首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hepatic cytochrome P450 (CYP) expression and antioxidant activity have been shown to decrease following endotoxin (lipopolysaccharide [LPS]) or proinflammatory cytokine administration. Using mice deficient in interleukin-6 (IL-6), the role of IL-6 in the regulation of hepatic CYP activity, glutathione (GSH) metabolism, and catalase (CAT) activity was analyzed after LPS administration. Administration of LPS produced comparable decreases in hepatic CYP3A activity in WT B6x129 (WT) mice and IL-6 knockout mice. No decrease was observed for CYP2D9 activity after LPS administration in either WT or IL-6 knockout mice. LPS administration significantly increased hepatic and renal CYP2E1 and CYP4A activity in WT mice, with no effect in IL-6 knockout mice. CYP2A12 activity increased in IL-6 knockout, mice with no change in WT mice after LPS administration. LPS administration had no significant effect on hepatic GSH reductase, GST peroxidase, GSH-S-transferase (GST), or total GSH in either WT or IL-6 knockout. However, hepatic CAT activity was significantly reduced in WT mice after LPS administration, with no effect in IL-6 knockout mice. These results support IL-6 as a critical mediator of the effects of LPS on specific hepatic and renal CYP activities and hepatic CAT activity.  相似文献   

3.
The study aimed to evaluate the effect of L-carnitine on hepatic cytochrome P450-dependent monooxygenases exposed to methanol. Male Spraque-Dawley rats were given methanol (1/4 LD50 and 1/2 LD50) together with L-carnitine (1g/kg body weight). The parameters of microsome electron transport chains I and II and the levels of CYP2E1, CYP2B1/2 and CYP1A2 were measured 8, 12, 24, 48, 72 and 96 h after exposure. L-carnitine did not affect cytochrome P450 but it significantly increased at 72 and 96 h NADPH-cytochrome P450 reductase. It stimulated cytochrome b5 at 48 and 96 h and NADH-cytochrome b5 reductase activity at 12, 72 and 96 h. Methanol, especially the lower dose, inhibited cytochrome P450 after 48 h, but the higher methanol dose inhibited NADH-cytochrome b5 reductase activity in this time. L-carnitine, combined with the lower dose of methanol, stimulated NADPH-cytochrome P450 reductase after 48 h and cytochrome b5 and NADH-cytochrome b5 reductase over the whole period of observation. L-carnitine stimulated CYP2B1/2 but not CYP2E1 and CYP1A2. Methanol stimulated CYP2E1 at 24 h, but CYP1A2 at 96 h in the studied doses. CYP2B1/2 was induced by the lower dose of methanol at 24 h but by the higher one at 96 h. When given together, L-carnitine and methanol (1/2 LD50) significantly stimulated CYP2E1 up to 170% at 24 h and 145% at 96 h.  相似文献   

4.
The protective effects of baicalin (BA), a major flavone from Scutellaria radix on acetaminophen (AP)-induced hepatotoxicity and the possible mechanism(s) of its protective action were investigated in mice. Treatment with BA (300 mg/kg, p.o.) 0.5 h after AP administration significantly prevented an increase in plasma alanine aminotransferase and aspartate aminotransferase activities and AP-induced hepatic necrosis, and also reduced AP-induced mortality from 43% to 0%. In addition, oral treatment with BA significantly prevented AP-induced depletion of glutathione (GSH) contents. However, BA treatment, by itself, did not affect hepatic GSH contents. The effect of BA on the cytochrome P450 2E1 (CYP2E1), the major isozyme involved in AP bioactivation, was investigated. Oral treatment of mice with BA resulted in a significant decrease in AP-induced CYP2E1 activity together with its inhibition of AP-induced CYP2E1 expression. These results show that the hepatoprotective effects of BA against AP overdose may be due to its ability to block the bioactivation of AP by inhibiting CYP2E1 expression.  相似文献   

