首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to understand the influence of polymer interaction and distribution on drug release from microparticles fabricated from blends of polymers. Blends of pH dependent polymer (Eudragit S, soluble above pH 7) and pH independent polymer (Eudragit RL, Eudragit RS or ethylcellulose) were incorporated into prednisolone loaded microparticles using a novel emulsion solvent evaporation method. Microparticles fabricated from blends of Eudragit S and Eudragit RL or RS did not modify drug release compared to microparticles fabricated from Eudragit S alone. This can be attributed to the high degree of miscibility of Eudragit S with Eudragit RS or Eudragit RL within the microparticles as confirmed by glass transition temperature measurements and confocal laser scanning microscopy. In contrast, microparticles prepared from blends of Eudragit S (75%) and ethylcellulose (25%) extended the release of prednisolone at pH 7.4 (compared to Eudragit S microparticles). This change in release profile was related to the immiscibility of Eudragit S and ethylcellulose as assessed by thermal analysis, and confirmed by microscopy which showed pores within the microparticle structures following dissolution of the Eudragit S domains. The ability of water insoluble polymers to extend drug release from enteric polymer microparticles is dependent on the miscibility and interaction of the polymers. This knowledge is important in the design of pH responsive microparticles capable of extending drug release in the gastrointestinal tract.  相似文献   

2.
Nitroflurbiprofen, NFP, a practically insoluble liquid drug, was microencapsulated in hydrophilic micromatrices made of poly(N-vinylpyrrolidone) (PVP), or polyaminomethacrylate (PAMA), or binary blends of polymers thereof. The PAMA/PVP miscibility was assessed both in the solid state (DSC and ATF-FTIR spectroscopy) and in solution by viscometric measurements. The in vitro NFP release test was carried out in over saturation condition to discriminate the increase of NFP apparent solubility (supersaturation degree, SD). Drug/polymer/polymer/water interactions were studied in silico by molecular dynamic (MD) simulations. PAMA and PVP resulted miscible only in aqueous solution. The release of NFP from microparticles occurred according to a non-monotonic pattern due to the formation of instable supersaturated systems and the drug separation in the dissolution medium. After 5 min, the SD was at least 3. The use of PVP/PAMA micromatrices reduced the instability of the supersaturated solutions. MD simulations evidenced that water molecules play a key role in the PAMA/PVP compatibilization process and in stabilization of NFP supersaturated systems by means of H-bond. The docking analyses here find a novel and successful application to predict the different ability of a drug to interact with polymeric blends in solution.  相似文献   

3.
The objective of this study was to evaluate the potential of Carbopol® 71G-NF on the release of dextromethorphan hydrobromide (DM) from matrix tablets in comparison with hydroxypropyl methylcellulose (HPMC® K15M) and Eudragit® L100-55 polymers. Controlled release DM matrix tablets were prepared using Carbopol 71G-NF, HPMC K15M, and Eudragit L100-55 at different drug to polymer ratios by direct compression technique. The mechanical properties of the tablets as tested by crushing strength and friability tests were improved as the concentration of Carbopol, HPMC, and Eudragit increased. However, Carbopol-based tablets showed a significantly (P?<?0.05) higher crushing strength and a lower friability than HPMC and Eudragit tablets. No significant differences in weight uniformity and thickness values were observed between the different formulations. It was also found that Carbopol significantly (P?<?0.05) delayed the release of DM in comparison with HPMC K15M and Eudragit L100-55. A combination of HPMC K15M and Eudragit L100-55 in a 1:1 ratio at 20 and 30% significantly (P?<?0.05) delayed the release of DM than Eudragit L100-55 alone. Moreover, blends of Carbopol and HPMC at a 1:1 ratio at the 10, 20, and 30% total polymer concentration were investigated. The blend of Carbopol and HPMC at 10% level significantly (P?<?0.05) slowed the release of DM than Carbopol or HPMC alone, whereas blends at 20 and 30% level significantly (P?<?0.05) delayed the release of DM compared with HPMC or Carbopol alone. The results with these polymer blends showed that it was possible to reduce the total amount of polymers when used as a combination in formulation.  相似文献   

