首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of spray drying polyethylene glycol (PEG) 4000 and lactose/PEG solutions was investigated. Micro-spherical PEG particles were successfully prepared from ethanol, which allowed lower outlet temperatures than water. The product was crystalline and consisted of rough spheres or rod like particles. In the case of lactose/PEG composites, spray dried from water, the crystallinity of both components was reduced on spray drying, the extent being dependent on the starting composition. Spray dried lactose/PEG with PEG present as 10% by weight was found to be the most amorphous of the systems prepared. Conversion to more crystalline products occurred over time, the rates of conversion being dependent on temperature and humidity. On storage at low humidity (31-34%) amorphous lactose in lactose/PEG spray dried systems converts to anhydrous crystalline lactose while at high humidity (75% RH) the monohydrate is formed. The rate of transformation of amorphous lactose to the crystalline monohydrate form, at high relative humidity, was quantified using the Avrami equation applied both to X-ray diffraction (XRD) peak intensity and heat of fusion data. Crystallisation of lactose appeared to be retarded at low PEG concentrations, where PEG was present predominantly in a non-crystalline state, but was accelerated at higher PEG contents.  相似文献   

2.
The aim of this study was to characterize the physical properties of spray dried lactose in the presence of different polyethylene glycols (PEG 400, PEG 3000 and PEG 6000) and to evaluate their performance as carriers for dry powder inhaler (DPI) formulations. The efficiency of spray dried lactose/PEG carriers in aerosolisation of beclomethasone dipropionate (BD), a model hydrophobic drug, was compared to Pharmatose 325 M (L325), spray dried lactose alone (SDL), and also a sieved (< 38 microm) fraction of alpha-lactose monohydrate (SL). In vitro deposition analysis was performed using a twin stage liquid impinger at a flow rate of 60 l/min through a Spinhaler. The deposition profiles of the drug from binary formulations composed of BD and spray dried lactose/PEG carriers were also compared to ternary formulations containing large and fine lactose carriers. Differential scanning calorimetry and X-ray diffraction data showed the presence of alpha-anhydrous lactose in spray dried lactose/PEG crystalline powders. Spray drying of lactose in the presence of PEG 400 resulted in the production of a powder (SDL-PEG400) with lower alpha-lactose monohydrate content, and also smaller particle size distribution than those obtained in the presence of PEG 3000 (SDL-PEG3000) or PEG 6000 (SDL-PEG6000). All formulations showed different deposition profiles, except those containing SDL-PEG3000 or SDL-PEG6000 which exhibited similar data. The fine particle fraction of aerosolised BD varied from 6.26 +/- 1.07 (for L325) to 25.87 +/- 5.33 (for SDL-PEG3000). All deposition profiles of BD aerosolised from SDL-PEG3000 were significantly higher (P < 0.01) than those produced by binary and ternary formulations containing L325, a coarse lactose commercially available for DPI formulations. The differences observed in deposition data for various carriers were interpreted according to their physical properties. It was concluded that particle size distribution, morphology and specific surface texture of SDL-PEG3000 and SDL-PEG6000 were important factors influencing their efficiency as small carriers for DPI formulations.  相似文献   

3.
Drug–carrier particle interactions greatly affect the detachment of drug from the carrier in inhalation powders. In this study, a novel multiple dose, reservoir-based Taifun® was used as a dry powder inhaler, and the effects of carrier physical properties were evaluated on the pulmonary deposition of budesonide, along with physical stability of the inhalation powder. In this study, untreated commercial preparation of -lactose monohydrate, highly amorphous spray dried lactose, crystallized spray dried lactose, Flowlac-100® and Flowlac-100® mixed with crystalline micronized lactose were used as carriers. Dry powder formulations were prepared by the suspension method, where the budesonide–carrier ratio was 1:15.1 (w/w). Carriers and formulations were initially characterized, and again after 1 month’s storage at 40 °C/75% RH. The physical properties of the carriers strongly affected the pulmonary deposition of budesonide and the physical stability of the inhalation powder. Initially, amorphous contents of the carriers were 0–64%, but spontaneous crystallisation of the amorphous lactose occurred during storage and, thus all carriers were 100% crystalline after storage. When compared to an untreated -lactose monohydrate, the highly amorphous spray dried lactose and Flowlac-100® did not improve aerosol performance of the inhalation powder. When crystalline spray dried lactose was used as a carrier, the highest RF% values were achieved, and RF % values did not alter during storage but the emitted budesonide dose was lower than the theoretical dose. When Flowlac-100® mixed with crystalline micronized lactose was used as a carrier, the emitted budesonide dose was close to the theoretical dose, and high RF % values were achieved but these changed during storage.  相似文献   

