首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Needle-free liquid jet injectors are devices developed for the delivery of pharmaceutical solutions through the skin. In this paper, we investigated for the first time the ability of these devices to deliver intact lipid vesicles. Diclofenac sodium loaded phospholipid vesicles of two types, namely liposomes and transfersomes, were prepared and fully characterized. The lipid vesicles were delivered through a skin specimen using a jet injector and the collected samples were analyzed to assess vesicle structural integrity, drug retention and release kinetics after the injection. In this regard, data concerning size, size distribution, surface charge of vesicles and bilayer integrity and thickness, before and after the injections, were measured by dynamic light scattering experiments, cryo-electron microscopy, and X-ray scattering techniques. Finally, the effect of vesicle fast jet injection through the skin on drug release kinetics was checked by in vitro experiments. The retention of the morphological, physico-chemical, and technological features after injection, proved the integrity of vesicles after skin crossing as a high-speed liquid jet. The delivery of undamaged vesicular carriers beneath the skin is of utmost importance to create a controlled release drug depot in the hypoderm, which may be beneficial for several localized therapies. Overall results reported in this paper may broaden the range of application of liquid jet injectors to lipid vesicle based formulations thus combining beneficial performance of painless devices with those of liposomal drug delivery systems.  相似文献   

2.
Grayson AC  Cima MJ  Langer R 《Biomaterials》2005,26(14):2137-2145
The component materials of controlled-release drug delivery systems are often selected based on their degradation rates. The release time of a drug from a system will strongly depend on the degradation rates of the component polymers. We have observed that some poly(lactic-co-glycolic acid) polymers (PLGA) exhibit degradation rates that depend on the size of the polymer object and the temperature of the surrounding environment. In vitro degradation studies of four different PLGA polymers showed that 150 microm thick membranes degraded more rapidly than 50 microm thick membranes, as characterized by gel permeation chromatography and mass loss measurements. Faster degradation was observed at 37 degrees C than 25 degrees C, and when the saline media was not refreshed. A biodegradable polymeric microreservoir device that we have developed relies on the degradation of polymeric membranes to deliver pulses of molecules from reservoirs on the device. Earlier molecular release was seen from devices having thicker PLGA membranes. Comparison of an in vitro release study from these devices with the degradation study suggests that reservoir membranes rupture and drug release occurs when a membrane threshold molecular weight of 5000-15000 is reached.  相似文献   

3.
Two kinds of functionalized nanostructured hybrid microspheres, based on the bridged silsesquioxane family, were synthesized by employing the sol-gel method via self-assembly of two different organic-inorganic bridged monomers. The architecture reached at molecular level allowed the incorporation of acetylsalicylic acid (ASA) as an anti-inflammatory model drug. The ASA-functionalized microspheres were characterized as delivery devices in simulated body fluid (SBF). The release behaviors of the synthesized microspheres (Fickian or anomalous diffusion mechanisms) were shown to be dependent on the chemical nature of the bridged monomers employed to synthesize the hybrid materials. The functionalized microspheres were proposed as delivery systems into calcium phosphate cements (CPCs), in order to slow down the characteristic drug-delivery kinetics of this kind of bone tissue-related materials. The incorporation of the new functionalized microparticles into the CPCs represented a viable methodology to modify the ASA-release kinetics in comparison to a conventional CPC containing the drug dispersed into the solid phase. The ASA-delivery profiles obtained from the microsphere-loaded CPCs showed that 40-60% of drug can be released after 2 weeks of testing in SBF. The inclusion of the microspheres into the CPC matrices allowed modification of the release profiles through a mechanism that involved two stages: (1) the diffusion of the drug through the organic-inorganic matrix of the microspheres (according to a Fickian or anomalous diffusion, depending on the nanostructuring) and (2) the subsequent diffusion of the drug through the ceramic matrix of the hardened cements. The release behavior of the composite cements was shown to be dependent on the nanostructuring of the hybrid microspheres, which can be selectively tailored by choosing the desired chemical structure of the bridged precursors employed in the sol-gel synthesis. The obtained results demonstrated the ability of this new class of functionalized hybrid microdevices as delivery systems into calcium phosphate materials with potential bone tissue-related drug-delivery applications.  相似文献   