4.
The purpose of this study was the preparation and characterization of sponge-like, in situ gelling inserts based on bioadhesive polymers. Hydrophilic polymers (carrageenan, Carbopol, chitosan, hydroxypropyl methylcellulose (HPMC) K15M and E5, sodium alginate, sodium carboxy methylcellulose (NaCMC), polyvinyl pyrrolidone (PVP) 90, xanthan gum) were dissolved with/without the model drug oxymetazoline HCl in demineralized water and lyophilized into small inserts. The drug release, water uptake, mechanical properties, X-ray diffraction and bioadhesion potential of the nasal inserts were investigated. A sponge-like structure of nasal inserts was formed with amorphous, but not with crystalline polymers during the freeze-drying process. The insert hardness increased with the glass transition temperature of the polymer (PVP25相似文献   

5.
Objectives Microencapsulation of drugs into preformed polymers is commonly achieved through solvent evaporation techniques or spray drying. We compared these encapsulation methods in terms of controlled drug release properties of prepared microparticles and investigated the underlying mechanisms responsible for the ‘burst release’ effect. Methods Using two different pH‐responsive polymers with a dissolution threshold of pH 6 (Eudragit L100 and AQOAT AS‐MG), hydrocortisone, a model hydrophobic drug, was incorporated into microparticles below and above its solubility within the polymer matrix. Key findings Although, spray drying was an attractive approach due to rapid particle production and relatively low solvent waste, the oil‐in‐oil microencapsulation method was superior in terms of controlled drug release properties from the microparticles. Slow solvent evaporation during the oil‐in‐oil emulsification process allowed adequate time for drug and polymer redistribution in the microparticles and reduced uncontrolled drug burst release. Electron microscopy showed that this slower manufacturing procedure generated nonporous particles whereas thermal analysis and X‐ray diffractometry showed that drug loading above the solubility limit of the drug in the polymer generated excess crystalline drug on the surface of the particles. Raman spectral mapping illustrated that drug was homogeneously distributed as a solid solution in the particles when loaded below saturation in the polymer with consequently minimal burst release. Conclusions Both the manufacturing method (which influenced particle porosity and density) and drug:polymer compatibility and loading (which affected drug form and distribution) were responsible for burst release seen from our particles  相似文献   

6.
Mosapride citrate (MSP) is a gastroprokinetic agent that acts as a selective 5-HT4 agonist and accelerates the gastric emptying, and is used for the treatment of acid reflux, irritable bowel syndrome, and functional dyspepsia. The purpose of this study is to investigate the solid dispersion formulations of MSP with controlled release characteristic using various polymers, elucidate the release mechanism, and characterize the interaction patterns between MSP and polymers. Solid dispersions of MSP with different drug-to-polymer ratios were prepared by a solvent evaporation method and characterized in comparison with the simple physical mixtures. Eudragit RSPO, Eudragit RLPO, hydroxypropylmethylcellulose (HPMC) or Kollidon SR® was used as a controlled-release polymer along with polyvinylpyrrolidone (PVP) as a carrier. Characterization of MSP solid dispersion was performed using thermal analysis (DSC), powder X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, where the drug was converted from the crystalline state to amorphous state in all polymeric carriers used. In vitro dissolution studies showed that the drug release has been extended up to 24 h by using Eudragit RSPO or HPMC. Moreover, the formulations containing higher polymer content ratio showed better slow-release profile. These results indicate that the solid dispersion formulation containing PVP/Eudragit RSPO or HPMC mixture could serve as a good controlled-release system for MSP.  相似文献   

7.
Metoprolol, a cardioselective β-blocker, is well absorbed in colon after oral administration with mean elimination half life of 3 h with bioavailability 50% due to extensive first pass effect, thus it was aimed to develop its modified release dosage form to reduce dosing frequency. Metoprolol tartrate loaded Eudragit FS microparticles were formulated using solvent evaporation technique by varying polymer contents and then compressing into tablets. The dissolution test was performed in simulated gastrointestinal fluid. All tabletted microparticles were tested for stability after storage in accelerated conditions. As a result of various analytical tests like FTIR, XRD and DSC analyses, drug was found stable in the microparticles. Metoprolol tartrate loaded Eudragit FS tabletted microparticles were stable in accelerated storage conditions. The release behavior of pH-dependent formulations was affected by the dissolution medium pH and the concentration of polymer used. There was a decrease in drug release rate with the increase in polymer concentration. In vitro drug release data (except test formulation F3) were best fitted to zero order model, which indicated the controlled release nature of formulation, while the Korsmeyer-Peppas model explored that drug release occurred according to case II relaxation transport mechanism (n > 0.89). Based on the results, it can be concluded that Eudragit FS is a suitable polymer to design pH dependent microparticles using solvent evaporation technique for the release of drug in colon and T2 can be considered as an optimum formulation on the basis of model independent (f2 test) kinetic interpretation of dissolution results (f2 < 50 for T2 versus reference).  相似文献   

