共查询到20条相似文献,搜索用时 12 毫秒
1.
Efficient biomaterial screening platforms can test a wide range of extracellular environments that modulate vascular growth. Here, we used synthetic hydrogel arrays to probe the combined effects of Cys-Arg-Gly-Asp-Ser (CRGDS) cell adhesion peptide concentration, shear modulus and vascular endothelial growth factor receptor 2 (VEGFR2) inhibition on human umbilical vein endothelial cell (HUVEC) viability, proliferation and tubulogenesis. HUVECs were encapsulated in degradable poly(ethylene glycol) (PEG) hydrogels with defined CRGDS concentration and shear modulus. VEGFR2 activity was modulated using the VEGFR2 inhibitor SU5416. We demonstrate that synergy exists between VEGFR2 activity and CRGDS ligand presentation in the context of maintaining HUVEC viability. However, excessive CRGDS disrupts this synergy. HUVEC proliferation significantly decreased with VEGFR2 inhibition and increased modulus, but did not vary monotonically with CRGDS concentration. Capillary-like structure (CLS) formation was highly modulated by CRGDS concentration and modulus, but was largely unaffected by VEGFR2 inhibition. We conclude that the characteristics of the ECM surrounding encapsulated HUVECs significantly influence cell viability, proliferation and CLS formation. Additionally, the ECM modulates the effects of VEGFR2 signaling, ranging from changing the effectiveness of synergistic interactions between integrins and VEGFR2 to determining whether VEGFR2 upregulates, downregulates or has no effect on proliferation and CLS formation. 相似文献
2.
《Biomaterials》2015
Valvular interstitial cells (VICs) are active regulators of valve homeostasis and disease, responsible for secreting and remodeling the valve tissue matrix. As a result of VIC activity, the valve modulus can substantially change during development, injury and repair, and disease progression. While two-dimensional biomaterial substrates have been used to study mechanosensing and its influence on VIC phenotype, less is known about how these cells respond to matrix modulus in a three-dimensional environment. Here, we synthesized MMP-degradable poly(ethylene glycol) (PEG) hydrogels with elastic moduli ranging from 0.24 kPa to 12 kPa and observed that cell morphology was constrained in stiffer gels. To vary gel stiffness without substantially changing cell morphology, cell-laden hydrogels were cultured in the 0.24 kPa gels for 3 days to allow VIC spreading, and then stiffened in situ via a second, photoinitiated thiol-ene polymerization such that the gel modulus increased from 0.24 kPa to 1.2 kPa or 13 kPa. VICs encapsulated within soft gels exhibited αSMA stress fibers (∼40%), a hallmark of the myofibroblast phenotype. Interestingly, in stiffened gels, VICs became deactivated to a quiescent fibroblast phenotype, suggesting that matrix stiffness directs VIC phenotype independent of morphology, but in a manner that depends on the dimensionality of the culture platform. Collectively, these studies present a versatile method for dynamic stiffening of hydrogels and demonstrate the significant effects of matrix modulus on VIC myofibroblast properties in three-dimensional environments. 相似文献
3.
《Acta biomaterialia》2014,10(12):4996-5004
Disease, trauma and aging all lead to deficits in soft tissue. As a result, there is a need to develop materials that safely and effectively restore areas of deficiency. While autogenous fat is the current gold standard, hyaluronic acid (HA) fillers are commonly used. However, the animal and bacterial origin of HA-based materials can induce adverse reactions in patients. With the aim of developing a safer and more affordable alternative, this study characterized the properties of a plant-derived, injectable carboxymethylcellulose (CMC) soft tissue filler. Specifically, methacrylated CMC was synthesized and crosslinked to form stable hydrogels at varying macromer concentrations (2–4% w/v) using an ammonium persulfate and ascorbic acid redox initiation system. The equilibrium Young’s modulus was shown to vary with macromer concentration (ranging from ∼2 to 9.25 kPa), comparable to values of native soft tissue and current surgical fillers. The swelling properties were similarly affected by macromer concentration, with 4% gels exhibiting the lowest swelling ratio and mesh size, and highest crosslinking density. Rheological analysis was performed to determine gelation onset and completion, and was measured to be within the ISO standard for injectable materials. In addition, hydrolytic degradation of these gels was sensitive to macromer concentration, while selective removal using enzymatic treatment was also demonstrated. Moreover, favorable cytocompatibility of the CMC hydrogels was exhibited by co-culture with human dermal fibroblasts. Taken together, these findings demonstrate the tunability of redox-crosslinked CMC hydrogels by varying fabrication parameters, making them a versatile platform for soft tissue filler applications. 相似文献
4.