4.
Local delivery of antimicrobial agents in inflamed periodontal pocket has been shown to be effective in reducing periodontopathic microorganisms. This research focuses on developing and characterizing bioerodible formulations based on auto-catalyzed poly(ortho esters) (POExLAy) for modulated release of tetracycline over 2 weeks. POExLAy are a new versatile family of POE-containing lactoyl lactyl dimers in the polymer backbone. By modifying the proportion of lactic acid in the polymer, viscous or solid materials having different degradation rate can be produced. The formulations can be either injected or placed as a solid device directly into the periodontal pocket. Tetracycline-free base incorporated into these materials was released within 10-14 days depending on polymer structure. Increase in lactic acid content in the polymer tended to increase the drug release rate and to reduce the initial lag time. Tetracycline release from such bioerodible delivery system occurs predominantly by surface erosion of the polymeric matrix, leading to kinetics which can be zero order. This periodontal drug delivery system is designed to be used as an adjunct in the treatment of periodontal diseases. Clinical studies are currently in progress.  相似文献   

5.
Nanotechnology provides the sized materials that can be synthesized and function in the same general size range and Biologic structures. We have attempted to develop forms of anticancer therapeutics based on nanomaterials. Our project seeks to develop dendritic polymer nanodevices that serve as a means for the detection of cancer cells, the identification of cancer signatures, and the targeted delivery of anti-cancer therapeutics (cis-platin, methotrexate, and taxol) and contrast agents to tumor cells. Initial studies documented the synthesis and function of a targeting module, several drug delivery components, and two imaging/contrast agents. Analytical techniques have been developed and used to confirm the structure of the device. Progress has been made on the specifically triggered release of the therapeutic agent within a tumor using high-energy lasers. The work to date has demonstrated the feasibility of the nano-device concept in actual cancer cells in vitro.  相似文献   

6.
Research in the areas of drug delivery and tissue engineering has witnessed tremendous progress in recent years due to their unlimited potential to improve human health. Meanwhile, the development of nanotechnology provides opportunities to characterize, manipulate and organize matter systematically at the nanometer scale. Biomaterials with nano-scale organizations have been used as controlled release reservoirs for drug delivery and artificial matrices for tissue engineering. Drug-delivery systems can be synthesized with controlled composition, shape, size and morphology. Their surface properties can be manipulated to increase solubility, immunocompatibility and cellular uptake. The limitations of current drug delivery systems include suboptimal bioavailability, limited effective targeting and potential cytotoxicity. Promising and versatile nano-scale drug-delivery systems include nanoparticles, nanocapsules, nanotubes, nanogels and dendrimers. They can be used to deliver both small-molecule drugs and various classes of biomacromolecules, such as peptides, proteins, plasmid DNA and synthetic oligodeoxynucleotides. Whereas traditional tissue-engineering scaffolds were based on hydrolytically degradable macroporous materials, current approaches emphasize the control over cell behaviors and tissue formation by nano-scale topography that closely mimics the natural extracellular matrix (ECM). The understanding that the natural ECM is a multifunctional nanocomposite motivated researchers to develop nanofibrous scaffolds through electrospinning or self-assembly. Nanocomposites containing nanocrystals have been shown to elicit active bone growth. Drug delivery and tissue engineering are closely related fields. In fact, tissue engineering can be viewed as a special case of drug delivery where the goal is to accomplish controlled delivery of mammalian cells. Controlled release of therapeutic factors in turn will enhance the efficacy of tissue engineering. From a materials point of view, both the drug-delivery vehicles and tissue-engineering scaffolds need to be biocompatible and biodegradable. The biological functions of encapsulated drugs and cells can be dramatically enhanced by designing biomaterials with controlled organizations at the nanometer scale. This review summarizes the most recent development in utilizing nanostructured materials for applications in drug delivery and tissue engineering.  相似文献   

7.
Dental diseases are chronic infections caused by oral bacteria harboring the dental biofilm. Local sustained-release delivery systems prolong the duration of a drug in the oral cavity, thus enhancing its therapeutic potential, while reducing its side effects. Triclosan is an agent that was found to have an antibacterial effect against oral bacteria. However, its substantivity in the oral cavity is low, resulting in reduced antibacterial efficiency. The purpose of this study was to develop a local sustained release device containing triclosan and to test its antibacterial efficacy on Streptococcus mutans biofilm. Our results show that we can formulate an ethylcellulose-based, nondegradable, sustained-release device in which 80% of the loaded triclosan is released over a 10-day period. The release rate of triclosan corresponded to the Higuchi's planar homogenous diffusion release model (r2 = 0.998). A degradable local sustained-release delivery based on a methacrylate ester matrix was also developed for a faster release rate of triclosan. The release kinetics in those types of sustained-release delivery systems was erosion control. The local sustained-release delivery system significantly affected the viability of S. mutans in biofilm compared to placebo as was tested by confocal laser scanning microscopy. Our in vitro results show that triclosan can be incorporated into degradable or nondegradable sustained-release drug delivery systems. The release of triclosan from the local sustained-release delivery system can be controlled, thus extending its antibacterial properties.  相似文献   