5.
Retrorsine is a member of the pyrrolizidine alkaloid (PA) family of naturally occurring compounds found in a large number of plant species worldwide. The cytotoxic, mutagenic, and antimitotic effects of PAs have made them targets for studies designed to determine their potential contributions to carcinogen esis and their usefulness for anticancer therapy. Evidence from the literature suggests that bioactivation of PAs by liver cytochrome P450 (CYP) enzymes is required for their toxicity. However, the specific CYP isozymes that are involved in retrorsine metabolism have not been identified. To address this issue, we administered retrorsine to a cohort of young adult male rats and examined induction or enhanced expression of mRNA and protein for widely studied hepatic CYP isoforms spanning four families together with the essential enzyme CYP reductase. The protein levels of normally expressed CYPs 1A2, 2B1/2, and 2E1 increase significantly in rat liver microsomes from retrorsine-treated rats compared to untreated control rats (P < 0. 05), but protein levels of CYP 4A3, CYP 3A1, and CYP reductase were unchanged after retrorsine treatment. In addition, CYP 1A1 mRNA and protein, which are not detectable in the livers of control rats, were induced after retrorsine exposure. The results of the present study demonstrate enhanced or induced expression of hepatic CYPs 1A1, 1A2, 2E1, and 2B1/2 in response to retrorsine exposure in rats, suggesting that one or more of these enzymes may be involved in retrorsine metabolism.  相似文献   

6.
7.
The effect of recombinant human interleukin-1beta (IL-1beta) on the modulation of hepatic cytochrome P450 (P450) was investigated by in vivo subcutaneous dosing studies in male Sprague-Dawley rats. To assess the effect of IL-1beta on heme metabolism, we determined the delta-aminolevulinic acid synthetase (delta-ALAS) and heme oxygenase activities in the liver. IL-1beta suppressed the microsomal total P450 and heme contents and delta-ALAS activity in the liver. In contrast, microsomal heme oxygenase activity was significantly increased by the IL-1beta treatments. Western blot analysis and marker enzyme activities for individual P450 isoforms demonstrated that IL-1beta suppressed CYP2C6, 2C13, 2E1, and 3A2, whereas CYP2A, 2B1/2, 2C11, and 4A1 were not influenced by the treatments. IL-1beta inhibited both allylisopropylamide- and phenobarbital-inducible delta-ALAS activities in the liver. These results indicate that IL-1beta has differential effects on the constitutive P450, and also on delta-ALAS and heme oxygenase activities in rat liver. Thus, the modulation of hepatic P450 by IL-1beta is complex, and IL-1beta may be involved in the regulation of both apoprotein synthesis for each P450 isoform and the heme pools in the liver.  相似文献   

8.
9.
10.
Murray G I, Patimalla S, Stewart K N, Miller I D & Heys S D
(2010) Histopathology 57 , 202–211 Profiling the expression of cytochrome P450 in breast cancer Aims: The cytochrome P450s (P450) are key oxidative enzymes that metabolize many carcinogens and anticancer drugs. Thus, these enzymes influence tumour development, tumour response to therapy and are putative tumour biomarkers. The aim was to define the P450 expression profile in breast cancer and establish the significance of P450 expression in this tumour type. Methods and results: A tissue microarray containing 170 breast cancers of no special type was immunostained for a panel of 21 P450s. The highest percentage of strong immunopositivity in breast cancers was seen for CYP4X1 (50.8%), CYP2S1 (37.5%) and CYP2U1 (32.2%), while CYP2J (98.6%) and CYP3A43 (70.7%) were the P450s that most frequently displayed no immunoreactivity. CYP4V2 (P = 0.01), CYP4X1 (P = 0.01) and CYP4Z1 (P = 0.01) showed correlations with tumour grade. CYP1B1 (P = 0.001), CYP3A5 (P = 0.001) and CYP51 (P = 0.005) showed the most significant correlations with oestrogen receptor status. Correlations with survival were identified for CYP2S1 (P = 0.03), CYP3A4 (P = 0.025), CYP4V2 (P = 0.026) and CYP26A1 (P = 0.03), although none of these P450s was an independent marker of prognosis. Conclusions: This study has defined the expression profile of cytochrome P450s in breast cancer and may offer their potential application as biomarkers to aid decisions regarding optimal adjuvant hormonal therapy.  相似文献   

