首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RATIONALE: Dopamine (DA) agonists and NMDA antagonists disrupt sensorimotor gating in rats, as measured by a loss of prepulse inhibition of the startle reflex. These effects are used in predictive models for antipsychotic efficacy: clinically "typical" and "atypical" antipsychotics restore PPI in adult rats treated with DA agonists such as apomorphine (APO), while clinically "atypical" antipsychotics restore PPI in rats treated with NMDA antagonists such as phencyclidine (PCP). We previously reported that the PPI disruptive effects of both APO and PCP are evident in 16- to 18-day-old rat pups, suggesting that the brain substrates for these effects are functional very early in development. OBJECTIVE: In the present study we assessed the developmental patterns of antipsychotic effects in these measures. METHODS: The PPI-disruptive effects of APO and PCP, and their antagonism by the typical antipsychotic haloperidol, and the atypical antipsychotic quetiapine, were assessed across development in Sprague-Dawley rats. RESULTS: Similar to the pattern seen in adults, both haloperidol and quetiapine opposed APO-induced PPI deficits in 16- to 19-day-old rat pups. However, the "atypical" antipsychotic quetiapine did not oppose PCP-induced PPI deficits in pups or prepubertal (45 day) adolescents, but did oppose these PCP effects in postpubertal rats. CONCLUSIONS: While brain substrates mediating the PPI-disruptive effects of DA agonists and NMDA antagonists are functional early in development, some physiological event associated with puberty is a necessary condition for the "atypical antipsychotic profile" in this predictive model.  相似文献   

2.
Both dopamine (DA) agonists and NMDA antagonists produce prepulse inhibition (PPI) deficits in rats that model PPI deficits in schizophrenia patients. While DA agonist effects on PPI are reversed by acute treatment with either "typical" high-potency D2 DA antagonists or "atypical" antipsychotics, PPI deficits produced by phencyclidine (PCP) are preferentially reversed by acute treatment with "atypical" antipsychotics. Acute effects of antipsychotics may not accurately model the more clinically relevant effects of these drugs that emerge after several weeks of continuous treatment. In the present study, sustained treatment with haloperidol via subcutaneous minipumps blocked the PPI-disruptive effects of apomorphine and attenuated the PCP-induced disruption of PPI. Restoration of PPI in apomorphine-treated rats was evident within the first week of sustained haloperidol administration. A partial reversal of PCP effects on PPI did not develop until the second week of sustained haloperidol treatment, followed a fluctuating course, but remained significant into the seventh week of sustained haloperidol administration. The delayed emergence of anti-PCP effects of haloperidol suggests that the brain substrates responsible for the DAergic and NMDA regulation of PPI are differentially sensitive to acute and chronic effects of antipsychotics.  相似文献   

3.
RATIONALE: Patients with schizophrenia exhibit deficits in an operational measure of sensorimotor gating: prepulse inhibition (PPI) of startle. Similar deficits in PPI are produced in rats by pharmacological or developmental manipulations. These experimentally induced PPI deficits in rats are clearly not animal models of schizophrenia per se, but appear to provide models of sensorimotor gating deficits in schizophrenia patients that have face, predictive, and construct validity. In rodents, disruptions in PPI of startle are produced by: stimulation of D2 dopamine (DA) receptors, produced by amphetamine or apomorphine; activation of serotonergic systems, produced by serotonin (5-HT) releasers or direct agonists at multiple serotonin receptors; and blockade of N-methyl-D-aspartate (NMDA) receptors, produced by drugs such as phencyclidine (PCP). Accordingly, dopaminergic, serotonergic, and glutamatergic models of disrupted PPI have evolved and have been applied to the identification of potential antipsychotic treatments. In addition, some developmental manipulations, such as isolation rearing, have provided non-pharmacological animal models of the PPI deficits seen in schizophrenia. OBJECTIVE: This review summarizes and evaluates studies assessing the effects of systemic drug administrations on PPI in rats. METHODS: Studies examining systemic drug effects on PPI in rats prior to January 15, 2001 were compiled and organized into six annotated appendices. Based on this catalog of studies, the specific advantages and disadvantages of each of the four main PPI models used in the study of antipsychotic drugs were critically evaluated. RESULTS: Despite some notable inconsistencies, the literature provides strong support for significant disruptions in PPI in rats produced by DA agonists, 5-HT2 agonists, NMDA antagonists, and isolation rearing. Each of these models exhibits sensitivity to at least some antipsychotic medications. While the PPI model based on the effects of direct DA agonists is the most well-validated for the identification of known antipsychotics, the isolation rearing model also appears to be sensitive to both typical and atypical antipsychotics. The 5-HT PPI model is less generally sensitive to antipsychotic medications, but can provide insight into the contribution of serotonergic systems to the actions of newer antipsychotics that act upon multiple receptors. The deficits in PPI produced by NMDA antagonists appear to be more sensitive to clozapine-like atypical antipsychotics than to typical antipsychotics. Hence, despite some exceptions to this generalization, the NMDA PPI model might aid in the identification of novel or atypical antipsychotic medications. CONCLUSIONS: Studies of drug effects on PPI in rats have generated four distinctive models that have utility in the identification of antipsychotic medications. Because each of these models has specific advantages and disadvantages, the choice of model to be used depends upon the question being addressed. This review should help to guide such decisions.  相似文献   

