首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The classification of bone dysplasia has relied on a clinical/radiographic interpretation and the identification of specific genetic alterations. The clinical presentation of the SOX9 mutation and type 2 collagen disorders overlap with the Pierre-Robin sequence and talipes equinovarus, but the former is often accompanied by the bent long bones. In its milder form, the SOX9 mutation is not necessarily associated with the bent long bones. Here, we report a patient with the Pierre-Robin sequence and talipes equinovarus who did not exhibit either bent long bones or scapular hypoplasia; thus, this patient was instead classified as having a type 2 collagen disorder. Despite this phenotypic presentation, the proposita was found to have a de novo SOX9 mutation. The peculiar location of the mutation within the dimerization domain might account for the relatively mild phenotypic effect of the SOX9 mutation to a degree that is compatible with a clinical diagnosis of type 2 collagen disorder, except for a developmental delay. We concluded that mutations in SOX9 can mimic a type 2 collagen disorder-like phenotype.  相似文献   

3.
4.
5.
6.
Plasmodium, the causative agent of malaria, initially multiplies inside liver cells and then in successive cycles inside erythrocytes, causing the symptoms of the disease. In this review, we discuss interactions between the extracellular and intracellular forms of the Plasmodium parasite and innate immune cells in the mammalian host, with a special emphasis on mononuclear phagocytes. We overview here what is known about the innate immune cells that interact with parasites, mechanisms used by the parasite to evade them, and the protective or detrimental contribution of these interactions on parasite progression through its life cycle and pathology in the host.  相似文献   

7.
Cleidocranial dysplasia is an autosomal dominant, generalised skeletal disorder characterised by variable clavicular hypoplasia, frontal bossing, multiple Wormian bones, and delayed eruption of the teeth. The gene locus for this syndrome has not yet been assigned. Three individuals with manifestations of cleidocranial dysplasia associated with rearrangements of chromosome 8q22 are described. The evidence presented suggests that the gene for cleidocranial dysplasia may be located on chromosome 8q in humans in a region showing homology to mouse chromosome 3. © 1992 Wiley-Liss, Inc.  相似文献   

8.
Differences in responses of chicken bone marrow derived dendritic cells (BMDC) to in vitro treatment with lipopolysaccharide (LPS), heat, and LPS + heat were identified. The Fayoumi is more disease resistant and heat tolerant than the Leghorn line. Nitric Oxide (NO) production, phagocytic ability, MHC II surface expression and mRNA expression were measured. NO was induced in BMDC from both lines in response to LPS and LPS + heat stimulation; Fayoumi produced more NO with LPS treatment. Fayoumi had higher phagocytic ability and MHC II surface expression. Gene expression for the heat-related genes BAG3, HSP25, HSPA2, and HSPH1 was strongly induced with heat and few differences existed between lines. Expression for the immune-related genes CCL4, CCL5, CD40, GM-CSF, IFN-γ, IL-10, IL-12β, IL-1β, IL-6, IL-8, and iNOS was highly induced in response to LPS and different between lines. This research contributes to the sparse knowledge of genetic differences in chicken BMDC biology and function.  相似文献   

9.
Dendritic cells (DC) are antigen-presenting cells that can be classified into three major cell subsets: conventional DC1 (cDC1), cDC2 and plasmacytoid DCs (pDC), none of which have been identified in horses. Therefore, the objective of this study was to identify and characterize DC subsets in equine peripheral blood, emphasizing on pDC. Surface marker analysis allowed distinction of putative DC subsets, according to their differential expression of CADM-1 and MHC class II. Equine pDC were found to be Flt3+ CD4low CD13 CD14 CD172a CADM-1 MHCIIlow. The weak expression of CD4 on equine pDC contrasts with findings in several other mammals. Furthermore, pDC purified by fluorescence-activated cell sorting were found to be the only cell subset able to produce large amounts of IFN-α upon TLR9-agonist stimulation. The pDC identity was confirmed by demonstrating high-levels of PLAC8, RUNX2 and TCF4 expression, showing pDC-restricted expression in other mammals.  相似文献   