8.
Biodegradable polymeric coatings on cardiovascular stents can be used for local delivery of therapeutic agents to diseased coronary arteries after stenting procedures. This can minimize the occurrence of clinically adverse events such as restenosis after stent implantation. A validated mathematical model can be a very important tool in the design and development of such coatings for drug delivery. The model should incorporate the important physicochemical processes responsible for the polymer degradation and drug release. Such a model can be used to study the effect of different coating parameters and configurations on the degradation and the release of the drug from the coating. In this paper, a simultaneous transport-reaction model predicting the degradation and release of the drug Everolimus from a polylactic acid (PLA) based stent coating is presented. The model has been validated using in vitro testing data and was further used to evaluate the influence of various parameters such as partitioning coefficient of water, autocatalytic effect of the lactic acid and structural change of the matrix, on the PLA degradation and drug release. The model can be used as a tool for predicting drug delivery from other coating configurations designed using the same polymer-drug combination. In addition, this modeling methodology has broader applications and can be used to develop mathematical models for predicting the degradation and drug release kinetics for other polymeric drug delivery systems.  相似文献   

9.
Di W  Ren X  Zhao H  Shirahata N  Sakka Y  Qin W 《Biomaterials》2011,32(29):7226-7233
Multifunctional materials for biological use have mostly been designed with composite or hybrid nanostructures in which two or more components are incorporated. The present work reports on a multifunctional biomaterial based on single-phased luminescent mesoporous lanthanide oxide nanoparticles that combine simultaneous drug delivery and cell imaging. A simple strategy based on solid-state-chemistry thermal decomposition process was employed to fabricate the spherical mesoporous Gd(2)O(3):Eu nanoparticles with homogeneous size distribution. The porous nanoparticles developed by this strategy possess well-defined mesopores, large pore size and volume, and high specific surface area. The mesoporous features of nanoparticles impart the material with capabilities of loading and releasing the drug with a relatively high loading efficiency and a sustained release behavior of drugs. The DOX-loaded porous Gd(2)O(3) nanoparticles are able to kill the cancer cells efficiently upon incubation with the human cervical carcinoma (HeLa) cells, indicating the potential for treatment of cancer cells. Meanwhile, the intrinsic luminescence of Gd(2)O(3):Eu nanoparticles gives the function of optical imaging. Therefore, the drug release activity and effect of drugs on the cells can be effectively monitored via luminescence of nanoparticles themselves, realizing multifunctionality of simultaneous cell imaging and anticancer drug delivery in a single-phased nanoparticle.  相似文献   

10.
背景:药物缓释就是将小分子药物与高分子载体以物理或化学方法结合,在体内通过扩散、渗透等控制方式,将小分子药物以适当的浓度持续地释放出来,从而达到充分发挥药物功效的目的。 目的:总结药物缓释载体材料特征及其在医药领域中的应用。 方法:以“药物缓释、载体材料、生物降解、壳聚糖、聚乳酸、海藻酸钠”为中文关键词,以“Drug delivery,carrier material,biodegradable,chitosan,polylactic acid, sodium alginate”为英文关键词,采用计算机检索中国期刊全文数据库、PubMed数据库(1993-01/2010-11)相关文章。纳入高分子生物材料-药物缓释载体等相关的文章,排除重复研究或Meta分析类文章,共入选31篇文章进入结果分析。 结果与结论:壳聚糖和聚乳酸是当前在药物缓释体系中应用较多的材料,它是将小分子药物与高分子载体以物理或化学方法结合, 以适当的浓度持续地释放出来,从而达到充分发挥药物功效的目的,较单一生物材料具有显著优越性,具有更好的生物相容性和生物可降解性。目前很多研究仍处于实验阶段,还有一些问题有待于解决,如制剂质量方法不成熟,剂量较难控制,成本较高等。  相似文献   