Injected therapeutics, such as cells or biological molecules, may have enhanced efficiency when delivered within a scaffold carrier. Here, we describe a dual-component Dock-and-Lock (DnL) self-assembly mechanism that can be used to construct shear-thinning, self-healing, and injectable hydrogels. One component is derived from the RIIα subunit of cAMP-dependent kinase A and is engineered as a telechelic protein with end groups that dimerize (docking step). The second component is derived from the anchoring domain of A-kinase anchoring protein (AD) and is attached to multi-arm crosslinker polymers and binds to the docked proteins (locking step). When mixed, these two DnL components form robust physical hydrogels instantaneously and under physiological conditions. Mechanical properties and erosion rates of DnL gels can be tuned through the AD peptide sequence, the concentration and ratio of each component, and the number of peptides on the cross-linking polymer. DnL gels immediately self-recover after deformation, are resistant to yield at strains as high as 400%, and completely self-heal irrespective of prior mechanical disruption. Mesenchymal stem cells mixed in DnL gels and injected through a fine needle remain highly viable (>90%) during the encapsulation and delivery process, and encapsulated large molecules are released with profiles that correspond to gel erosion. Thus, we have used molecular engineering strategies to develop cytocompatible and injectable hydrogels that have the potential to support cell and drug therapies. 相似文献
5.
Non-viral gene delivery holds great promise for promoting tissue regeneration, and offers a potentially safer alternative than viral vectors. Great progress has been made to develop biodegradable polymeric vectors for non-viral gene delivery in 2D culture, which generally involves isolating and modifying cells in vitro, followed by subsequent transplantation in vivo. Scaffold-mediated gene delivery may eliminate the need for the multiple-step process in vitro, and allows sustained release of nucleic acids in situ. Hydrogels are widely used tissue engineering scaffolds given their tissue-like water content, injectability and tunable biochemical and biophysical properties. However, previous attempts on developing hydrogel-mediated non-viral gene delivery have generally resulted in low levels of transgene expression inside 3D hydrogels, and increasing hydrogel stiffness further decreased such transfection efficiency. Here we report the development of biodegradable polymeric vectors that led to efficient gene delivery inside poly(ethylene glycol) (PEG)-based hydrogels with tunable matrix stiffness. Photocrosslinkable gelatin was maintained constant in the hydrogel network to allow cell adhesion. We identified a lead biodegradable polymeric vector, E6, which resulted in increased polyplex stability, DNA protection and achieved sustained high levels of transgene expression inside 3D PEG-DMA hydrogels for at least 12 days. Furthermore, we demonstrated that E6-based polyplexes allowed efficient gene delivery inside hydrogels with tunable stiffness ranging from 2 to 175 kPa, with the peak transfection efficiency observed in hydrogels with intermediate stiffness (28 kPa). The reported hydrogel-mediated gene delivery platform using biodegradable polyplexes may serve as a local depot for sustained transgene expression in situ to enhance tissue engineering across broad tissue types. 相似文献
6.
《Biomaterials》2015
The behavior of cancer cells is strongly influenced by the properties of extracellular microenvironments, including topology, mechanics and composition. As topological and mechanical properties of the extracellular matrix are hard to access and control for in-depth studies of underlying mechanisms in vivo, defined biomimetic in vitro models are needed. Herein we show, how pore size and fibril diameter of collagen I networks distinctively regulate cancer cell morphology and invasion. Three-dimensional collagen I matrices with a tight control of pore size, fibril diameter and stiffness were reconstituted by adjustment of concentration and pH value during matrix reconstitution. At first, a detailed analysis of topology and mechanics of matrices using confocal laser scanning microscopy, image analysis tools and force spectroscopy indicate pore size and not fibril diameter as the major determinant of matrix elasticity. Secondly, by using two different breast cancer cell lines (MDA-MB-231 and MCF-7), we demonstrate collagen fibril diameter – and not pore size – to primarily regulate cell morphology, cluster formation and invasion. Invasiveness increased and clustering decreased with increasing fibril diameter for both, the highly invasive MDA-MB-231 cells with mesenchymal migratory phenotype and the MCF-7 cells with amoeboid migratory phenotype. As this behavior was independent of overall pore size, matrix elasticity is shown to be not the major determinant of the cell characteristics. Our work emphasizes the complex relationship between structural-mechanical properties of the extracellular matrix and invasive behavior of cancer cells. It suggests a correlation of migratory and invasive phenotype of cancer cells in dependence on topological and mechanical features of the length scale of single fibrils and not on coarse-grained network properties. 相似文献
7.