4.
Spray dried (15% amorphous) lactose absorbs moisture when exposed to humidity. At 57% relative humidity (RH), the moisture uptake was 1.5%. It is suggested that the moisture is preferentially taken up in the amorphous regions, thereby increasing the actual moisture content in the amorphous parts up to 10%. The moisture uptake reduced the glass transition temperature below the operating temperature and thereby transformed the amorphous regions from a glassy to a rubbery state, setting up conditions for crystallisation of the lactose. Compaction of dry spray dried lactose led to a relatively low initial tablet strength. However, when pre-exposed to 57% RH for a short time period (2 to 4 hours) before compaction, the initial tablet strength increased markedly. This was due to moisture uptake which resulted in a higher molecular mobility of the amorphous spray dried lactose, and to an increase in plastic flow. Post compaction storage of tablets containing amorphous regions of spray dried lactose at 57% RH resulted in an increased tablet strength after 4 hours due to crystallisation. Spray dried lactose exposed to 57% RH for more than 6 hours before compaction led to the lowest initial tablet strength. Crystallisation of the amorphous regions of the spray dried lactose occurred before tabletting. No increase in tablet strength was noted on post compaction storage for these tablets.  相似文献   

5.
The aim of this study was to improve the aerosolisation behaviour of disodium cromogycate (DSCG), using spray drying technique. The effect of vehicle on the drug particle properties was investigated. L-leucine was selected as a natural antiadherent amino acid to improve the deagglomeration of DSCG particles. Spray dried samples of DSCG alone or with L-leucine were prepared from water and ethanol under the same conditions. The powder properties of the samples were examined by laser diffraction, helium densitometer, X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis. The in vitro deposition was determined, using an Andersen cascade impactor with a Spinhaler at a flow rate of 60 l/min. An amorphous form of the drug was obtained when water was used. However, crystal transformation of original DSCG in the presence of ethanol during spray drying resulted in production of elongated particles. These particles exhibited improved aerodynamic properties, compared to the amorphous and commercial materials. Significant differences in fine particle fraction were observed using the two vehicles. Co-spray drying of DSCG and L-leucine improved the deposition profiles of the drug. These results indicated that the change in crystal structure of DSCG during spray drying process was susceptible to the nature of the vehicle. A crystalline form of DSCG with good aerodynamic properties was achieved during spray drying process. In addition, the processing of DSCG with L-leucine in a single step using ethanol resulted in an improvement in dispersion properties of the drug particles.  相似文献   

6.
The aim of this study was to assess the potential of delivering a combination antibiotic therapy, containing doxycycline and ciprofloxacin (both hydrochloride) as a dry powder (DPI) formulation for inhalation. Single and combination antibiotics were produced by spray drying. Particle size distributions were characterized by laser diffraction and imaging conducted by scanning electron microscopy. Solid-state characterisation of the antibiotics was carried out using differential scanning calorimetry, dynamic vapour sorption, X-ray powder diffraction, and differential scanning calorimetry. Using the Aerolizer device, the aerosol performance was measured using multistage liquid impinger and analysed using high performance liquid chromatography (R(2) = 1.0, CV = 0.4-1.0%). Furthermore, a disk diffusion test was performed for the assessment of the in vitro antimicrobial activity of the raw and spray dried antibiotics against bacteria. Results showed that cospray drying of the ciprofloxacin and doxycycline produced an antibiotic formulation (in a 1:1 ratio) suitable for inhalation that showed to be physically more stable then the analogous single spray dried antibiotic. The cospray dried powder has improved dispersion over the less stable single spray dried ciprofloxacin. The spray dried antibiotics were observed to have similar antimicrobial activity to the original antibiotics for Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyrogenes, suggesting the spray drying process does not affect the anti-bacterial activity of the drug. Cospray dried antibiotics from a DPI is thus feasible and can potentially be an attractive delivery alternative to the more conventional systemic delivery route.  相似文献   

