首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In this study, we investigated the effects of the diameter of microfibers on the orientation (angle between cells’ major axis and the substrate fiber long axis) of adhered cells. For this purpose, mouse fibroblast L929 cells were cultured on the surface of PLGA fibers of defined diameters ranging from 10 to 242 μm, and their adhesion and alignment was quantitatively analyzed. It was found that the mean orientation of cells and the spatial variation of cell alignment angle directly related to the microfiber diameter. Cells that were cultured on microfibrous scaffolds oriented along the long axis of the microfiber and the orientation increased as the fiber diameter decreased. For the fiber diameter of 10 μm, the mean orientation was 3.0 ± 0.2° (mean ± SE), whereas for a diameter of 242 μm, it decreased to 37.7 ± 2.1°. Using these studies we demonstrate that fibroblasts have a characteristic alignment on microscale fibers and that the microscale fiber diameter plays a critical role in cellular orientation. The ability to control cellular alignment on engineered tissue scaffold can be a potentially powerful approach to recreate the microscale architecture of engineered tissues. This may be important for engineering a variety of human tissues such as tendon, muscle and nerves as well as applications in 3D tissue culture and drug screening.  相似文献   

2.
Poly(DL-lactic-co-glycolic acid) (PLGA) microspheres have been widely prepared by many methods, including solvent evaporation, solvent extraction and the co-solvent method. However, very few studies have compared the properties of microspheres fabricated by these methods. This is partly because the broad size distribution of the resultant particles severely complicates the analysis and affects the reliability of the comparison. To this end, uniform-sized PLGA microspheres have been prepared by Shirasu porous glass premix membrane emulsification and used to encapsulate exenatide, a drug for treating Type 2 diabetes. Based on this technique, the influences on the properties of microspheres fabricated by the aforementioned three methods were intensively investigated, including in vitro release, degradation and pharmacology. We found that these microspheres presented totally different release behaviors in vitro and in vivo, but exhibited a similar trend of PLGA degradation. Moreover, the internal structural evolution visually demonstrated these release behaviors. We selected for further examination the microsphere prepared by solvent evaporation because of its constant release rate, and explored its pharmacodynamics, histology, etc., in more detail. This microsphere when injected once showed equivalent efficacy to that of twice-daily injections of exenatide with no inflammatory response.  相似文献   

3.
Microparticle-based vaccine delivery systems are known to promote enhanced immune responses to protein antigens and can elicit TH1-biased responses when used in combination with Toll-like receptor (TLR) agonists. It is important to understand the kinetics of the immune responses to microparticle-based protein vaccines in order to predict the duration of protective immunity and to optimize prime-boost vaccination regimens. We carried out a 10-week time course study to investigate the magnitude and kinetics of the antibody and cellular immune responses to poly(lactic-co-glycolic acid) (PLGA) microparticles containing 40 μg ovalbumin (OVA) protein and 16 μg CpG-ODN adjuvant (MP/OVA/CpG) in comparison to OVA-containing microparticles, soluble OVA plus CpG, or OVA formulated with Alhydrogel® aluminum adjuvant. Mice vaccinated with MP/OVA/CpG developed the highest TH1-associated IgG2b and IgG2c antibody titers, while also eliciting TH2-associated IgG1 antibody titers on par with Alhydrogel®-formulated OVA, with all IgG subtype titers peaking at day 56. The MP/OVA/CpG vaccine also induced the highest antigen-specific splenocyte IFN-γ responses, with high levels of IFN-γ responses persisting until day 42. Thus the MP/OVA/CpG formulation produced a sustained and heightened humoral and cellular immune response, with an overall TH1 bias, while maintaining high levels of IgG1 antibody equivalent to that seen with Alhydrogel® adjuvant. The time course kinetics study provides a useful baseline for designing vaccination regimens for microparticle-based protein vaccines.  相似文献   

4.
This study documents the use of biodegradable poly(lactide-co-glycolide) (PLG) microspheres as a novel, injectable scaffold for cartilage tissue engineering. Chondrocytes were delivered via injection to the subcutaneous space of athymic mice in the presence and absence of PLG microspheres. Tissue formation was evaluated up to 8 weeks post-injection. Progressive cartilage formation was observed in samples containing microspheres. The presence of microspheres increased the quantity of tissue formed, the amount of glycosaminoglycan that accumulated, and the uniformity of type II collagen deposition. Microsphere composition influenced the growth of the tissue engineered cartilage. Higher molecular weight PLG resulted in a larger mass of cartilage formed and a higher content of proteoglycans. Microspheres comprised PLG with methyl ester end groups yielded increased tissue mass and matrix accumulation, but did not display homogenous matrix deposition. The microencapsulation of Mg(OH)2 had negative effects on tissue mass and matrix accumulation. Matrix accumulation, cell number, and tissue mass were unchanged by microsphere size, but larger microspheres increased the frequency of central necrosis in implants. The data herein reflect the promising utility of an injectable PLG-chondrocyte system for tissue engineering applications.  相似文献   