Cells respond to various chemical signals as well as environmental aspects of the extracellular matrix (ECM) that may alter cellular structures and functions. Hence, better understanding of the mechanical stimuli of the matrix is essential for creating an adjuvant material that mimics the physiological environment to support cell growth and differentiation, and control the release of the growth factor. In this study, we utilized the property of transglutaminase cross-linked gelatin (TG-Gel), where modification of the mechanical properties of TG-Gel can be easily achieved by tuning the concentration of gelatin. Modifying one or more of the material parameters will result in changes of the cellular responses, including different phenotype-specific gene expressions and functional differentiations. In this study, stiffer TG-Gels itself facilitated focal contact formation and osteogenic differentiation while soft TG-Gel promoted cell proliferation. We also evaluated the interactions between a stimulating factor (i.e. BMP-2) and matrix rigidity on osteogenesis both in vitro and in vivo. The results presented in this study suggest that the interactions of chemical and physical factors in ECM scaffolds may work synergistically to enhance bone regeneration. 相似文献
8.
The aim of this present study was to provide a scaffold as a tool for the investigation of the effect of mechanical stimulation on three-dimensionally cultured cells. For this purpose, we developed an artificial self-assembling peptide (SPG-178) hydrogel scaffold. The structural properties of the SPG-178 peptide were confirmed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and transmission electron microscopy (TEM). The mechanical properties of the SPG-178 hydrogel were studied using rheology measurements. The SPG-178 peptide was able to form a stable, transparent hydrogel in a neutral pH environment. In the SPG-178 hydrogel, mouse skeletal muscle cells proliferated successfully (increased by 12.4 ± 1.5 times during 8 days of incubation; mean ± SEM). When the scaffold was statically stretched, a rapid phosphorylation of ERK was observed (increased by 2.8 ± 0.2 times; mean ± SEM). These results demonstrated that the developed self-assembling peptide gel is non-cytotoxic and is a suitable tool for the investigation of the effect of mechanical stimulation on three-dimensional cell culture. 相似文献
9.
Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture 总被引:2,自引:0,他引:2
We describe a method for creating alginate hydrogels with adjustable degradation rates that can be used as scaffolds for stem cells. Alginate hydrogels have been widely tested as three-dimensional constructs for cell culture, cell carriers for implantation, and in tissue regeneration applications; however, alginate hydrogel implants can take months to disappear from implantation sites because mammals do not produce endogenous alginases. By incorporating poly(lactide-co-glycolide) (PLGA) microspheres loaded with alginate lyase into alginate hydrogels, we demonstrate that alginate hydrogels can be enzymatically degraded in a controlled and tunable fashion. We demonstrate that neural progenitor cells (NPCs) can be cultured and expanded in vitro in this degradable alginate hydrogel system. Moreover, we observe a significant increase in the expansion rate of NPCs cultured in degrading alginate hydrogels versus NPCs cultured in standard, i.e. non-degrading, alginate hydrogels. Degradable alginate hydrogels encapsulating stem cells may be widely applied to develop novel therapies for tissue regeneration. 相似文献
10.