7.
The purpose of this study was to prepare excipient-free porous microparticles of bendroflumethiazide by spray drying and to characterise the physicochemical properties of the particles produced. Solutions of bendroflumethiazide in ethanol/water, ethanol/water/ammonium carbonate or methanol/water/ammonium carbonate were spray dried using a laboratory spray dryer. Spray dried products were characterised by scanning electron microscopy, X-ray powder diffraction, differential scanning calorimetry, FTIR, laser diffraction particle sizing and density measurement. Nanoporous microparticles (NPMPs) were prepared from the alcoholic solutions containing ammonium carbonate. NPMPs were amorphous in nature, had median particles sizes less than 3mum and densities that were significantly reduced compared to non-porous spray dried bendroflumethiazide powder. The novel process may be used to produce excipient-free amorphous microparticles with desirable physical properties such as amorphous solid state, porosity and low bulk density. This new engineering technology has applications in the design of other therapeutic agents such as those used in pulmonary delivery.  相似文献   

8.
The effect of spray drying salbutamol sulphate, salbutamol sulphate/lactose and salbutamol sulphate/polyethylene glycol (PEG) solutions was investigated. Co-spray drying salbutamol sulphate with lactose, which is amorphous when spray dried alone, resulted in amorphous composites. Co-spray drying salbutamol sulphate with PEG 4000 and PEG 20,000, which do not form amorphous systems when spray dried alone, resulted in systems of varying crystallinity, the crystallinity depending on the weight ratio of polymer to drug. Examination of the physical properties of these salbutamol sulphate co-spray dried systems and those of bendroflumethiazide/PEG and lactose/PEG composites suggested that the formation and physical stability of amorphous composites prepared by spray drying is dependent on whether the glass transition temperature, Tg, of one of the two components is high enough to result in a Tg of the composite sufficiently high that the Kauzmann temperature of the mix is greater than the temperature of storage. The modified Gordon-Taylor equation proved to be useful in predicting the likelihood that a two-component composite will be amorphous on spray drying. Furthermore, the Gordon-Taylor equation was also useful in predicting the likely physical stability of amorphous two component composites and predicted that even polymers with apparently low Tgs, such as PEGs, may be stabilised in an amorphous composite by a suitable additive having a sufficiently high Tg.  相似文献   

9.

Purpose

This study aims to investigate the influence of different storage humidity conditions on crystallization and aerosol performance of inhalable spray dried amorphous powder formulations (Ciprofloxacin hydrochloride as the model drug).

Methods

The spray dried samples were stored at 20%, 55% and 75% relative humidity (RH). Crystallinity was monitored by Powder X-ray diffraction (PXRD), and particle morphology was measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Aerosol performance was evaluated using a multi-stage liquid impinger (MSLI).

Results

PXRD diffractograms showed the spray dried Ciprofloxacin stored at 20% RH for three weeks were amorphous; whereas those stored at 55% RH and 75% RH started crystallizing after one hour. Fine particle fraction (FPF) of the particles was improved from 28% to 42% after storage at 55% RH for three days. Such improvement was attributed to the crystallization of amorphous powders, which led to increased particle roughness and reduced particulate contact area, as visualized by SEM and quantified by AFM. A linear relationship was observed between degree of crystallinity/crystallite size and FPF (R2?=?0.94 and R2?=?0.96, respectively). However, deterioration in aerosol performance was observed after storage at 75% RH due to formation of inter-particulate liquid/solid bridges, as confirmed by SEM.

