for Rho-kinase-mediated Ca2+ sensitization of cerebral arterial smooth muscle and, therefore, may play a pivotal role in the pathogenesis of abnormal contraction of the cerebral artery such as vasospasm. The SPC/Rho-kinase pathway functions independently of the PKC pathway.  相似文献   

11.
Two mechanisms are proposed to account for the inhibition of myosin phosphatase (MP) involved in Ca2+ sensitization of vascular muscle, ie, phosphorylation of either MYPT1, a target subunit of MP or CPI-17, an inhibitory phosphoprotein. In cultured vascular aorta smooth muscle cells (VSMCs), stimulation with angiotensin II activated RhoA, and this was blocked by pretreatment with 8-bromo-cGMP. VSMCs stimulated by angiotensin II, endothelin-1, or U-46619 significantly increased the phosphorylation levels of both MYPT1 (at Thr696) and CPI-17 (at Thr38). The angiotensin II-induced phosphorylation of MYPT1 was completely blocked by 8-bromo-cGMP or Y-27632 (a Rho-kinase inhibitor), but not by GF109203X (a PKC inhibitor). In contrast, phosphorylation of CPI-17 was inhibited only by GF109203X. Y-27632 dramatically corrected the hypertension in N(omega)-nitro-L-arginine methyl ester (L-NAME)-treated rats, and this hypertension also was sensitive to isosorbide mononitrate. The level of the active form of RhoA was significantly higher in aortas from L-NAME-treated rats. Expression of RhoA, Rho-kinase, MYPT1, CPI-17, and myosin light chain kinase were not significantly different in aortas from L-NAME-treated and control rats. Activation of RhoA without changes in levels of other signaling molecules were observed in three other rat models of hypertension, ie, stroke-prone spontaneously hypertensive rats, renal hypertensive rats, and DOCA-salt rats. These results suggest that independent of the cause of hypertension, a common point in downstream signaling and a critical component of hypertension is activation of RhoA and subsequent activation of Rho-kinase.  相似文献   

12.
OBJECTIVES: Thrombin induces endothelial barrier failure by activating the contractile machinery of endothelial cells. Contractile activation is due to an increase in myosin light chain (MLC) phosphorylation. Here, it was investigated whether stimulation of endothelial cells with ATP can interrupt this thrombin-induced pathomechanism. METHODS: In cultured human umbilical vein endothelial cells, cytosolic calcium [Ca(2+)](i) (Fura 2 method), phosphorylation of MLC, isometric tension and permeability for albumin were studied. RESULTS: Thrombin (0.2 U/ml) increased [Ca(2+)](i) from a basal level of 78+/-8 to 570+/-63 nM (mean+/-S.D., n=5, P<0.05), MLC phosphorylation from 71+/-7 to 163+/-18%, isometric tension from 157+/-17 to 232+/-26 microN, and permeability from 2.8+/-0.4 to 11.6+/-1 x 10(-6) cm/s. Co-presence of ATP (10 microM) and thrombin did not alter the [Ca(2+)](i) rise, but reduced MLC phosphorylation to 59.8+/-10%, isometric tension to 174+/-14 microN, and permeability to 5.4+/-0.6 x 10(-6) cm/s. The thrombin-induced rise in MLC phosphorylation was sensitive to reduction of [Ca(2+)](i) It was accompanied by an increase in Rho activation, and was inhibited by Y-27632 (10 microM), a Rho-kinase blocker. The ATP-induced decrease in MLC phosphorylation was not sensitive to [Ca(2+)](i). It was not accompanied by changes in RhoA activation, and could not by suppressed by Y-27632. CONCLUSIONS: ATP antagonizes the Ca(2+)- and Rho-dependent effects of thrombin on MLC phosphorylation most likely by a Ca(2+)- and Rho-independent activation of MLC phosphatase. It thereby functionally antagonizes the thrombin-induced increase in monolayer tension and permeability.  相似文献   