11.
背景:传统口服抗生素治疗因趋化能力弱、剂量难以控制及全身副反应等作用削弱其广泛的应用。载药人工骨长效、定点、可控地释放药物,弥补了系统抗生素治疗的缺陷。 目的:通过新型局部给药系统材料,制备及药物释放动力学等方面综合和对比分析,指导以后载药人工骨的研发和选择应用。 方法:应用PubMed和Sciencedirect数据库检索2001-01/2011-11关于局部给药系统对骨髓炎及骨缺损治疗相关方面的文献,英文检索词为“drug delivery system, osteomyelitis, bone defect, bone substitute”。排除无关及重复性研究,同一领域则选择权威杂志近期发表文献,保留25篇进一步归纳总结。 结果与结论:骨的重建与修复需要满足3个条件,即要满足骨诱导、骨传导和骨生成,此外合适的骨组织生长环境也必不可少。根据材料特点将人工骨分为生物陶瓷材料,生物材料,高分子材料,复合材料。也可根据材料的吸收性分为可生物降解型和非生物降解型。载药人工骨局部给药系统靶位点释放药物,具有提供骨良好修复环境与骨诱导的特点。载药骨的药物释放量需对载药浓度选择,局部药物释放时间,感染类型确定药物种类的选择,人工骨材料选择,药物与人工骨是否发生化学反应,对骨材料性质的影响等方面进行比较和控制。  相似文献   

12.
A common method of controlling drug release has been to incorporate the drug into a polymer matrix, thereby creating a diffusion barrier that slows the rate of drug release. It has been demonstrated that the internal microstructure of these drug–polymer composites can significantly impact the drug release rate. However, the effect of processing conditions during manufacture on the composite structure and the subsequent effects on release behavior are not well understood. We have developed a diffuse-interface theory for microstructure evolution that is based on interactions between drug, polymer and solvent species, all of which may be present in either crystalline or amorphous states. Because the theory can be applied to almost any specific combination of material species and over a wide range of environmental conditions, it can be used to elucidate and quantify the relationships between processing, microstructure and release response in controlled drug release systems. Calculations based on the theory have now demonstrated that, for a characteristic delivery system, variations in microstructure arising due to changes in either drug loading or processing time, i.e. evaporation rate, could have a significant impact on both the bulk release kinetics and the uniformity of release across the system. In fact, we observed that changes in process time alone can induce differences in bulk release of almost a factor of two and typical non-uniformities of ±30% during the initial periods of release. Because these substantial variations may have deleterious clinical ramifications, it is critical that both the system microstructure and the control of that microstructure are considered to ensure the device will be both safe and effective in clinical use.  相似文献   

13.
New (β‐aminoester) hydrogels (PBAE) based on di(ethylene glycol)diacrylate and glycine are successfully synthesized and characterized for the first time in this work. PBAE macromers are obtained using Michael addition. By changing the diacrylate/amine stoichiometric ratio, but maintaining it >1, samples with different chemical structure containing acrylate end‐groups are obtained. The hydrogels are synthesized from macromers utilizing free radical polymerization. Chemical structure of macromers and hydrogels is confirmed by proton nuclear magnetic resonance, and Fourier transform infra‐red spectroscopy. Swelling and degradation rates in physiological pH range change notably with pH and monomer molar ratio, validating pH sensitivity and zwitterionic behavior, which can be finely tuned by changing any of these parameters. In vitro cytotoxicity and in vivo acute embryotoxicity in zebrafish (Danio rerio) performed to assess the biocompatibility of the novel hydrogel materials and their degradation products reveal that materials are nontoxic and biocompatible. The Cephalexin in vitro drug release study, at pH values 2.20, 5.50, and 7.40, demonstrates pH‐sensitive delivery with the release profiles effectively controlled by pH and the hydrogel composition. PBAE hydrogels exhibit great potential for a variety of biomedical applications, including tissue regeneration and intelligent drug delivery systems.  相似文献   

14.
The current study, inspired by the immunosuppressive property of rapamycin (Rapa) and the benefit of microspheres both as drug delivery system and cell carriers, was designed to develop an efficient Rapa delivery system with tunable controllability to facilitate its local administration. A capillary-based two-phase microfluidic device was designed to prepare monodisperse poly(lactide-co-glycolide) (PLGA) microspheres to load Rapa (PLGA-Rapa-M). The physical and chemical properties of PLGA-Rapa-M were characterized, and the Rapa loading capacity and release profile were explored. Chondrocytes were chosen as a cell model to evaluate the adhesion and proliferation on these microspheres. Controllability over the microsphere properties was illustrated. The PLGA-Rapa-M is averagely 63.91?μm in size with a narrow size distribution and a CV of 2.44%. The encapsulation efficiency of Rapa within microspheres via the current microfluidics was around 98%, and Rapa loading could be easily varied with a maximum value of ~20%. The PLGA-Rapa-M has a sustained Rapa release duration of ~3?months. These microspheres could not only successfully be used for Rapa sustained release but also as cell carriers for cell therapy since they can support the attachment/proliferation of chondrocytes. Hence, improved therapeutic index could be expected by using the current developed Rapa-release system.  相似文献   