Conclusions

This study provides a fundamental understanding in moisture-induced physical and aerosol instability of the spray dried powder formulations.
  相似文献   

10.
The effect of spray drying lactose alone and in the presence of polyethylene glycol 4000 was investigated. Lactose was added to distilled water to give concentrations of 10, 20, 30 and 40g/100ml at room temperature and each spray dried in turn. Identical samples were prepared to which polyethylene glycol (PEG) 4000 was added (12% by weight of lactose) prior to spray drying. Microcalorimetric and X-ray diffraction studies showed that spray drying lactose solutions produced completely amorphous material due to rapid solidification during the spray drying process, whereas lactose suspensions yielded partially crystalline products due to crystalline material that remained in suspension. However, all the PEG/lactose (12%w/w) co-spray dried products were found to be crystalline. It can be inferred that the solidification rates of the lactose in the presence of PEG must have been slower than that of lactose alone which allowed PEG and lactose to crystallize. The PEG/lactose products that were spray dried from solution consisted of alpha-anhydrous, alpha-monohydrate, beta-lactose and PEG extended chain polymorph, whereas those formed from suspension PEG/lactose samples consisted of only alpha-anhydrous, alpha-monohydrate and extended chain PEG crystals. PEG probably caused the more concentrated lactose suspensions to crystallize slowly due to the strong hydrogen bonding between PEG and water, which allowed growth on the alpha-lactose seed crystals.  相似文献   

11.
The physicochemical properties of co-spray dried bendroflumethiazide (BFMT)/polyethylene glycol (PEG) 4000 composites were investigated. The co-spray dried composites produced from all BFMT/polymer solutions were amorphous. BFMT/PEG 4000 10 and 20% systems consisted of smooth spherical particles approximately 0.5-4mm in diameter. Spray drying resulted in no significant production of the main BFMT degradant, 5-trifluoromethyl-2,4-disulphamoylaniline (TFSA), and for composites consisting of 90% PEG 4000 by weight of total solids, spray drying appeared a superior method of production than the melt method which resulted in significant BFMT degradation. All BFMT/PEG compressed discs showed initial increased release of BFMT compared to discs of micronised BFMT alone, with the spray dried BFMT/PEG 4000 10% system showing initial rates two to three times that of BFMT alone. The physical stability of amorphous BFMT was reduced on inclusion of PEG 4000, recrystallisation occurring more quickly with increasing amount of PEG 4000 in the composites. PEG in the co-spray dried systems appeared to degrade on storage and recrystallised samples failed to show the presence of PEG by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) or GPC. DSC results were consistent with BFMT/PEG forming a eutectic combination rather than a monotectic system.  相似文献   

12.
Aqueous solutions of lactose and polyethylene glycol (PEG) were spray dried in a Büchi Model 191 spray dryer with the aim to investigate the effect of PEG on the crystallinity of the composite. A PEG concentration of 10.7% by weight of solids was studied for PEG 200, 600, 1500, 4000 and 8000. For PEG 200 and 4000 additional concentrations from 1.5-19.3% to 1.5-32.4%, respectively, were investigated. The spray dried composites were analysed with X-ray powder diffraction and modulating differential scanning calorimetry. The crystallinity of lactose in the composites varied from 0% to 60%, dependent on the molecular weight and concentration of PEG. Apparently, lactose crystallinity is promoted by low molecular weight and high concentration of the PEG. PEG did not affect the lactose glass transition temperature. It is suggested that lactose and PEG are solidified separately during spray drying and that partial crystallization of lactose is associated with effects of PEG on the rate of drying.  相似文献   

13.
The inherent instability of proteins when isolated from their native conditions creates the necessity of suitable stabilisation techniques. Because of the instability of proteins in solution it is often necessary to produce them as solid formulations. A method of producing relatively stable, solid protein pharmaceuticals is to incorporate them with a suitable excipient into an amorphous matrix by dehydration. The use of spray dried multiple excipient/single protein blends was compared to single excipient/protein systems using lysozyme as a model protein to establish the stabilising ability of such systems. Unprocessed controls and spray dried samples were characterised structurally by X-ray powder diffraction and Fourier transform Raman spectroscopy and also thermally by differential scanning calorimetry and thermogravimetric analysis. Retained lysozyme activity was assayed enzymatically. To assess long-term stability, samples were subjected to conditions of elevated temperature and relative humidity (RH) 40 degrees C/75% RH. Structural and thermal analysis of samples revealed that mannitol/trehalose spray dried excipient/lysozyme blends were completely amorphous upon production but partially recrystallised upon storage at elevated temperature and RH. Biological activity assays revealed that samples containing trehalose retained the highest percentage activity. Under the conditions employed mannitol/trehalose systems stabilise lysozyme more effectively than single excipient systems due to their ability to form amorphous products.  相似文献   