5.
6.
The aim of this pilot study was to assess the release of locally delivered doxycycline by poly (l-lactide-co-glycolide) (PLGA) microspheres in the periodontal pocket of patients with chronic periodontitis, treated by non-surgical periodontal therapy. Nineteen sites of non-adjacent teeth of four different patients were evaluated. Five milligram of PLGA microspheres loaded with 16 doxycycline hyclate (DOX) was administered per periodontal site. To quantify DOX released into the periodontal pocket, gingival crevicular fluid (GCF) was collected from the sites on days 2, 5, 7, 10, 15, and 20 after DOX application, and high-performance liquid chromatography was performed. Data were statistically assessed by ANOVA/Tukey test. At days 2, 5, and 7, the DOX concentration was stably sustained (23.33 ± 1.38, 23.4 ± 1.82, and 22.75 ± 1.33 μg/mL, respectively), with no significant differences over these assessment times (p > 0.05). At days 10 and 15, a tendency was observed toward a decrease in DOX concentration (21.74 ± 0.91 and 20.53 ± 4.88 μg/mL, respectively), but a significant decrease in GCF drug concentration (19.69 ± 4.70 μg/mL) was observed only on day 20. The DOX delivery system developed demonstrated a successful sustained release after local administration, as an adjunct to non-surgical periodontal therapy.  相似文献   

7.
McUsic AC  Lamba DA  Reh TA 《Biomaterials》2012,33(5):1396-1405
Embryonic stem (ES) cell-derived photoreceptors are a promising cell source for enhanced in vitro models of retinal degenerative diseases, but the more differentiated characteristics of retinal cells do not typically develop in dissociated cell cultures. Therefore, we have reconstructed organized retinal tissue by seeding dissociated cells into an array of aligned units that more faithfully mimics the retina. We solvent-processed poly(lactic-co-glycolic acid) (PLGA) into a microchannel scaffold format to achieve this geometric constraint. We compared the effect of PLGA concentration on channel morphology and, along with other culture conditions, on the infiltration of dissociated newborn mouse retinal cells into the channels. Culturing scaffolds at the gas-liquid interface with low serum media increased infiltrated rod photoreceptor viability 18-fold over submerged, high serum cultures when evaluated after seven days. Rod photoreceptors and Müller glia aligned processes parallel to the microchannel walls. Otx2+ and Pax6+ subpopulations recapitulated lamination behavior. Further, we constructed scaffold/retinal pigment epithelium (RPE) co-cultures and observed rods extending rhodopsin-positive processes toward RPE cells, mimicking normal rod polarization and morphology. Finally, human embryonic stem cell-derived photoreceptors exhibited infiltration and morphological characteristics similar to mouse retinal cells inside the scaffolds. These findings constitute an important advance in generating tissue-level retinal models from dissociated cells for use as drug screening platforms and in regenerative medicine.  相似文献   

8.
M cells, the key players of the mucosal immunity induction, are one of the intestinal barriers for the efficient delivery of vaccines to mucosal immune tissues. To overcome the barrier, we have developed an efficient oral vaccine carrier that constitutes poly (lactic-co-glycolic acid) (PLGA) microparticle coated with M cell targeting peptide. In this study, a membrane protein B of Brachyspira hyodysenteriae (BmpB) as a model vaccine against swine dysentery was loaded into porous PLGA microparticles (MPs). The PLGA MPs were further coated with the water-soluble chitosan (WSC) conjugated with M cell homing peptide (CKS9) to prepare BmpB-CKS9-WSC-PLGA MPs. Oral immunization of BmpB vaccine with CKS9-WSC-PLGA MPs in mice showed elevated secretory IgA responses in the mucosal tissues and systemic IgG antibody responses, providing a complete immune response. Specifically, the immunization with these MPs demonstrated to induce both Th1- and Th2-type responses based on elevated IgG1 and IgG2a titers. The elevated immune responses were attributed to the enhanced M cell targeting and transcytosis ability of CKS9-WSC-PLGA MPs to Peyer's patch regions. The high binding affinity of CKS9-WSC-PLGA MPs with the M cells to enter into the Peyer's patch regions of mouse small intestine was investigated by closed ileal loop assay and it was further confirmed by confocal laser scanning microscopy. These results suggest that the M cell targeting approach used in this study is a promising tool for targeted oral vaccine delivery.  相似文献   