11.
12.
Molecular modelling of human cytochrome P450 (CYP) isoforms is described, based on amino acid sequence homology with a unique bacterial P450 (CYP102) of known crystal structure. It is found that for the human hepatic P450s involved in the metabolism of xenobiotics, ie. CYPIA2, CYP 1A6, CYP2B6, CYP2C9, CYP2C 19, CYP2D6, CYP2E1 and CYP3A4, there is a satisfactory agreement between specific substrate characteristics and topographical features of the putative active sites, including complementarity with key amino acid residues in the P450 haem environments. A combination of homology model interactions with substrates and certain molecular properties of the compounds themselves provides a methodology for the evaluation of potential P450 selectivity in new chemical entities (NCEs).  相似文献   

13.
Neurosteroids such as dehydroepiandrosterone (DHEA), pregnenolone and 17beta-estradiol are synthesized by cytochrome P450s from endogenous cholesterol. We previously reported a new cytochrome P450 enzyme, CYP7B, highly expressed in rat and mouse brain that metabolizes DHEA and related steroids by hydroxylation at the 7alpha position. Such 7-hydroxylation can enhance DHEA bioactivity in vivo. Here we show that the reaction is conserved across mammalian species: in addition to mouse and rat, DHEA hydroxylation activity was present in brain extracts from sheep, marmoset and human. Northern blotting using a human CYP7B complementary deoxyribonucleic acid (cDNA) probe confirmed the presence of CYP7B mRNA in marmoset and human hippocampus; CYP7B mRNA was present in marmoset cerebellum and brainstem, with lower levels in hypothalamus and cortex. In situ hybridization to human brain revealed higher levels of CYP7B mRNA in the hippocampus than in cerebellum, cortex, or other brain regions. We also measured CYP7B expression in Alzheimer's disease (AD). CYP7B mRNA was significantly decreased (approximately 50% decline; P<0.05) in dentate neurons from AD subjects compared with controls. A decline in CYP7B activity may contribute the loss of effects of DHEA with ageing and perhaps to the pathophysiology of AD.  相似文献   

14.
The mechanism for ethanol-induced oxidative stress has been disputed because of the controversies on modulation of radical generating and scavenging activities by ethanol. In the present work, we attempted to clarify the acute effect of ethanol on the radical generating system as well as the radical scavenging system. For that purpose, chow-fed rats were given ethanol (5 g/kg) or isocaloric glucose solution by intragastric intubation and placed at 32 degrees C for 6 hr. Acute ethanol administration enhanced the expression of cytochrome P450 II E1(CYP II E1) in the liver and attenuated the activities of hepatic glutathione peroxidase (GPx) and reductase (GR). It also caused a significant increase in the level of hepatic thiobarbituric acid reactive substances (TBARS), an indicator of lipid peroxidation. On the other hand, acute ethanol feeding had no effect on the activities of catalase, xanthine oxidase (XO), glutathione transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH). From this result, it is suggested that acute ethanol administration causes the oxidative tissue damage by CYP II E1-associated radical generation and the decreased radical scavenging function due to the reduced activities of hepatic glutathione recycling system such as GPx and GR.  相似文献   