14.
The purpose of this study was to assess the effect of relative humidity (RH) on the surface energy of amorphous lactose. Two samples of amorphous lactose were investigated; a spray dried 100% amorphous material and a ball milled sample of crystalline lactose. The milled sample had less than 1% amorphous content by mass, but on investigation at 0% RH, yielded surface energies comparable to those obtained from the 100% amorphous material, indicating that the surface was amorphous. The effect of increasing humidity was to reduce the dispersive surface energy of the two samples from 36.0 +/- 0.14 and 41.6 +/- 1.4 mJ m(-2) at 0% RH for the spray dried and milled samples respectively, to a value comparable to that obtained for the crystalline alpha-lactose monohydrate of 31.3 +/- 0.41 mJ m(-2). The change in surface energy due to water sorption was only reversible up to 20% RH; after exposure to higher RH values subsequent drying did not result in a return to the original surface energy of the amorphous form. This shows that the surface is reorganising as the glass transition temperature (Tg) is reduced, even though the sample has not collapsed or crystallised. It was possible to follow the collapse behaviour in the column with ease, using a number of different methods.  相似文献   

15.
The purpose of this study was to determine quantitatively the crystallinity in crystalline/amorphous powder mixtures of lactose, to asses the capability of Near Infrared Spectroscopy (NIRS) for quantitative determination of crystallinity and to compare the accuracy of the NIRS method with that of conventional X-ray powder diffraction (XRPD). Amorphous lactose was prepared by spray drying. Samples with different crystallinity were prepared by physical mixing of 100% amorphous and 100% crystalline materials. The samples were characterized by XRPD and NIRS. Analysis was performed on the data sets by multiple linear regression (MLR). There is a close correlation between the predicted and the actual crystallinity of physical mixtures of crystalline and amorphous lactose, determined by NIRS (R(2)=0.9994). NIRS results were compared to the XRPD using the same sample sets. The correlation coefficients was 0.9981. The results showed that NIRS is an useful method for accurately determining low quantities of the crystalline lactose in a physical mixture. Therefore, NIRS can be used for the quantitative determination of crystallinity of materials during pharmaceutical procedures.  相似文献   

16.
In order to characterize the amorphous clarithromycin (CAM) obtained by grinding and spray drying, physicochemical properties (crystallinity, thermal behavior, stability and solubility parameters) were evaluated. From powder X-ray diffraction, it was estimated that the crystalline state of CAM was changed into an amorphous state by grinding and spray drying. In differential scanning calorimetry measurements, both broad and sharp peaks for crystallization were observed in ground samples, whereas spray dried samples showed one broad peak due to crystallization. As to the stability test under high humidity, structural difference was confirmed between ground CAMs and spray dried CAM. The heat of dissolution of ground CAMs was greater than that of intact CAM. In the solubility parameter measurement, the increase of the special term, δs, indicated that the energy change was due to the polarity of the surface energy of the powder particles by grinding.  相似文献   

17.
The objective of this study was to use low viscosity grade hydroxypropyl methyl cellulose (Methocel® E3 LV and Methocel® E5 LV) to enhance the solubility and dissolution of poorly water soluble drug simvastatin (SIM). Two different technologies, hot melt extrusion and spray drying were employed. Characterization of hot melt extrudes and spray dried samples was done by Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction studies and scanning electron microscopy. The result of the study showed the conversion of crystalline form drug into amorphous form indicating increase in dissolution rate and solubility of SIM.  相似文献   