9.
Therapies based on RNA interference, using agents such as siRNA, are limited by the absence of safe, efficient vehicles for targeted delivery in vivo. The barriers to siRNA delivery are well known and can be individually overcome by addition of functional modules, such as conjugation of moieties for cell penetration or targeting. But, so far, it has been impossible to engineer multiple modules into a single unit. Here, we describe the synthesis of degradable nanoparticles that carry eight synergistic functions: 1) polymer matrix for stabilization/controlled release; 2) siRNA for gene knockdown; 3) agent to enhance endosomal escape; 4) agent to enhance siRNA potency; 5) surface-bound PEG for enhancing circulatory time; and surface-bound peptides for 6) cell penetration; 7) endosomal escape; and 8) tumor targeting. Further, we demonstrate that this approach can provide prolonged knockdown of PLK1 and control of tumor growth in vivo. Importantly, all elements in these octa-functional nanoparticles are known to be safe for human use and each function can be individually controlled, giving this approach to synthetic RNA-loaded nanoparticles potential in a variety of clinical applications.  相似文献   

10.
The controlled release of growth factors from porous, polymer scaffolds is being studied for potential use as tissue-engineered scaffolds. Biodegradable polymer microspheres were coated with a biocompatible polymer membrane to permit the incorporation of the microspheres into tissueengineered scaffolds. Surface studies with poly(D,L-lactic-co-glycolic acid) [PLGA], and poly(vinyl alcohol) [PVA] were conducted. Polymer films were dip-coated onto glass slides and water contact angles were measured. The contact angles revealed an initially hydrophobic PLGA film, which became hydrophilic after PVA coating. After immersion in water, the PVA coating was removed and a hydrophobic PLGA film remained. Following optimization using these 2D contact angle studies, biodegradable PLGA microspheres were prepared, characterized, and coated with PVA. X-ray photoelectron spectroscopy was used to further characterize coated slides and microspheres. The release of the model protein bovine serum albumin from PVA-coated PLGA microspheres was studied over 8 days. The release of BSA from PVA-coated PLGA microspheres embedded in porous PLGA scaffolds over 24 days was also examined. Coating of the PLGA microspheres with PVA permitted their incorporation into tissue-engineered scaffolds and resulted in a controlled release of BSA.  相似文献   

11.
An injectable poly(DL-lactic-co-glycolic acid) (PLGA) system comprising both porous and protein-loaded microspheres capable of forming porous scaffolds at body temperature was developed for tissue regeneration purposes. Porous and non-porous (lysozyme loaded) PLGA microspheres were formulated to represent ‘low molecular weight’ 22–34 kDa, ‘intermediate molecular weight’ (IMW) 53 kDa and ‘high molecular weight’ 84–109 kDa PLGA microspheres. The respective average size of the microspheres was directly related to the polymer molecular weight. An initial burst release of lysozyme was observed from both microspheres and scaffolds on day 1. In the case of the lysozyme-loaded microspheres, this burst release was inversely related to the polymer molecular weight. Similarly, scaffolds loaded with 1 mg lysozyme/g of scaffold exhibited an inverse release relationship with polymer molecular weight. The burst release was highest amongst IMW scaffolds loaded with 2 and 3 mg/g. Sustained lysozyme release was observed after day 1 over 50 days (microspheres) and 30 days (scaffolds). The compressive strengths of the scaffolds were found to be inversely proportional to PLGA molecular weight at each lysozyme loading. Surface analysis indicated that some of the loaded lysozyme was distributed on the surfaces of the microspheres and thus responsible for the burst release observed. Overall the data demonstrates the potential of the scaffolds for use in tissue regeneration.  相似文献   

12.
《Acta biomaterialia》2014,10(6):2769-2780
The development of suitable scaffolds plays a significant role in tissue engineering research. Although scaffolds with promising features have been produced via a variety of innovative methods, there are no fully synthetic tissue engineering scaffolds that possess all the desired properties in one three-dimensional construct. Herein, we report the development of novel polyester poly(ethylene glycol) (PEG) sponges that display many of the desirable scaffold characteristics. Our novel synthetic approach utilizes acid chloride/alcohol chemistry, whereby the reaction between a hydroxyl end-functionalized 4-arm PEG and sebacoyl chloride resulted in cross-linking and simultaneous hydrogen chloride gas production, which was exploited for the in situ formation of highly interconnected pores. Variation of the fabrication conditions, including the precursor volume and concentration, allowed the pore size and structure as well as the compressive properties to be tailored. The sponges were found to possess excellent elastic properties, preserving their shape even after 80% compressive strain without failure. The benign properties of the sponges were demonstrated in an in vivo subcutaneous rat model, which also revealed uniform infiltration of vascularized tissue by 8 weeks and complete degradation of the sponges by 16 weeks, with only a minimal inflammatory response being observed over the course of the experiments.  相似文献   