15.
The formation of 1alpha,25-dihydroxyvitamin D3 requires a 25-hydroxylation followed by a 1alpha-hydroxylation catalyzed by cytochrome P450 (CYP) enzymes in liver and kidney. The aim of this review is to give a brief summary of our research on the cytochrome P450 enzymes catalyzing the 25-hydroxylation and 1alpha-hydroxylation and to discuss the results in relation to other published literature on these enzymes. Two hepatic P450 enzymes catalyzing 25-hydroxylation of vitamin D3 exist in mammalian liver - one mitochondrial and one microsomal. The mitochondrial vitamin D3 25-hydroxylase is apparently identical with CYP27A, an obligatory enzyme in bile acid biosynthesis in liver. The microsomal 25-hydroxylase has been purified to apparent homogeneity from pig liver. The enzyme catalyzed 25-hydroxylation of vitamin D3, 1alpha-hydroxyvitamin D3, vitamin D2 and 1alpha-hydroxyvitamin D2. A cDNA encoding pig liver microsomal vitamin D3 25-hydroxylase has been isolated in this laboratory. The primary structure of vitamin D3 25-hydroxylase shows 70-80% identity with members of the CYP2D subfamily and has been designated CYP2D25. Three different 1alpha-hydroxylating cytochromes P450 in kidney, i.e. CYP27A, CYP27B and a microsomal 1alpha-hydroxylase, have been described. Mitochondrial cytochrome P450, catalyzing 1alpha-hydroxylation and 27-hydroxylation but not 24-hydroxylation of 25-hydroxyvitamin D3, was partially purified from pig kidney. Purification and inhibition experiments as well as experiments with a monoclonal antibody against CYP27A indicated that one single enzyme catalyzes both 1alpha- and 27-hydroxylation. Treatment of rats with a single i.v. dose of 1alpha,25-dihydroxyvitamin D3 resulted in a marked suppression of CYP27A mRNA levels in kidney. The results suggest a role for CYP27A as a renal mitochondrial 1alpha-hydroxylase. Subsequently, several research groups reported the isolation of cDNA encoding mouse, rat and human kidney 25-hydroxyvitamin D3 1alpha-hydroxylase. The amino acid sequences deduced from these cDNA clones were similar but differed from that of CYP27A. This 1alpha-hydroxylase constitutes a new CYP27 subfamily, CYP27B. The expression of CYP27B was found to be influenced by vitamin D status and parathyroid hormone. Mutations in the CYP27B gene have been identified in patients with pseudovitamin D-deficiency rickets. A microsomal P450 catalyzing 1alpha-hydroxylation of 25-hydroxyvitamin D3 has been purified to apparent homogeneity from pig kidney. This finding demonstrate the presence of a microsomal 1alpha-hydroxylase in addition to the mitochondrial 1alpha-hydroxylases in kidney. The relative importance and regulation of the different renal 1alpha-hydroxylases in the bioactivation of vitamin D3 under normal and pathological conditions will be subject for future studies.  相似文献   

16.
Oxidative stress is one of the principle mechanism of acrylamide-induced toxicity. Acrylamide is metabolized by cytochrome P450 2E1 (CYP2E1) to glycidamide or by direct conjugation with glutathione. Bearing in mind that up to now the effects of acrylamide on oxidative stress status and CYP2E1 level in endocrine pancreas have not been studied we performed qualitative and quantitative immunohistochemical evaluation of inducible nitric oxide synthase (iNOS), superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), catalase (CAT) and CYP2E1 expression in islets of Langerhans of rats subchronically treated with 25 or 50 mg/kg bw of acrylamide. Since the majority of cells (>80%) in rodent islets are beta cells, in parallel studies, we employed the Rin-5F beta cell line to examine effects of acrylamide on redox status and the activity of CAT, SOD and glutathione-S-transferase (GST), their gene expression, and CYP2E1, NF-E2 p45-related factor 2 (Nrf2) and iNOS expression. Immunohistochemically stained pancreatic sections revealed that acrylamide induced increase of iNOS and decrease of CYP2E1 protein expression, while expression of antioxidant enzymes was not significantly affected by acrylamide in islets of Langerhans. Analysis of Mallory-Azan stained pancreatic sections revealed increased diameter of blood vessels lumen in pancreatic islets of acrylamide-treated rats. Increase in the GST activity, lipid peroxidation and nitrite level, and decrease in GSH content, CAT and SOD activities was observed in acrylamide-exposed Rin-5F cells. Level of mRNA was increased for iNOS, SOD1 and SOD2, and decreased for GSTP1, Nrf2 and CYP2E1 in acrylamide-treated Rin-5F cells. This is the first report of the effects of acrylamide on oxidant/antioxidant parameters and CYP2E1 expression in pancreatic endocrine cells.  相似文献   

17.
18.
Abstract

Objective: Quercetin (Que), a flavonoid, possesses anti-inflammatory and antioxidant properties. It has been shown to protect against liver injury induced by various factors. This study was designed to investigate the underlying mechanism of its protective effect against lipopolysaccharide (LPS)- induced liver damage.