Deepak Raghothaman Meng Fatt Leong Tze Chiun Lim Jerry K.C. Toh Andrew C.A. Wan Zheng Yang Eng Hin Lee 《Biomaterials》2014
Cell–cell and cell–matrix interactions are important events in directing stem cell chondrogenesis, which can be promoted in matrix microenvironments presenting appropriate ligands. In this study, interfacial polyelectrolyte complexation (IPC) based hydrogels were employed, wherein the unique formation of submicron size fibers facilitated spatial orientation of ligands within such hydrogels. The influence of aligned, collagen type I (Col I) presentation in IPC hydrogel on chondrogenic differentiation of human mesenchymal stem cells (MSC) was investigated. Early morphological dynamics, onset of N-cadherin/β-catenin mediated chondrogenic induction and differentiation were compared between MSCs encapsulated in IPC-Col I and IPC-control (without Col I) hydrogels, and a conventional Col I hydrogel. MSCs in IPC-Col I hydrogel aligned and packed uniformly, resulting in enhanced cell–cell interactions and cellular condensation, facilitating superior chondrogenesis and the generation of mature hyaline neocartilage, with notable downregulation of fibrocartilaginous marker. Inhibition study using function blocking β1-integrin antibodies reversed the aforementioned outcomes, indicating the importance of coupling integrin mediated cell–matrix interactions and N-cadherin/β-catenin mediated downstream signaling events. This study demonstrated the significance of oriented ligand presentation for MSC chondrogenesis, and the importance of facilitating an orderly sequence of differentiation events, initiated by proximal interactions between MSCs and the extracellular matrix for robust neocartilage formation. 相似文献
11.
Cairnan R.E. Duffy Rong Zhang Siew-Eng How Annamaria Lilienkampf Paul A. De Sousa Mark Bradley 《Biomaterials》2014
Mesenchymal stems cells (MSCs) are currently the focus of numerous therapeutic approaches in tissue engineering/repair because of their wide multi-lineage potential and their ability to modulate the immune system response following transplantation. Culturing these cells, while maintaining their multipotency in vitro, currently relies on biological substrates such as gelatin, collagen and fibronectin. In addition, harvesting cells from these substrates requires enzymatic or chemical treatment, a process that will remove a multitude of cellular surface proteins, clearly an undesirable process if cells are to be used therapeutically. Herein, we applied a high-throughput ‘hydrogel microarray’ screening approach to identify thermo-modulatable substrates which can support hES-MP and ADMSC growth, permit gentle reagent free passaging, whilst maintaining multi-lineage potential. In summary, the hydrogel substrate identified, poly(AEtMA-Cl-co-DEAA) cross-linked with MBA, permitted MSCs to be maintained over 10 passages (each time via thermo-modulation), with the cells retaining expression of MSC associated markers and lineage potency. This chemically defined system allowed the passaging and maintenance of cellular phenotype of this clinically important cell type, in the absence of harsh passaging and the need for biological substrates. 相似文献
12.
Human adipose-derived stem cells (hADSCs) are a promising cell source for tissue engineering and regenerative medicine with no ethnical issue and easy access of large quantities. Conventional surfaces for hADSC culture, such as tissue culture plates (TCPs), do not provide optimal environmental cues, leading to limited expansion, loss of pluripotency and undesirable differentiation of stem cells. The present study demonstrated that heparin-based hydrogels without additional modification provided an excellent surface for adhesion and proliferation of hADSCs, which were further tunable by both the amount of heparin (in a positive way) and the elasticity of hydrogel (in a negative way). The optimized heparin-based hydrogel could selectively modulate the adhesion of hADSCs and human bone marrow stem cells (but not all kinds of cells), and resulted in a significant increase in cell proliferation compared to TCP. Furthermore, in terms of the maintenance of pluripotency and specific differentiation, heparin-based hydrogel was much superior to TCP. The selective binding and proliferation of human mesenchymal stem cells on heparin-based hydrogel over other hydrogels were largely mediated by integrin β1 and selectin, and these superior characteristics were observed regardless of the presence of serum proteins in the culture medium. Consequently, heparin-based hydrogel could be a powerful platform for cultivation of mesenchymal stem cells in various applications. 相似文献
13.