13.
The LCST behavior of poly(ethylene glycol) (PEG) in aqueous sodium sulfate solutions was exploited to fabricate microspheres without the use of other monomers, polymers, surfactants or organic solvents. Reactive PEG derivatives underwent thermally induced phase separation to produce spherical PEG-rich domains that coarsened in size pending gelation, resulting in stable hydrogel microspheres between ≈1 and 100 microns in size. The time required to reach the gel point during the coarsening process and the extent of crosslinking after gelation both affected the final microsphere size and swelling ratio. The gel point could be varied by pre-reaction of the PEG derivatives below the cloud point, or by controlling pH and temperature above the cloud point. Pre-reaction brought the PEG derivatives closer to the gel point prior to phase separation, while the pH and temperature influenced the rate of reaction. Dynamic light scattering indicated a percolation-to-cluster transition about 3–5 min following phase separation. The mean radius of PEG-rich droplets subsequently increased with time to the 1/4th power until gelation. PEG microspheres produced by these methods with controlled sizes and densities may be useful for the production of modular scaffolds for tissue engineering.  相似文献   

14.
实现血管支架的个性化制造,对于组织工程血管移植物(tissue-engineered vascular graft,TEVG)进入临床应用具有重要意义。本研究利用低温沉积制造(LDM)技术制造了管状支架及结构较复杂的血管网支架。并控制螺杆转速、扫描速度和喷头温度等工艺参数调控支架特性,对其表观特征进行了评测。所得支架能准确再现复杂的计算机辅助设计(CAD)的三维血管模型结构;支架壁厚随着螺杆转速与扫描速度之比的增加而增加;微孔尺寸、壁面平整度及支架壁厚与喷头温度成正相关,但是孔隙率受喷头温度影响不大。利用LDM技术可以制作出具有特定结构及表观特征的血管支架,对血管支架的个性化制造具有极大推动作用。  相似文献   

15.
Bone-mimetic electrospun scaffolds consisting of polycaprolactone (PCL), collagen I and nanoparticulate hydroxyapatite (HA) have previously been shown to support the adhesion, integrin-related signaling and proliferation of mesenchymal stem cells (MSCs), suggesting these matrices serve as promising degradable substrates for osteoregeneration. However, the small pore sizes in electrospun scaffolds hinder cell infiltration in vitro and tissue-ingrowth into the scaffold in vivo, limiting their clinical potential. In this study, three separate techniques were evaluated for their capability to increase the pore size of the PCL/col I/nanoHA scaffolds: limited protease digestion, decreasing the fiber packing density during electrospinning, and inclusion of sacrificial fibers of the water-soluble polymer PEO. The PEO sacrificial fiber approach was found to be the most effective in increasing scaffold pore size. Furthermore, the use of sacrificial fibers promoted increased MSC infiltration into the scaffolds, as well as greater infiltration of endogenous cells within bone upon placement of scaffolds within calvarial organ cultures. These collective findings support the use of sacrificial PEO fibers as a means to increase the porosity of complex, bone-mimicking electrospun scaffolds, thereby enhancing tissue regenerative processes that depend upon cell infiltration, such as vascularization and replacement of the scaffold with native bone tissue.  相似文献   

16.
Tissue engineered retinal pigment epithelial (RPE) transplantation is a promising cell-based therapy for age-related macular degeneration. The aim of this work is to develop a supportive scaffold with a favorable topography to aid functional RPE monolayer maintenance while being tolerated underneath the retina. To this end, films and electrospun substrates with fiber diameters ranging from 200 to 1000 nm were made of polyethylene terephthalate or poly(l-lactide-co-ε-caprolactone), and then tested using human fetal RPE cells in vitro and transplanted subretinally in rabbits. The results indicated that RPE on both 200 nm fiber variants showed the highest cell densities, adherent monolayers achieved deeper pigmentation, and more uniform hexagonal tight junctions. Facile subretinal implantation of flat 200 nm fiber membranes was achieved by electrospinning them onto a porous rigid-elastic carrier. Spectral-domain optical coherence tomography showed a reattached, slightly thinned retina overlying the implants over 2 weeks observation. Histology demonstrated native RPE variably migrated onto the nanofibers, and a reactive gliosis with some photoreceptor degeneration. In conclusion, scaffolds with 200 nm fiber topography enhanced RPE culture, showed subretinal biocompatibility, and should thus be considered for future cell-based therapies in blinding retinal diseases.  相似文献   