10.
Multiple sclerosis (MS) is a progressive demyelinating disease of the central nervous system (CNS). Many nerve axons are insulated by a myelin sheath and their demyelination not only prevents saltatory electrical signal conduction along the axons but also removes their metabolic support leading to irreversible neurodegeneration, which currently is untreatable. There is much interest in potential therapeutics that promote remyelination and here we explore use of leukaemia inhibitory factor (LIF), a cytokine known to play a key regulatory role in self-tolerant immunity and recently identified as a pro-myelination factor. In this study, we tested a nanoparticle-based strategy for targeted delivery of LIF to oligodendrocyte precursor cells (OPC) to promote their differentiation into mature oligodendrocytes able to repair myelin. Poly(lactic-co-glycolic acid)-based nanoparticles of ∼120 nm diameter were constructed with LIF as cargo (LIF-NP) with surface antibodies against NG-2 chondroitin sulfate proteoglycan, expressed on OPC. In vitro, NG2-targeted LIF-NP bound to OPCs, activated pSTAT-3 signalling and induced OPC differentiation into mature oligodendrocytes. In vivo, using a model of focal CNS demyelination, we show that NG2-targeted LIF-NP increased myelin repair, both at the level of increased number of myelinated axons, and increased thickness of myelin per axon. Potency was high: a single NP dose delivering picomolar quantities of LIF is sufficient to increase remyelination.Impact statementNanotherapy-based delivery of leukaemia inhibitory factor (LIF) directly to OPCs proved to be highly potent in promoting myelin repair in vivo: this delivery strategy introduces a novel approach to delivering drugs or biologics targeted to myelin repair in diseases such as MS.  相似文献   

11.
12.
Streptococcus suis (S. suis) serotype 2 usually cause infection in swine. Recently, two large-scale outbreaks in China with severe streptococcal toxic shock syndrome (STSS) and high mortality raised worldwide concern to human S. suis infection. To reveal the molecular pathogenesis of S. suis 2 during human infection, in-vivo induced antigen technology (IVIAT) was applied to identify the in-vivo induced genes (ivi genes) of S. suis 05ZYH33. The ivi genes are specifically expressed or up-regulated in-vivo and always associated with the in-vivo survival and pathogenicity of pathogens. In present study, convalescent sera from S. suis 05ZYH33 infected patients were pooled and fully adsorbed with in-vitro grown S. suis 05ZYH33 and Escherichia coli BL21 (DE3). Genomic expression library of 05ZYH33 was repeatedly screened with colony immunoblot assay using adsorbed sera. Finally, 19 genes were assessed as ivi genes of 05ZYH33. Fifteen of 19 genes encode proteins with biological functions in substance transport and metabolism, cell structure biogenesis, cell cycle control, replication, translation and other functions. The 4 remaining genes encode proteins with unknown functions. Of the 19 ivi genes, five (SSU05_0247, 0437, 1577, 1664 and 2144) encode proteins with no immunoreactivity to control sera from healthy individuals never exposed to 05ZYH33. The successful identification of ivi genes not only sheds light on understanding the pathogenesis of S. suis 05ZYH33 during its human infection, but also provides potential targets for the developments of new vaccines, therapeutic drugs and diagnostic reagents against human S. suis infection.  相似文献   