Methods: Mice were pretreated with Que for 7 consecutive days and then exposed to LPS. To study the hepatoprotective effect of Que, oxidative stress parameters, inflammatory cytokine levels in liver and serum liver function indexes were examined. Protein and mRNA expression of nuclear orphan receptors and cytochrome P450 enzymes were measured by Western Blotting and qPCR, respectively.

Results: Que significantly reduced circulating ALT, AST, ALP, and ameliorated LPS-induced histological alterations. In addition, Que obviously decreased markers of oxidative stress and pro-inflammatory cytokines. Furthermore, Que carried out the hepatoprotective effect via regulation of the expression of nuclear orphan receptors (CAR, PXR) and cytochrome P450 enzymes (CYP1A2, CYP2E1, CYP2D22, CYP3A11).

Conclusions: Our findings suggested that Que pretreatment could ameliorate LPS-induced liver injury.  相似文献   

19.
The metabolic enzyme CYP1B1 is a recently cloned member of the cytochrome P450 superfamily, expressed widely throughout primate tissue, including the CNS. Although CYP1B1 protein is known to metabolize estradiol to catecholestrogens in the uterus, its localization and function in brain have not yet been described. To better understand CYP1B1 distribution, we have combined in situ hybridization (ISH) for its mRNA with immunohistochemistry (IHC) for the CYP1B1 protein in selected brain regions of male and female adult rhesus monkeys (Macaca mulatta). Blocks of formalin-fixed tissue obtained from the frontal cortex, hippocampus, thalamus, and amygdala were processed and embedded in paraffin. They were then sectioned and stained as described for human tissue [Muskhelishvili, L., Thompson, P.A., Kusewitt, D.F., Wang, C., Kadlubar, F.F., 2001. In situ hybridization and immunohistochemical analysis of cytochrome P450 1B1 expression in human normal tissues. J. Histochem. Cytochem. 49, 229-236]. Results indicated widespread distribution of CYP1B1 mRNA in both male and female monkey frontal cortex, hippocampus, thalamus, and amygdala. In contrast, although CYP1B1 protein was co-localized with its mRNA in the female brains, it was primarily restricted to hippocampal pyramidal neurons in the male brains. These results suggest that CYP1B1 may subserve widespread metabolic functions in the female primate brain but have more restricted actions within the hippocampal pyramidal neurons of the male.  相似文献   

20.
The present study was undertaken to investigate the hepatoprotective effect of Boschniakia rossica extract (BRE), rich in phenylpropanoid glycoside and iridoid glucoside, on CCl4-induced liver damage. Male Wistar rats were randomly divided into six groups of ten each. While the first group was maintained as normal control, groups II–VI were administered 0.5 ml/kg CCl4 (model), 100 mg/kg BRE plus CCl4, 200 mg/kg BRE plus CCl4, 50 mg/kg silymarin plus CCl4 and 200 mg/kg BRE, respectively. CCl4 challenge not only elevated the serum marker enzyme activities and reduced albumin (ALB) level but also increased liver oxidative stress, as evidenced by elevated lipid hydroperoxide (LOOH) and malondialdehyde (MDA) concentrations, combined with suppressed potential of hepatic antioxidative defense system including superoxide dismutase (SOD), glutathione peroxidase (GPx) activities and reduced glutathione (GSH) content. Furthermore, serum tumor necrosis factor-α (TNF-α), hepatic nitrite level, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein contents were elevated while cytochrome P450 2E1 (CYP2E1) expression and function were inhibited. Preadministration of BRE not only reversed the significant changes in serum toxicity markers, hepatic oxidative stress, xenobiotic metabolizing enzymes and proinflammatory mediators induced by CCl4 but also restored liver CYP2E1 level and function. Interestingly, the protein expression of heme oxygenase-1 (HO-1) was further elevated by BRE treatment, which was markedly increased after CCl4 challenge. These results demonstrate that BRE exhibits protective effect on CCl4-induced acute hepatic injury via, at least in part, reduced oxidative stress, suppressed inflammatory responses and induced HO-1 protein expression combined with improved CYP2E1 level and function in liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号