8.
The aim of the present study was to prepare pulsatile release formulations consisting of two-layered tablets appropriate for preventing ischemic heart diseases. For this reason the active core was constituted by a FELO/PVP 10/90 w/w solid dispersion while for the adjustment of the drug release time the coating layer was composed of PVP/HPMC blends at different compositions, acting as a stimulus responsible layer. These blends as was found by DSC studies are miscible in the entire composition range, ensured by the interactions taking place between hydroxyl groups of HPMC and carbonyl groups of PVP. The miscibility of the system enhances the mucoadhesive properties of the blends, compared with those of pure HPMC, which is desired for such applications. The enhancement was attributed to the higher rate of wetting and flexibility of the new matrices due to the faster dissolution of the PVP macromolecules. Upon exposure of the prepared tablets to the release medium it was found that the coating layer disintegrates first, followed by the immediate release of FELO from the active core. The delaying time is based on a complicated mechanism, which is a combination of swelling and erosion of the PVP/HPMC polymer blends. Varying the PVP/HPMC blend ratios, the exact time that FELO is released during a daytime can be effectively adjusted and this ability is expressed mathematically by the equation t = 0.028 C1.5, where C is the concentration of HPMC in the blend.  相似文献   

9.
Floating microparticles based on low density foam powder   总被引:5,自引:0,他引:5  
The aim of this study was to develop a novel multiparticulate gastroretentive drug delivery system and to demonstrate its performance in vitro. Floating microparticles consisting of (i) polypropylene foam powder; (ii) verapamil HCl as model drug; and (iii) Eudragit RS, ethylcellulose (EC) or polymethyl methacrylate (PMMA) as polymers were prepared with an O/W solvent evaporation method. The effect of various formulation and processing parameters on the internal and external particle morphology, drug loading, in vitro floating behavior, in vitro drug release kinetics, particle size distribution and physical state of the incorporated drug was studied. The microparticles were irregular in shape and highly porous. The drug encapsulation efficiency was high and almost independent of the theoretical loading. Encapsulation efficiencies close to 100% could be achieved by varying either the ratio 'amount of ingredients: volume of the organic phase' or the relative amount of polymer. In all cases, good in vitro floating behavior was observed. The release rate increased with increasing drug loading and with decreasing polymer amounts. The type of polymer significantly affected the drug release rate, which increased in the following rank order: PMMA相似文献   

10.
The objective of this study was to investigate intermolecular interactions between resveratrol and polymers in amorphous blends and to study the potential correlations between compound–polymer interactions, manufacturability, and stability of the amorphous system to crystallization during storage. Polymers included two grades of poly (vinylpyrrolidone) (PVP), Eudragit E100 (E100), hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl cellulose acetate butyrate, and poly (acrylic acid) (PAA). Amorphous blends (“solid dispersions”) were prepared by dissolving both resveratrol and polymer in a solvent followed by rotary evaporation. Crystallinity was evaluated using X‐ray powder diffraction and was studied as a function of time. Mid‐infrared (IR) spectroscopy was used to investigate resveratrol–polymer interactions. Polymer influence on the crystallization behavior of resveratrol varied and could be correlated to the polymer structure, whereby polymers with good hydrogen bond acceptor groups performed better as crystallization inhibitors. Resveratrol–polymer hydrogen bonding interactions could be inferred from the IR spectra. Somewhat surprisingly, E100 and resveratrol showed evidence of an acid–base reaction, in addition to intermolecular hydrogen bonding interactions. PVP K29/32 appeared to form stronger hydrogen bond interactions with resveratrol relative to HPMC, HPMCAS, and PAA, consistent with acceptor group chemistry. Long‐term stability of the systems against crystallization suggested that stability is linked to the type and strength of intermolecular interactions present. whereby resveratrol blended with E100 and PVP K29/32 showed the greatest stability to crystallization. In conclusion, amorphous resveratrol is unstable and difficult to form, requiring the assistance of a polymeric crystallization inhibitor to facilitate the formation of an amorphous solid dispersion. Polymers effective at inhibiting crystallization were identified, and it is rationalized that their effectiveness is based on the type and strength of their intermolecular interactions with resveratrol.  相似文献   