4.
Sensorimotor gating of the startle reflex – measured by prepulse inhibition (PPI) – is impaired in schizophrenia patients and in rats treated with either dopamine (DA) agonists or with N-methyl-D-aspartate (NMDA) antagonists. While both typical and atypical antipsychotics restore PPI in DA agonist-treated rats, studies thus far have demonstrated that only atypical antipsychotics restore PPI in rats treated with NMDA antagonists. This model for predicting atypical antipsychotic properties has been studied extensively in rats, and there is interest in moving these studies into humans, where the NMDA antagonist ketamine is also reported to significantly reduce PPI. In anticipation of such studies, and to facilitate the use of this model in humans, we examined the effects of high and low potency typical antipsychotics (haloperidol and chlorpromazine), the atypical antipsychotic clozapine, and the putative atypical antipsychotic, Seroquel, on ketamine-disrupted PPI in rats, across a range of ketamine that produced submaximal, as well as maximal disruptions of PPI. Ketamine dose-dependently reduced PPI, and this effect was significantly opposed by Seroquel, clozapine and chlorpromazine, but not haloperidol. The effects of chlorpromazine on ketamine-disrupted PPI demonstrate that the ability of antipsychotics to restore PPI in NMDA antagonist-treated rats is not specific to clinically atypical antipsychotics. Receptor properties shared by Seroquel, clozapine and chlorpromazine, but not haloperidol, may implicate critical substrates in the NMDA antagonist-induced disruption of PPI. Received: 31 December 1997/Final version: 11 March 1998  相似文献   

5.
Rationale Schizophrenic patients have a deficit in prepulse inhibition (PPI) which can be modelled in rats by administration of direct or indirect dopamine (DA) receptor agonists and N-methyl-d-aspartate (NMDA) receptor antagonists. Moreover, antipsychotics reverse the disruptive effect of DA agonists and NMDA receptor antagonists in this rat model. Consequently, this model is considered as predictive of antipsychotic action in the clinic. However, the effect of compounds, such as antidepressants, used for other psychiatric disorders but also administered to patients with schizophrenia has not been well investigated in this model. Antidepressants have been suggested not to affect PPI in humans. Thus, antidepressants are not expected to antagonise PPI disruption in rats, and should normally be used as negative controls in this model.Objectives To investigate the effects of three antidepressant compounds, a serotonin reuptake inhibitor, a dopamine reuptake inhibitor, and a noradrenaline reuptake inhibitor in the rat PPI model.Methods The effect of acute treatment with citalopram, bupropion and desipramine on d-amphetamine-disrupted and phencyclidine (PCP)-disrupted PPI in rats was investigated. Ziprasidone was tested as a positive control.Results None of the antidepressants, in contrast to ziprasidone, reversed PCP-disrupted PPI in rats. Both desipramine and ziprasidone normalised d-amphetamine-disrupted PPI, while citalopram and bupropion were inactive.Conclusions PCP-disrupted PPI in rats was less sensitive to false positives than the d-amphetamine-disrupted PPI model, based on the antidepressants tested in this study.  相似文献   

6.
Prepulse inhibition (PPI) of acoustic startle is decreased in unmedicated schizophrenia patients and similar deficits can be induced in rats through pharmacological, environmental, or neuroanatomical manipulations. Recently, we reported that Brattleboro (BB) rats, a Long Evans (LE) strain with a single gene mutation, have inherent deficits in PPI homologous to those observed in schizophrenia patients. We also reported that PPI deficits in BB rats could be reversed by chronic but not acute administration of 0.5 mg/kg haloperidol. No other dose or drug was tested in that experiment. In this study, we tested the effects of acute subcutaneous administration of several doses of haloperidol as well as the second-generation antipsychotic, clozapine, and the putative novel antipsychotic, PD149163, a neurotensin mimetic that crosses the blood-brain barrier. Consistent with our previous report, BB rats exhibited PPI deficits compared to LE rats and none of the doses of haloperidol produced a significant effect on this PPI deficit. In contrast, 10 and 15 mg/kg of clozapine and all the doses of PD149163 tested reversed the PPI deficits in BB rats. In addition, haloperidol, but not clozapine or PD149163 produced significant catalepsy in BB rats, supporting the notion that PD149163 has a profile consistent with atypical antipsychotics and providing support for the predictive validity of the PPI results. These results further strengthen the notion that the BB rat is a useful predictive model of antipsychotic efficacy and suggest that this model may differentiate between antipsychotics belonging to different therapeutic categories, for example, first- and second-generation agents.  相似文献   