13.
《Research in microbiology》2014,165(10):826-835
A novel marine bacterium, strain LBS2T was isolated from eggs carried on pleopods of the spiny lobster collected from Andaman Sea. Heterotrophic growth occurred at 1–7% NaCl. 16S rRNA gene sequence similarity revealed the strain LBS2T belonged to the genus Vibrio and showed above 97% similarity with eight type strains of the genus Vibrio. Multilocus analysis based on ftsZ, gapA, gyrB, mreB, pyrH recA, rpoA, and topA revealed LBS2T formed a separate cluster with Vibrio ponticus DSM 16217T with 89.8% multilocus gene sequence similarity. However, strain LBS2T is distantly related with other members of the Scophthalmi clade in terms of 16S rRNA signatures, phenotypic variations and multilocus gene sequence similarity, for which we propose LBS2T belongs to a new clade i.e. Ponticus clade with V. ponticus DSM 16217T as the representative type strain of the clade. DNA–DNA homologies between strain LBS2T and closely related strains were well below 70%. DNA G + C content was 45.3 mol%. On the basis of our polyphasic study, strain LBS2T represents a novel species of the genus Vibrio, for which the name Vibrio panuliri sp. nov. is proposed. The type strain is LBS2T (= JCM 19500T = DSM 27724T = LMG 27902T).  相似文献   

14.
15.
Hansen L, Riis AK, Silahtaroglu A, Hove H, Lauridsen E, Eiberg H, Kreiborg S. RUNX2 analysis of Danish cleidocranial dysplasia families. Cleidocranial dysplasia (CCD) is an autosomal dominant inherited disease caused by mutations in the Runt gene RUNX2. Screening of 19 Danish CCD families revealed 16 pathogenic mutations (84%) representing 8 missense mutations, 2 nonsense mutations, 4 frame‐shift mutations and 2 large deletions in the RUNX2 locus. Eight mutations were novel, two were found twice, and polymorphisms were found in the promoter region and in the conserved polyglutamine/polyalanine repeat. A large duplication downstream of RUNX2 found in one patient suggests a possible regulatory RUNX2 element. The CCD phenotypes and genotypes adhere to the large phenotypic variability reported in previous CCD studies. Identification of large chromosome aberrations in or near the RUNX2 locus in 3 of the 19 cases suggests copy number analyses to be included in future RUNX2 mutation analyses.  相似文献   

16.
Primary biliary cirrhosis (PBC) is an enigmatic disease mediated by autoimmune destruction of cholangiocytes in hepatic bile ducts. The early immunological events leading to PBC are poorly understood; clinical signs of disease occur very late in the pathological process. We have used our unique murine model of PBC in dominant-negative TGF-β receptor type II transgenic mice to delineate critical early immunopathological pathways, and previously showed that dnTGFβRII CD8 T cells transfer biliary disease. Herein we report significantly increased numbers of hepatic dnTGFβRII terminally differentiated (KLRG1+) CD8 T cells, a CD8 subset previously shown to be enriched in antigen specific cells during hepatic immune response to viral infections. We performed bone marrow chimera studies to assess whether dnTGFβRII CD8 mediated disease was cell intrinsic or extrinsic. Unexpectedly, mixed (dnTGFβRII and B6) bone marrow chimeric (BMC) mice were protected from biliary disease compared to dnTGFβRII single bone marrow chimerics. To define the protective B6 cell subset, we performed adoptive transfer studies, which showed that co-transfer of B6 Tregs prevented dnTGFβRII CD8 T cell mediated cholangitis. Treg mediated disease protection was associated with significantly decreased numbers of hepatic KLRG1+ CD8 T cells. In contrast, co-transfer of dnTGFβRII Tregs offered no protection, and dnTGFβRII Treg cells were functionally defective in suppressing effector CD8 T cells in vitro compared to wild type B6 Tregs. In vitro cholangiocyte cytotoxicity assays demonstrated significantly increased numbers of cytotoxic hepatic dnTGFβRII KLRG1+ CD8 cells compared to B6. Protection from disease by B6 Tregs was associated with elimination of hepatic dnTGFβRII CD8 mediated cholangiocyte cytotoxicity. These results emphasize that autoimmune cholangitis requires defects in both the T effector and regulatory compartments, and that an intrinsic T cell effector defect is not sufficient to mediate autoimmune biliary disease in the setting of intact immune regulation. These results have important implications for understanding the early pathogenesis of human PBC.  相似文献   