11.
The aim of this study was to develop and characterize diclofenac sodium loaded-cellulose acetate butyrate microparticles in order to obtain a controlled-release system. The influence of the type of polymer, the volume and composition of the internal phase, drug loading, surfactant concentration and additive added on microparticles characteristics (particle size, encapsulation efficiency, surface morphology and in vitro release profiles) was studied to optimize the microparticles system. The resultant microparticles were evaluated for the recovery, average particle size, drug loading and incorporation efficiency. The microparticles exhibited good flowing nature and compressibility index when compared to pure drug. Dissolution rate of diclofenac sodium in phosphate buffer (pH 6.8) increased with increases in initial drug loading, surfactant concentration and addition of alcohol as co-solvent but decreased with increases in the concentration of additives such as Gantrez AN or Eudragit S100 in the internal phase. The dissolution data showed a Higuchi diffusion pattern for most of the formulations. About 56-81% reduction in ulcerogenic activity was observed with microparticles containing Eudragit S100 17-25%, based on total polymer concentration, when compared with pure diclofenac sodium.  相似文献   

12.
The effect of SBE7-beta-cyclodextrin together with hydroxypropylmethyl cellulose (HPMC) or polyvinylpyrrolidone (PVP) on the saturated solubility and delivery of carbamazepine (a poorly soluble drug) from sustained release (SR) beads was investigated. Carbamazepine solubility at room temperature increased from 0.1 to 5.4mg/ml by forming an inclusion complex with SBE7-beta-cyclodextrin (15%w/v). HPMC (0.1%w/v) also increased the aqueous solubility of carbamazepine, acting both alone and synergistically with SBE7-beta-cyclodextrin, to produce solubility values of 0.26 and 8.1mg/ml respectively. PVP (0.1-0.5%w/v) had no effect on carbamazepine solubility, either alone or in combination with SBE7-beta-cyclodextrin. The addition of SBE7-beta-cyclodextrin to SR beads increased the rate of carbamazepine release. In addition, comparable release rates where obtained when lower ratios of SBE7-beta-cyclodextrin together HPMC were incorporated in the SR bead. Therefore this ternary drug cyclodextrin polymer system was considered preferable over the binary drug cyclodextrin system for SR beads, as less cyclodextrin was required. However, both binary and ternary approaches were considered suitable techniques to improve the release rate and potentially the in vivo bioavailability of poorly soluble drugs that had previously exhibited slow or incomplete release from SR beads.  相似文献   

13.
Our major goals were to understand the mechanism of dipyridamole (DPD) precipitation inhibition in the presence of polymers and to correlate the polymers-mediated precipitation inhibition in solution to the amorphous stabilization in the solid state. A continuous UV spectrophotometer was used to monitor the DPD concentration with time in the absence and presence of different polymers. Six polymers: PVP K90, hydroxypropylmethylcellulose (HPMC), Eudragit E100, Eudragit S100, Eudragit L100, and PEG 8000 were screened at different drug-to-monomer ratios. Solid dispersions were characterized by X-ray powder diffraction and modulated differential scanning calorimetry, whereas infrared (IR) and Raman were used to investigate the possible drug-polymer interactions. Eudragit E100 and HPMC were found to delay both DPD precipitation initiation time and precipitation rates. Eudragit S100 delayed only the precipitation initiation time and PVP K90 decreased only the precipitation rates. In solid state, Eudragit S100, PVP K90, HPMC, and Eudragit L100 were effective stabilizers of the DPD solid dispersion. Eudragit S100 was found to be most effective DPD-stabilizing polymer. The IR and Raman spectra of the solid dispersion of Eudragit S100 and HPMC showed peak shift, indicating drug-polymer molecular interactions. It is concluded that the drug-polymer interaction plays a significant role in precipitation inhibition and amorphous stabilization.  相似文献   