13.
OBJECTIVE: Mechanisms of the positive inotropic response to alpha(1)-adrenergic stimulation in the heart remain poorly understood, but recent evidence in rat papillary muscle suggests an important role of regulatory myosin light chain (MLC2) phosphorylation. This study investigated alpha(1)-adrenergic contractile effects and the role of MLC kinase (MLCK)-dependent phosphorylation of MLC2 in human atrial muscle strips. METHODS: Force measurement was performed on electrically stimulated atrial muscle strips (n=140; 20 hearts) in the presence of the beta-blocker nadolol. MLC2a phosphorylation was determined by 2D-polyacrylamide gel electrophoresis and Western blotting of muscle strips that were immediately freeze-clamped following force measurements. RESULTS: The alpha(1)-agonist phenylephrine (PE; 0.3-100 microM) exerted a concentration-dependent, monophasic, sustained positive inotropic effect (86% above basal) that was accompanied by an 80% increase in MLC2a phosphorylation. Desinhibition of MLC phosphatase by the Rho kinase inhibitor Y-27632 (10 microM) reduced the effect of PE by 16%. The MLCK inhibitor wortmannin (10 microM) completely abolished both the PE-induced increase in force and MLC2a phosphorylation. The structurally unrelated MLCK inhibitor ML-7 (10 microM) had similar effects. Neither Y-27632 nor wortmannin or ML-7 affected beta-adrenergic force stimulation. In contrast to our findings in atrial muscle strips, we observed no increase in MLC2v phosphorylation after PE in human ventricular muscle strips and wortmannin failed to inhibit PE-induced force of contraction. CONCLUSION: alpha(1)-Adrenergic receptors mediate a prominent increase in contractile force in human atria that depends on MLCK activity and is accompanied by an increase in MLC2 phosphorylation.  相似文献   

14.
It has been reported that CPI-17 (protein kinase C (PKC)-potentiated inhibitory protein for heterotrimeric myosin light chain phosphatase (MLCP) of 17 kDa) was phosphorylated by excitatory agonists in smooth muscle contraction. However, endothelin-1 (ET-1)-mediated regulation of CPI-17 in bronchial smooth muscle has not been documented. We therefore investigated whether phosphorylation of CPI-17 is induced by ET-1 in rat bronchial smooth muscle. Moreover, the role of Rho kinase (ROCK; Rho-associated coiled-coil forming protein kinase) is investigated in phosphorylation of CPI-17 induced by ET-1 in rat bronchial smooth muscle. The ET-1-induced contraction was attenuated by Y-27632 (10(-6) M), a ROCK inhibitor. ET-1 induced a phosphorylation of CPI-17 with a phosphorylation of myosin light chain (MLC); those phosphorylation responses were significantly inhibited by Y-27632 (10(-6) M). These findings suggest that the activation of ROCK is involved in force development and CPI-17 phosphorylation induced by ET-1 stimulation in rat bronchial smooth muscle. Thus, RhoA/ROCK/CPI-17 pathway is considered to play an important role in the ET-1-induced Ca(2+) sensitisation of bronchial smooth muscle contraction.  相似文献   

15.
Studies were performed to test the hypothesis that the angiotensin-converting enzyme (ACE)/epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinases (ERK) pathway, nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase/lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) pathway, and Rho-kinase pathway contribute to the pathogenesis of aldosterone/salt-induced hypertensive rats. Wistar rats were given 1% NaCl to drink and treated with one of the following combinations for 6 weeks: vehicle; aldosterone (0.75 microg/h); aldosterone plus a mineralocorticoid receptor antagonist, spironolactone (20 mg/kg/day); aldosterone plus an ACE inhibitor, imidapril (1 mg/kg/day); aldosterone plus an NAD(P)H oxidase inhibitor, apocynin (0.5 mmol/l); and aldosterone plus an Rho-kinase inhibitor, Y-27632 (3 mg/kg/day). Upregulated expression of ACE and EGFR and p44/p42ERK phosphorylation were suppressed by spironolactone or imidapril. Upregulated NAD(P)H oxidase subunits and LOX-1 expression were inhibited by spironolactone or apocynin. Increased expression of RhoA and Rho-kinase and myosin light chain phosphorylation were decreased by spironolactone or Y-27632. Moreover, these drugs effectively inhibited the vascular lesion formation, as measured by the medial thickness and level of perivascular fibrosis, and suppressed the expression of transforming growth factor-beta1, type I and III collagen, and monocyte chemoattractant protein-1 mRNA. Spironolactone may be useful as a cardioprotective agent to prevent cardiovascular remodeling via the ACE/EGFR/ERK, NAD(P)H oxidase/LOX-1, and Rho-kinase pathways.  相似文献   