15.
Masi BC  Tyler BM  Bow H  Wicks RT  Xue Y  Brem H  Langer R  Cima MJ 《Biomaterials》2012,33(23):5768-5775
Primary malignant brain tumors (BT) are the most common and aggressive malignant brain tumor. Treatment of BTs is a daunting task with median survival just at 21 months. Methods of localized delivery have achieved success in treating BT by circumventing the blood brain barrier and achieving high concentrations of therapeutic within the tumor. The capabilities of localized delivery can be enhanced by utilizing mirco-electro-mechanical systems (MEMS) technology to deliver drugs with precise temporal control over release kinetics. An intracranial MEMS based device was developed to deliver the clinically utilized chemotherapeutic temozolomide (TMZ) in a rodent glioma model. The device is a liquid crystalline polymer reservoir, capped by a MEMS microchip. The microchip contains three nitride membranes that can be independently ruptured at any point during or after implantation. The kinetics of TMZ release were validated and quantified in?vitro. The safety of implanting the device intracranially was confirmed with preliminary in?vivo studies. The impact of TMZ release kinetics was investigated by conducting in?vivo studies that compared the effects of drug release rates and timing on animal survival. TMZ delivered from the device was effective at prolonging animal survival in a 9L rodent glioma model. Immunohistological analysis confirmed that TMZ was released in a viable, cytotoxic form. The results from the in?vivo efficacy studies indicate that early, rapid delivery of TMZ from the device results in the most prolonged animal survival. The ability to actively control the rate and timing of drug(s) release holds tremendous potential for the treatment of BTs and related diseases.  相似文献   

16.
Gas-filled microbubbles ultrasound agent have received wide attention, not only because they can improve ultrasound signals, but also they can be used as drug/gene carriers. Among all types of microbubbles fabricated by different membrane materials and core gases, polymer-shell microbubbles are highly promising. Polymeric microbubbles are more stable than other soft shell microbubbles in vivo. Under destructive ultrasound, polymer-stabilized microbubbles disintegrate and emit a strong non-linear signal, which enables ultrasound imaging with superior sensitivity. Except for ultrasound imaging, polymeric microbubbles could also be applied as drug/gene-delivery system. The thick polymeric shells allow loading a large amount of drugs. Meanwhile, site-specific targeting and controlled drug release in the area of interest can be realized through chemical and physical modification. In this review, we highlight some of the recent examples on polymeric microbubbles and their applications in ultrasound molecular imaging and drug delivery.  相似文献   

17.
Developing an intelligent drug delivery/release system, which can transport drugs to the target tissues precisely and release drugs timely, is an important challenge in chemotherapy. A multistage sensitive drug delivery system is designed by inserting a folate (FA) modified lipid and a pH/temperature dual‐sensitive amphiphilic copolymer into a liposome bilayer. The stretchable copolymer plays a role in protection on FA ligand for more accurate targeting. Then, the stretch ability of the copolymer in the liposome bilayer is verified by using the Langmuir–Blodgett film technique. The interaction between the 1,2‐dipalmitoyl‐sn‐glycerol‐3‐phosphocholine (DPPC) monolayer and hybrid liposomes is found to increase, indicating the FA ligand is exposed due to the copolymer shrinking with increasing temperature. Fluorescence polarization measurements demonstrate that the insertion of the copolymer improves the stability of the liposome and offers pH‐controllability for drug release. As a result, the drug leakage of the hybrid liposome is restrained significantly at pH 7.4, while at an acidic pH, the drug release is accelerated. The designed pH/temperature dual‐sensitive copolymer is expected to provide more precise targeting and environmentally controlled drug release to drug delivery systems based on liposomes.  相似文献   