14.
The aim of this study was to develop and characterize diclofenac sodium loaded-cellulose acetate butyrate microparticles in order to obtain a controlled-release system. The influence of the type of polymer, the volume and composition of the internal phase, drug loading, surfactant concentration and additive added on microparticles characteristics (particle size, encapsulation efficiency, surface morphology and in vitro release profiles) was studied to optimize the microparticles system. The resultant microparticles were evaluated for the recovery, average particle size, drug loading and incorporation efficiency. The microparticles exhibited good flowing nature and compressibility index when compared to pure drug. Dissolution rate of diclofenac sodium in phosphate buffer (pH 6.8) increased with increases in initial drug loading, surfactant concentration and addition of alcohol as co-solvent but decreased with increases in the concentration of additives such as Gantrez® AN or Eudragit S100 in the internal phase. The dissolution data showed a Higuchi diffusion pattern for most of the formulations. About 56–81% reduction in ulcerogenic activity was observed with microparticles containing Eudragit S100 17–25%, based on total polymer concentration, when compared with pure diclofenac sodium.  相似文献   

15.
The suitability of a poly(sodium methacrylate, methyl methacrylate) (NaPMM), a novel mucoadhesive material, to prepare fast-dissolving microparticles containing nifedipine (NIF) in the range of 25-75% w/w was verified. Microparticles made of a low-viscosity hydroxypropylmethylcellulose (HPMC), were also prepared to compare the NIF release profile and bioadhesive properties. The release test was carried out in oversaturation conditions. The physical state of microparticles was also investigated. The formulation stability was evaluated over a 3-month period in long-term and accelerated conditions. The presence of amorphous NIF within freshly prepared microparticles was attributed to interactions between the drug and both polymers. NaPMM conferred to microparticles suitable mucoadhesive properties and significantly increased NIF dissolution rate in comparison to HPMC. Nevertheless, NIF apparent solubilities obtained by NaPMM microparticles were lower than those obtained by the HPMC set. After 3-month storage in the case of HPMC microparticles, NIF dissolution rate and supersaturation degree significantly decreased due to drug crystallization. As far as NaPMM microparticles are concerned, neither NIF dissolution rate nor apparent solubility significantly changed.  相似文献   

16.
In this study, the dissolution properties of celecoxib (CX) solid dispersions manufactured from Eudragit 4155F and polyvinylpyrrolidone (PVP) were evaluated. Hot-melt extrusion (HME) technology was used to prepare amorphous solid dispersions of drug/polymer binary systems at different mass ratios. The drug concentrations achieved from the dissolution of PVP and Eudragit 4155F solid dispersions in phosphate buffer, pH 7.4 (PBS 7.4) were significantly greater than the equilibrium solubility of CX (1.58 μg/mL). The degree of supersaturation increased significantly as the polymer concentration within the solid dispersion increased. The maximum drug concentration achieved by PVP solid dispersions did not significantly exceed the apparent solubility of amorphous CX. The predominant mechanism for achieving supersaturated CX concentrations in PBS 7.4 was attributed to stabilization of amorphous CX during dissolution. Conversely, Eudragit 4155F solid dispersions showed significantly greater supersaturated drug solutions particularly at high polymer concentrations. For example, at a drug/polymer ratio of 1:9, a concentration of 100 μg/mL was achieved after 60 min that was stable (no evidence of drug recrystallization) for up to 72 h. This clearly identifies the potential of Eudragit 4155F to act as a solubilizing agent for CX. These findings were in good agreement with the results from solubility performed using PBS 7.4 in which Eudragit 4155F had been predissolved. In these tests, Eudragit 4155F significantly increased the equilibrium solubility of CX. Solution (1)H NMR spectra were used to identify drug/polymer interactions. Deshielding of CX aromatic protons (H-1a and H-1b) containing the sulfonamide group occurred as a result of dissolution of Eudragit 4155F solid dispersions, whereas deshielding of H-1a protons and shielding of H-1b protons occurred as a result of the dissolution of PVP solid dispersions. In principle, it is reasonable to suggest that the different drug/polymer interactions observed give rise to the variation in dissolution observed for the two polymer/drug systems.  相似文献   

17.
Poorly-compressible crystals of ketoprofen were agglomerated by the spherical crystallization technique with a two-solvent system (acetone/demineralized water). In order to study a possible modification of particle texture, spherical crystals were formulated with low concentrations of additives. The results showed that the procedure was possible with ethylcellulose, cross-linked PVP and cross-linked CMC, all at a concentration of 1%. However, no spherical beads could be obtained with the water-soluble compounds tested (PVP and Eudragit L100-55®), Eudragit RS100® and colloidal silica. These formulation trials have indicated two main factors with their possible influences: the polymer solubility and viscosity in the solvent/non-solvent system leading to two kinds of nucleation and changes in mass transfer and drug/polymer interactions leading to the formation of reversible complexes or irreversible complexes and possibility of drug release modifications. Moreover, formulations with the methacrylic acid derivatives were found to be incompatible with the operating conditions, in terms of temperatures changes, stirring or residence time. Furthermore, an optimization of the formulation with ethylcellulose yielded a controlled release form with 1% of the polymer, whereas the addition of very low concentrations increased the drug release.  相似文献   