Aurélien Lathuilière Steffen Cosson Matthias P. Lutolf Bernard L. Schneider Patrick Aebischer 《Biomaterials》2014
The rapid increase in the number of approved therapeutic proteins, including recombinant antibodies, for diseases necessitating chronic treatments raises the question of the overall costs imposed on healthcare systems. It is therefore important to investigate alternative methods for recombinant protein administration. The implantation of genetically engineered cells is an attractive strategy for the chronic long-term delivery of recombinant proteins. Here, we have developed a high-capacity cell encapsulation system for the implantation of allogeneic myoblasts, which survive at high density for at least one year. This flat sheet device is based on permeable polypropylene membranes sealed to a mechanically resistant frame which confine cells seeded in a tailored biomimetic poly(ethylene glycol) (PEG)-based hydrogel matrix. In order to quantitate the number of cells surviving in the device and optimize initial conditions leading to high-density survival, we implant devices containing C2C12 mouse myoblasts expressing a luciferase reporter in the mouse subcutaneous tissue. We show that initial cell load, hydrogel stiffness and permeable membrane porosity are critical parameters to achieve long-term implant survival and efficacy. Optimization of these parameters leads to the survival of encapsulated myogenic cells at high density for several months, with minimal inflammatory response and dense neovascularization in the adjacent host tissue. Therefore, this encapsulation system is an effective platform for the implantation of genetically engineered cells in allogeneic conditions, which could be adapted to the chronic administration of recombinant proteins. 相似文献
14.
Jennifer N. Beck Anirudha Singh Ashley R. Rothenberg Jennifer H. Elisseeff Andrew J. Ewald 《Biomaterials》2013
Metastasis begins with the escape, or dissemination, of cancer cells from the primary tumor. We recently demonstrated that tumors preferentially disseminate into collagen I and not into basement membrane protein gels (Matrigel). In this study, we used synthetic polymer systems to define material properties that could induce dissemination into Matrigel. We first specifically varied rigidity by varying the crosslinking density of poly(ethylene glycol) (PEG) networks within Matrigel scaffolds. Increased microenvironmental rigidity limited epithelial growth but did not promote dissemination. We next incorporated adhesive signals into the PEG network using peptide-conjugated cyclodextrin (α-CDYRGDS) rings. The α-CDYRGDS rings threaded along the PEG polymers, enabling independent control of matrix mechanics, adhesive peptide composition, and adhesive density. Adhesive PEG networks induced dissemination of normal and malignant mammary epithelial cells at intermediate values of adhesion and rigidity. Our data reveal that microenvironmental signals can induce dissemination of normal and malignant epithelial cells without requiring the fibrillar structure of collagen I or containing collagen I-specific adhesion sequences. Finally, the nanobiomaterials and assays developed in this study are generally useful both in 3D culture of primary mammalian tissues and in the systematic evaluation of the specific role of mechanical and adhesive inputs on 3D tumor growth, invasion, and dissemination. 相似文献
15.
《Acta histochemica》2022,124(7):151953
Multiple Sclerosis (MS) is a chronic and autoimmune disease of the central nervous system that causes inflammation in the brain and spinal cord, progressive degeneration of central nervous system tissue, damage to neuronal axons, and loss of function of central nervous system neurons. Experimental encephalomyelitis is an alternative animal model of MS that can simulate the symptoms of this disease. Cuprizone is one of the factors creating this model. Various researchers are testing the use of different cells to reduce the symptoms of cuprizone-demyelinated mice. The different injection methods explained in this article include intracerebral, intraperitoneal, intravenous, and intranasal. The intracerebral method, in contrast to the intranasal method, was widely employed by researchers. In each technique, the researchers try to inject a specific type of stem cell (SC) and monitor their efficiency. For monitoring SCs various labeling procedures are available, however, there is an upward trend in using magnetic resonance imaging (MRI). Two main barriers to using this method are high cost and complexity. In the current review, we try to make review cell therapy in the cuprizone model of MS. 相似文献
16.
K.H. Mair C. Sedlak T. Käser A. Pasternak B. Levast W. Gerner A. Saalmüller A. Summerfield V. Gerdts H.L. Wilson F. Meurens 《Developmental and comparative immunology》2014
Over the last few years, we have seen an increasing interest and demand for pigs in biomedical research. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of their anatomy, genetics, and physiology, and often are the model of choice for the assessment of novel vaccines and therapeutics in a preclinical stage. However, the pig as a model has much more to offer, and can serve as a model for many biomedical applications including aging research, medical imaging, and pharmaceutical studies to name a few. In this review, we will provide an overview of the innate immune system in pigs, describe its anatomical and physiological key features, and discuss the key players involved. In particular, we compare the porcine innate immune system to that of humans, and emphasize on the importance of the pig as model for human disease. 相似文献
17.