18.
The glycosaminoglycan sugar heparan sulfate (HS) is an attractive agent for the repair of bone defects due to its ability to regulate endogenous growth factors. The sustained delivery of HS to the localized wound site over the period of healing which can last for over 1 month may prove advantageous for its therapeutic use. In this study we investigated the encapsulation of HS by the water-in oil-in water (W(1)/O/W(2)) technique in polycaprolactone (PCL) microcapsules as a prolonged delivery device. Encapsulation efficiencies of 70% could be achieved by using a 1:1 mixture of dichloromethane (DCM) and acetone as the solvent in the organic phase, while DCM alone gave poor encapsulation. Although addition of polyvinyl alcohol (PVA) to the drug phase did not affect the size or drug loading of the microcapsules, it did however produce a large change in the morphology and drug distribution, which resulted in different release rates. Release from capsules made with PVA in the drug phase reached 60% after 40 days, while those made with water in the drug phase completed release after 20 days. In vitro biocompatibility studies were performed and detected no increase in cell death in human mesenchymal stem cells (hMSC) or induction of an inflammatory response in macrophages after exposure to release products from HS-loaded microcapsules. The released HS retained its ability to increase the proliferation of hMSC after the encapsulation process. These results indicate that encapsulation of HS by the W(1)/O/W(2) method creates a promising device for the repair of bone tissue.  相似文献   

19.
Jung HJ  Chauhan A 《Biomaterials》2012,33(7):2289-2300
Ophthalmic drug delivery through eye drops is inefficient because of low corneal bioavailability and short residence time in tears. Contact lenses are ideally suited for extended and targeted drug delivery to cornea, but commercial contact lenses release ophthalmic drugs for only 1-2 h. This study focuses on dispersing timolol encapsulating highly crosslinked nanoparticles in contact lenses to increase the duration of drug release from 1 to 2 h to about 2-4 weeks. The highly crosslinked particles were prepared from monomers with multivinyl functionalities such as EGDMA (ethylene glycol dimethacrylate) and PGT (propoxylated glyceryl triacylate). The nanoparticles were about 3.5 nm in size and encapsulated 48-66% of the drug depending on the composition. Drug release studies in a diffusion cell showed that the particles released the drug for a period of about 4 weeks. The drug loaded particles were dispersed in hydroxy methyl methacrylate (HEMA) gels, which are common contact lens materials. The particle loaded gels release timolol in phosphate buffered saline (PBS) for 2-4 weeks at therapeutic dose, which is promising for extended drug release applications. The proposed mechanism of drug transport is hydrolysis of ester bonds that link timolol to the particle matrix which form during the particle formation process. The drug release profiles can be described by a first order reaction model with a temperature dependent rate constant. The rate constant of ester hydrolysis was significantly smaller than that in previous studies on timolol esters possibly due to steric effects and the low water content of the highly crosslinked hydrophobic particles. The results of this study provide evidences that contact lenses loaded with nanoparticles could be very useful for extended delivery of ophthalmic drugs.  相似文献   

20.
Tissue engineering scaffolds with a micro- or nanoporous structure and able to deliver special drugs have already been confirmed to be effective in bone repair. In this paper, we first evaluated the biomineralization properties and drug release properties of a novel mesoporous silica–hydroxyapatite composite material (HMS–HA) which was used as drug vehicle and filler for polymer matrices. Biomineralization can offer a credible prediction of bioactivity for the synthetic bone regeneration materials. We found HMS–HA exhibited good apatite deposition properties after being soaked in simulated body fluid (SBF) for 7 days. Drug delivery from HMS–HA particle was in line with Fick’s law, and the release process lasted 12 h after an initial burst release with 60% drug release. A novel tissue engineering scaffold with the function of controlled drug delivery was developed, which was based on HMS–HA particles, poly(lactide-co-glycolide) (PLGA) and microspheres sintering techniques. Mechanical testing on compression, degradation behavior, pH-compensation effect and drug delivery behavior of PLGA/HMS–HA microspheres sintered scaffolds were analyzed. Cell toxicity and cell proliferation on the scaffolds was also evaluated. The results indicated that the PLGA/HMS–HA scaffolds could effectively compensate the increased pH values caused by the acidic degradation product of PLGA. The compressive strength and modulus of PLGA/HMS–HA scaffolds were remarkably high compared to pure PLGA scaffold. Drug delivery testing of the PLGA/HMS–HA scaffolds indicated that PLGA slowed gentamycin sulfate (GS) release from HMS–HA particles, and the release lasted for nearly one month. Adding HMS–HA to PLGA scaffolds improved cytocompatibility. The scaffolds demonstrated low cytotoxicity, and supported mesenchymal stem cells growth more effectively than pure PLGA scaffolds. To summarize, the data supports the development of PLGA/HMS–HA scaffolds as potential degradable and drug delivery materials for bone replacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号