18.
A microparticulate system consisting of non-enzymatically degrading poly(dl-lactide-co-glycolide) (PLGA) core and delivering budesonide site specifically to distal ileum and colon was developed. Budesonide-loaded microparticles were fabricated using solvent evaporation technique and formulation variables studied included different molecular weight grades of PLGA polymer as well as concentration of polymer, surfactant and drug. Eudragit S-100, an enteric polymer, was then used to form a coating on the surface of budesonide-loaded PLGA microparticles for site specific delivery to the distal ileum and colon. Budesonide-loaded PLGA microparticles prepared from various formulation parameters showed mean encapsulation efficiencies ranging between 50% and 85% and mean particle size ranging between 10 and 35mum. In vitro release kinetics studies showed a biphasic release pattern with an initial higher release followed by a slower drug release. Increasing polymer and surfactant concentrations exhibited sharply contrasting drug release profiles, with increasing polymer concentrations resulting in a lower drug release and vice versa. The budesonide-loaded PLGA microparticles coated with Eudragit S-100 coating showed a decrease in entrapment efficiency with an accelerated in vitro drug release. Moreover, complete retardation of drug release in an acidic pH, and, once the coating layer of enteric polymer was dissolved at higher pH (7.4 and 6.8), a controlled release of the drug from the microparticles were observed. From the results of this investigation, the application of double microencapsulation technique employing PLGA matrix and Eudragit S-100 coating shows promise for site specific and controlled delivery of budesonide in Crohn's disease.  相似文献   

19.
We have studied the feasibility of preparing fast-dissolving mucoadhesive microparticulate delivery systems containing amorphous piroxicam to improve drug residence time on sublingual mucosa and drug dissolution rate. Two new mucoadhesive carriers, Eudragit L100 (EuLNa) and Eudragit S100 (EuSNa) sodium salts, both characterized by a fast intrinsic dissolution rate, have been selected. Microparticles containing piroxicam and EuLNa (series 1) or EuSNa (series 2) in ratios from 15/85 to 85/15% (m/m) were prepared by spray drying. The morphology and physical state of the microparticles and the effect of the microparticle composition on the piroxicam release and mucoadhesion were investigated. Piroxicam loaded into the microparticles was found to be in the amorphous form at all drug/copolymer ratios. This feature was ascribed to the presence of an H-bond between the NH of piroxicam and a CO of the copolymers. The formation of solid solutions improved the dissolution rate and the apparent drug solubility. The mucoadhesive properties were affected by the drug/copolymer ratio and in series 2 the microparticles containing more than 50% (m/m) of piroxicam did not show mucoadhesive properties. The delivery system made of piroxicam and EuLNa in the ratio 70/30% (m/m) appears to be the most promising because it contains the lowest amount of polymer able to confer mucoadhesive properties and increase apparent drug solubility.  相似文献   

20.
A method is presented for determining the equilibrium solubility of a drug in a solid polymer at or near room temperature, which represents a typical storage temperature. The method is based on a thermodynamic model to calculate the Gibbs energy change ΔGSS associated with forming a binary drug–polymer solid solution from the unmixed polymer and solid drug. The model includes contributions from heat capacity differences between the solid solution and the corresponding unmixed components, breaking up of the solid drug structure, and drug–polymer mixing. Calculation of ΔGSS from thermal analysis data is demonstrated, and it is shown that minima of plots of ΔGSS versus the dissolved drug concentration represent the equilibrium drug solubility in the polymer. Solid solutions were produced for drug–polymer systems (griseofulvin, indomethacin, itraconazole; PVP K30, Eudragit L100, Eudragit E100) in drug weight fractions up to ~25%. At 25°C, it was seen that heat capacity effects were important in determining the drug solubility. It was concluded that drug solubilities in solid polymers can be determined using thermal analysis, and must include heat capacity effects when evaluated near room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号