Biomechanical and angiogenic properties of tissue-engineered rat trachea using genipin cross-linked decellularized tissue 总被引:1,自引:0,他引:1
Haag J Baiguera S Jungebluth P Barale D Del Gaudio C Castiglione F Bianco A Comin CE Ribatti D Macchiarini P 《Biomaterials》2012,33(3):780-789
In this study, the obtainment and characterization of decellularized rat tracheal grafts are described. The detergent-enzymatic method, already used to develop bioengineered pig and human trachea scaffolds, has been applied to rat tracheae in order to obtain airway grafts suitable to be used to improve our knowledge on the process of tissue-engineered airway transplantation and regeneration. The results demonstrated that, after 9 detergent-enzymatic cycles, almost complete decellularized tracheae, retaining the hierarchical and mechanical properties of the native tissues with strong in vivo angiogenic characteristics, could be obtained. Moreover, to improve the mechanical properties of decellularized tracheae, genipin is here considered as a naturally derived cross-linking agent. The results demonstrated that the treatment increased mechanical properties, in term of secant modulus, without neither altering the pro-angiogenic properties of decellularized airway matrices or eliciting an in vivo inflammatory response. 相似文献
18.
《Biomaterials》2015
Extracellular matrix (ECM) derived scaffolds continue to be investigated for the treatment of volumetric muscle loss (VML) injuries. Clinically, ECM scaffolds have been used for lower extremity VML repair; in particular, MatriStem™, a porcine urinary bladder matrix (UBM), has shown improved functional outcomes and vascularization, but limited myogenesis. However, efficacy of the scaffold for the repair of traumatic muscle injuries has not been examined systematically. In this study, we demonstrate that the porcine UBM scaffold when used to repair a rodent gastrocnemius musculotendinous junction (MTJ) and tibialis anterior (TA) VML injury does not support muscle tissue regeneration. In the MTJ model, the scaffold was completely resorbed without tissue remodeling, suggesting that the scaffold may not be suitable for the clinical repair of muscle-tendon injuries. In the TA VML injury, the scaffold remodeled into a fibrotic tissue and showed functional improvement, but not due to muscle fiber regeneration. The inclusion of physical rehabilitation also did not improve functional response or tissue remodeling. We conclude that the porcine UBM scaffold when used to treat VML injuries may hasten the functional recovery through the mechanism of scaffold mediated functional fibrosis. Thus for appreciable muscle regeneration, repair strategies that incorporate myogenic cells, vasculogenic accelerant and a myoconductive scaffold need to be developed. 相似文献
19.
Karen A. Simon Kyeng Min Park Bobak Mosadegh Anand Bala Subramaniam Aaron D. Mazzeo Philip M. Ngo George M. Whitesides 《Biomaterials》2014
Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system–Cells-in-Gels-in-Mesh (CiGiM)–that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells—layer-by-layer—within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis—(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format. 相似文献
20.
Ando W Tateishi K Hart DA Katakai D Tanaka Y Nakata K Hashimoto J Fujie H Shino K Yoshikawa H Nakamura N 《Biomaterials》2007,28(36):5462-5470
The objective was to in vitro generate a mesenchymal stem cell (MSC)-based tissue-engineered construct (TEC) to facilitate in vivo repair in a porcine chondral defect model. Porcine synovial MSCs were cultured in monolayer at high density and were subsequently detached from the substratum. The cell/matrix complex spontaneously contracted to develop a basic TEC. Immunohistochemical analysis showed that the basic TEC contained collagen I and III, fibronectin, and vitronectin. The basic TEC exhibited stable adhesion to the surface of a porcine cartilage matrix in an explant culture system. The TEC cultured in chondrogenic media exhibited elevated expression of glycosaminoglycan and chondrogenic marker genes. The TEC were implanted in vivo into chondral defects in the medial femoral condyle of 4-month-old pigs, followed by sacrifice after 6 months. Implantation of a TEC into chondral defects initiated repair with a chondrogenic-like tissue, as well as secure biological integration to the adjacent cartilage. Histologically, the repair tissue stained positively with Safranin O and for collagen II. Biomechanical evaluation revealed that repair tissue exhibited mechanical properties similar to those of normal porcine cartilage in static compression and friction tests. This technology is a unique and promising method for stem cell-based cartilage repair. 相似文献