17.
We recruited a family with an affected child exhibiting features of cleidocranial dysplasia with some phenotypic variations from reported cases. Whole exome sequencing data analysis identified an 18-bps heterozygous in-frame deletion variant (c.243-260delGGCGGCTGCGGCGGCGGC) in the RUNX2 gene. Sanger sequencing validated the presence of deletion in affected individual. Initially, we considered this variant as a causal mutation for the patient's phenotype based on previous report(s). However, further analysis of variant revealed that it is present in high frequency in variety of genome variation databases. Moreover, segregation analysis discovered the presence of variant in mother as well. Furthermore, screening of population matched control individuals revealed that the variant is present in apparently healthy individuals as well. Three-dimensional structures of the wild-type and mutant RUNX2 protein (p.Ala82_Ala87del) were analysed and it was found that both wild type and mutant protein show similar secondary structure pattern. Presence of RUNX2 deletion variant (c.243-260delGGCGGCTGCGGCGGCGGC) in control individuals, its high population frequency, benign effect on the overall protein structure lead to the argument that this variant is a population polymorphism and not a pathogenic mutation.  相似文献   

18.
Cleidocranial dysplasia (CCD) is an autosomal dominant disorder characterized by skeletal anomalies such as delayed closure of the cranial sutures, underdeveloped or absent clavicles, multiple dental abnormalities, short stature and osteoporosis. RUNX2, encoding Runt DNA-binding domain protein important in osteoblast differentiation, is the only known gene related to the disease and identified as responsible in 70% of the cases. Our clinical evaluations revealed that short stature present at a rate of 28.6%, osteoporosis at a rate of 57.1% and osteopenia at 21.4%. In this study, RUNX2 sequencing revealed nine different variations in 11 families, eight being pathogenic of which one was novel gross insertion (c.1271_1272ins20) and one other being predicted benign in frame gross deletion (c.241_258del).  相似文献   

19.
Legius E, Mulier M, Van Damme B, Fryns JP. Progressive pseudorheumatoid arthritis of childhood (PPAC) and normal adult height.
Clin Genet 1993: 44: 152–155. © Munksgaard, 1993
Two brothers and a sister presented with spondyloepiphyseal dysplasia and progressive arthropathy. Stiffness and restricted mobility of several large joints had been present since childhood. Their adult height was normal, and skeletal radiography showed mild platyspondyly, abnormal epiphyses and severe osteoarthrosis with extensive synovial osteochon-dromatosis. This autosomal recessive type of spondyloepiphyseal dysplasia tarda must be distinguished from other forms of spondyloepiphyseal dysplasia, rheumatoid arthritis in childhood and osteoarthrosis in adults.  相似文献   

20.
BackgroundAcute liver failure (ALF) in children can be life-threatening. Although many causes are known, ALF remains unexplained in about half of the cases. Recently, bi-allelic mutations in NBAS were reported to underlie recurrent episodes of elevated liver transaminases (ELT) and ALF in the context of diverse extrahepatic phenotypes.Methods and ResultsWe here describe two sisters, born to non-consanguineous Portuguese parents, who had short stature and presented with recurrent episodes of severe ELT triggered by febrile respiratory viral infections since early childhood. Patient 1 had mild facial dysmorphism and died during the second ELT crisis at 3–11/12 years of age. Patient 2, currently 9 years old, had multiple episodes of ELT (>30), twice with ALF, often accompanied by extensive urticaria and facial angioedema. Whole-exome and Sanger sequencing revealed that both patients carried previously undescribed compound heterozygous mutations of NBAS (NM_015909.3): c.680A > C (p.His227Pro), affecting an evolutionarily conserved residue, and c.1749G > A (p.Trp583*), causing a premature stop codon. Both mutations are predicted to be highly damaging. The parents and two younger siblings are healthy and heterozygous for one or another mutant allele.ConclusionThe multiplex kindred reported herein expands the genotypic and phenotypic spectrum of this recently described clinical syndrome due to autosomal recessive NBAS deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号