16.
Excess fibroblasts and inflammatory cells may play an important role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). The small GTPase, Rho, and its target protein, Rho-associated coiled-coil-forming protein kinase (ROCK), have been recognized to be major regulators of cell locomotion mediated by reorganization of the actin cytoskelton. Activated ROCK inhibits myosin phosphatase, and this in turn induces phosphorylation of the myosin light chain (MLC). To determine the mechanisms underlying the deterioration process of IPF, we investigated the effect of Y-27632, a selective ROCK inhibitor, in a murine model of bleomycin (BLM)-induced lung fibrosis. The Aschcroft score and hydroxyproline content of the BLM-treated mouse lung decreased in response to Y-27632 treatment. The number of broncoalveolar cells was decreased by Y-27632, and migration of macrophages, neutrophils, and fibroblasts in vitro was inhibited by Y-27632 regardless of various stimuli. Although expression of ROCK-II mRNA in the lung homogenates of the BLM-treated mice was increased approximately 9-fold, expression of ROCK-II protein showed only a slight tendency to increase. BLM elevated MLC phosphorylation levels, and Y-27632 inhibited BLM response. These findings indicate that the Rho/ROCK-mediated pathway plays an important role in IPF, and that blocking of this pathway leads to inhibition of IPF development.  相似文献   

17.
18.
Wilde JI  Retzer M  Siess W  Watson SP 《Platelets》2000,11(5):286-295
Shape change is an important early event in platelet activation. In this study we show that the Ca2+ chelator BAPTA and the Rho-kinase inhibitor Y-27632 inhibit ADP-induced myosin light chain (MLC) phosphorylation and platelet shape change through distinct pathways and with distinct kinetics. Ca2+ is largely responsible for the initial onset of shape change, whilst Rho-kinase plays a major role in the maintenance of the response. The relative contribution of these two pathways to each stage of the response was dependent on the method of platelet preparation, but in all cases shape change was shown to be downstream of the P2Y1 receptor. Similar observations were made in murine platelets. The shape change response was modulated via changes in cAMP levels, possibly via the P2TAC receptor, but not by tyrosine phosphorylation. We conclude that ADP-induced shape change occurs via the P2Y1 receptor, which can be differentially coupled to Rho-kinase and Ca2+-linked pathways dependent on the method of platelet preparation.  相似文献   

19.
OBJECTIVES: Rho and Rho-kinase play a critical role in the regulation of cellular functions such as proliferation and migration. To elucidate the molecular mechanisms that regulate cardiac function and cardiovascular remodeling, we determined whether the signaling pathway through Rho is involved in Dahl salt-sensitive hypertensive rats with congestive heart failure (CHF) using a specific Rho-kinase inhibitor, Y-27632. METHODS: Y-27632 was administered from the left ventricular hypertrophy stage (11 weeks) to the CHF stage (18 weeks) for 7 weeks. The left ventricular end-systolic pressure-volume relationship (contractility: E(es)) was evaluated using a conductance catheter. RESULTS: Downregulated E(es) in the CHF stage was significantly ameliorated by Y-27632 treatment. Increased RhoA protein, Rho-kinase gene expression and myosin light chain phosphorylations in CHF rats were suppressed by Y-27632. Upregulated proto-oncogene c-fos gene expression in CHF rats was decreased by inhibiting Rho-kinase. In contrast, Y-27632 showed no effect on upregulated extracellular signal-regulated kinases (ERK) and p70S6 kinase phosphorylations, which were reported to be involved in protein synthesis. In the CHF stage, Y-27632 effectively inhibited vascular lesion formation such as medial thickness and perivascular fibrosis. CONCLUSIONS: These results suggest that differential activation of the Rho-Rho-kinase and the ERK-p70S6 kinase pathways may play a critical role in CHF, and the Rho-Rho-kinase pathway is involved in the pathogenesis of cardiac dysfunction and cardiovascular remodeling. Thus, inhibition of the Rho-kinase pathway may be at least a potential therapeutic strategy for CHF.  相似文献   

20.
Shape change is an important early event in platelet activation. In this study we show that the Ca2+ chelator BAPTA and the Rho-kinase inhibitor Y-27632 inhibit ADP-induced myosin light chain (MLC) phosphorylation and platelet shape change through distinct pathways and with distinct kinetics. Ca2+ is largely responsible for the initial onset of shape change, whilst Rho-kinase plays a major role in the maintenance of the response. The relative contribution of these two pathways to each stage of the response was dependent on the method of platelet preparation, but in all cases shape change was shown to be downstream of the P2Y1 receptor. Similar observations were made in murine platelets. The shape change response was modulated via changes in cAMP levels, possibly via the P2T AC receptor, but not by tyrosine phosphorylation. We conclude that ADP-induced A shape change occurs via the P2Y1 receptor, which can be differentially coupled to Rho-kinase and Ca2+-linked pathways dependent on the method of platelet preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号