18.
To find means of controlling the size and density of particles intended for inhalation the relationship between droplet and particle size during spray drying was investigated. Lactose solutions were atomized with a two-fluid nozzle and dried in a laboratory spray drier. The effects of nozzle orifice diameter, atomization airflow and feed concentration on droplet and particle size were examined. Mass median diameter of both droplets and particles were analyzed with laser diffraction. In addition, scanning electron microscopy and transmission electron microscopy were used for studies of particle shape and morphology. It was demonstrated that nozzle orifice diameter and airflow, but not feed concentration controlled the droplet size during atomization. Increasing droplet size increased particle size but the effect was also influenced by feed concentration. Particles from solutions of a low concentration (1% w/w) were smaller than those from higher concentrations (5-20% w/w). This may be partly explained by lower yields at higher feed concentrations, but may also be related to differences in drying rate. Spray-dried lactose solutions formed hollow particles, and it was suggested that the shell thickness of the particles increased with increasing feed concentration.  相似文献   

19.
Engineered lactose particles were prepared by anti-solvent crystallisation technique using lactose solutions with different saturation degrees. In comparison to commercial lactose, engineered lactose particles exhibited less elongated and more irregular shape (large aggregates composed of smaller sub-units), rougher surface texture, higher specific surface area, and different anomer form. Engineered lactose powders demonstrated smaller bulk density, smaller tap density, and higher porosity than commercial lactose powder. Dry powder inhaler (DPI) formulations containing engineered lactose and salbutamol sulphate as a model drug demonstrated improved drug content homogeneity and higher amounts of drug delivered to lower airway regions. Higher fine particle fraction of drug was obtained in the case of lactose powders with higher porosity, higher specific surface area and higher fine particle content (<5μm). The results indicated that the higher the saturation degree of lactose solution used during crystallisation the smaller the specific surface area, the higher the amorphous lactose content, and the higher the β-lactose content of engineered lactose particles. Also, lactose powders obtained from lactose solution with higher degree of saturation showed higher bulk and tap densities and smaller porosity. Engineered lactose powders crystallized from lower saturation degree (20% and 30% w/v) deposited higher amounts of drug on lower airway regions. In conclusion, this study demonstrated that it is possible to prepare engineered lactose particles with favourable properties (e.g. higher fine particle fraction and better drug content homogeneity) for DPI formulations by using lactose solutions with lower degree of saturation during crystallisation process.  相似文献   

20.
Cromolyn sodium (CS) was spray dried under constant operation conditions from different water to ethanol feed ratios (50:50-0:100). The spray dried CS samples were characterized for their physicochemical properties including crystallinity, particle size distribution, morphology, density, and water/ethanol content. To determine quantitatively the crystallinity of the powders, an X-ray diffraction (XRD) method was developed using samples with different crystallinity prepared by physical mixing of 100% amorphous and 100% crystalline CS materials. The aerodynamic behavior of the CS samples was determined using an Andersen Cascade Impactor (ACI) with a Spinhaler at an air flow of 60 L/min. Binary mixtures of each spray dried CS powder and Pharmatose 325, a commercial alpha-lactose monohydrate available for DPI formulations, were prepared and in vitro aerosol deposition of the drug from the mixtures was analyzed using ACI to evaluate the effect of carrier on deposition profiles of the spray dried samples. CS spray dried from absolute ethanol exhibited XRD pattern characteristic for crystalline materials and different from patterns of the other samples. The crystallinity of spray dried CS obtained in the presence of water varied from 0% to 28.37%, depending on the ratio of water to ethanol in the feed suspensions. All samples presented different particle size, water/ethanol content, and bulk density values. CS particles spray dried from absolute ethanol presented uniform elongated shape whereas the other samples consisted mainly of particles with irregular shape. Overall, fine particle fraction increased significantly (p < 0.01) with decreasing d50% and water and ethanol content of spray dried CS samples. Significant difference (p < 0.01) in deposition profiles of the drug were observed between corresponding carrier free and carrier blended formulations. The difference in deposition profiles of CS aerosolized from various spray dried samples were described according to the particle size, shape, and water/ethanol contents of the powders. The results of this study indicate that enhanced aerosol performance of CS can be obtained by spray drying of the drug from suspensions containing > or = 87.5% v/v ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号