17.
Regeneration of bone, cartilage and osteochondral tissues by tissue engineering has attracted intense attention due to its potential advantages over the traditional replacement of tissues with synthetic implants. Nevertheless, there is still a dearth of ideal or suitable scaffolds based on porous biomaterials, and the present study was undertaken to develop and evaluate a useful porous composite scaffold system. Here, hydroxyapatite (HA)/tricalcium phosphate (TCP) scaffolds (average pore size: 500 μm; porosity: 87%) were prepared by a polyurethane foam replica method, followed by modification with infiltration and coating of poly(lactic-co-glycolic acid) (PLGA). The thermal shock resistance of the composite scaffolds was evaluated by measuring the compressive strength before and after quenching or freezing treatment. The porous structure (in terms of pore size, porosity and pore interconnectivity) of the composite scaffolds was examined. The penetration of the bone marrow stromal stem cells into the scaffolds and the attachment of the cells onto the scaffolds were also investigated. It was shown that the PLGA incorporation in the HA/TCP scaffolds significantly increased the compressive strength up to 660 kPa and the residual compressive strength after the freezing treatment decreased to 160 kPa, which was, however, sufficient for the scaffolds to withstand subsequent cell culture procedures and a freeze–drying process. On the other hand, the PLGA coating on the strut surfaces of the scaffolds was rather thin (<5 μm) and apparently porous, maintaining the high open porosity of the HA/TCP scaffolds, resulting in desirable migration and attachment of the bone marrow stromal stem cells, although a thicker PLGA coating would have imparted a higher compressive strength of the PLGA-coated porous HA/TCP composite scaffolds.  相似文献   

18.
Bone regeneration can be accelerated by localized delivery of appropriate growth factors/biomolecules. Localized delivery can be achieved by a 2-level system: (i) incorporation of biomolecules within biodegradable particulate carriers (nanoparticles), and (ii) inclusion of such particulate carriers (nanoparticles) into suitable porous scaffolds. In this study, freeze-dried porous chitosan–gelatin scaffolds (CH–G: 1:2 ratio by weight) were embedded with various amounts of poly(lactide-co-glycolide) (PLGA) nanoparticles, precisely 16.6%, 33.3% and 66.6% (respect to CH–G weight). Scaffolds loaded with PLGA nanoparticles were subjected to physico-mechanical and biological characterizations including morphological analysis, swelling and dissolution tests, mechanical compression tests and cell viability tests. Results showed that incorporation of PLGA nanoparticles into porous crosslinked CH–G scaffolds: (i) changed the micro-architecture of the scaffolds in terms of mean pore diameter and pore size distribution, (ii) reduced the dissolution degree of the scaffolds, and (iii) increased the compressive modulus. On the other hand, the water uptake behavior of CH–G scaffolds containing PLGA nanoparticles significantly decreased. The incorporation of PLGA nanoparticles did not affect the biocompatibility of CH–G scaffolds.  相似文献   

19.
Mesoporous materials are promising candidates for improving dissolution rate of poorly water-soluble drugs in vitro and their bioavailability in vivo. In the present study, sixteen batches of celecoxib-loaded PSi particles with pore sizes ranging from 17 to 58 nm and celecoxib content from 5 to 36 w-% were prepared and a detailed physicochemical characterization of the drug was performed by several methods. Interaction between co-culture of Caco-2/HT29-MTX cells and unloaded PSi particles was tested in toxicity assays, and increased toxicity for particles with large pore size was observed. Dissolution rate of celecoxib was improved in vitro by lowering the drug loading degree which hindered the recrystallization of celecoxib on the external surface of the particles. The fastest permeation of loaded celecoxib through the co-culture monolayer as well as the highest bioavailability in rats was observed with the particles with small pore size and low loading degree. New insights were obtained on how various parameters of the mesoporous delivery system affect the state of the drug inside the pores and its release in vitro and in vivo.  相似文献   

20.
Fu Q  Saiz E  Tomsia AP 《Acta biomaterialia》2011,7(10):3547-3554
The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires the development of porous, high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inks were optimized for the printing of features as fine as 30 μm and of three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds showed a compressive strength (136 ± 22 MPa) comparable with that of human cortical bone (100–150 MPa), while the porosity (60%) was in the range of that of trabecular bone (50–90%). The strength is ∼100-times that of polymer scaffolds and 4–5-times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in SBF, the value (77 MPa) is still far above that of trabecular bone after 3 weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号