7.
Rationale Hyperprolactinaemia is a common side effect of antipsychotic treatment and the clinical consequences associated with this, e.g. sexual dysfunction, can have a negative impact on patient compliance. Objectives The aim of this study was to investigate the effect of the atypical antipsychotics olanzapine and risperidone on prolactin levels in rats using different treatment regimes and to compare these data with those reported clinically. Methods: All experiments were carried out in male CD rats. In separate studies, the effects of acute, sub-chronic (7 days) and chronic (28 days) olanzapine and risperidone administration on prolactin levels were determined. Further studies investigated the time course of the prolactin response following olanzapine and risperidone treatment over 24 h. Results Both drugs significantly increased prolactin levels in a similar manner following acute administration, in keeping with clinically reported data. However, this elevation was still present following sub-chronic and chronic treatment, contrasting with clinical data with respect to olanzapine but not risperidone. Over 24 h, olanzapine demonstrated a more transient elevation of prolactin levels, whereas risperidone caused a robust and persistent increase in prolactin up to 24 h post-dose, closely mimicking clinical results. Conclusions The present study has demonstrated that olanzapine and risperidone display similar effects on prolactin levels in the rat following acute and chronic administration but differ in their prolactin response over a 24-h period. In conclusion, prolactin levels in rats following atypical antipsychotic treatment may not be fully predictive of the clinical situation.  相似文献   

8.
Iloperidone is a novel atypical antipsychotic which acts as a broad spectrum dopamine/serotonin/norepinephrine receptor antagonist. To compare iloperidone behaviorally to other known antipsychotics, we evaluated the drug in three pharmacological models and one developmental model of disrupted prepulse inhibition (PPI) in rats. Firstly, 0.5 mg/kg apomorphine induced PPI deficits that were prevented by pretreatment with iloperidone (1 and 3 mg/kg). Secondly, treatment with the N-methyl-D-aspartate (NMDA)-receptor antagonist phencyclidine (PCP) produced robust deficits in PPI. Both doses of iloperidone (1 and 3 mg/kg) prevented the PPI-disruptive effects of treatment with 1 mg/kg PCP. Thirdly, treatment with the alpha1-adrenoceptor agonist cirazoline (0.6 mg/kg) disrupted PPI, and produced a concurrent large increase in startle magnitude. A relatively low dose of iloperidone (0.3 mg/kg) prevented cirazoline-induced PPI deficits, independent of its effects on startle magnitude. Finally, iloperidone (1 mg/kg) did not reverse PPI deficits in the isolation-rearing model of schizophrenia. These results indicate that iloperidone exerts behavioral effects in pharmacological models of disrupted sensorimotor gating consistent with "atypical" antipsychotics, mediated by antagonism of dopaminergic and noradrenergic receptors. The absence of effect in isolation-reared rats may be due to the relatively small effect size of isolation rearing on PPI or dose of iloperidone.  相似文献   

9.
INTRODUCTION: Prepulse inhibition (PPI) of the startle reflex has been extensively studied because it is disrupted in several psychiatric diseases, most notably schizophrenia. In rats, and to a lesser extent, in humans, PPI can be diminished by dopamine (DA) D(2)/D(3) and serotonin 5-HT(1A) receptor agonists. A novel class of potential antipsychotics (SSR181507, bifeprunox, and SLV313) possess partial agonist/antagonist properties at D(2) receptors and various levels of 5-HT(1A) activation. MATERIALS AND METHODS: It thus appeared warranted to assess, in Sprague-Dawley rats, the effects of these antipsychotics on basal PPI. RESULTS: SSR181507, sarizotan, and bifeprunox decreased PPI, with a near-complete abolition at 2.5-10 mg/kg; SLV313 had a significant effect at 0.16 mg/kg only. Co-treatment with the 5-HT(1A) receptor antagonist WAY100,635 (0.63 mg/kg) showed that the 5-HT(1A) agonist activity of SSR181507 was responsible for its effect. By contrast, antipsychotics with low affinity and/or efficacy at 5-HT(1A) receptors, such as aripiprazole (another DA D(2)/D(3) and 5-HT(1A) ligand), and established typical and atypical antipsychotics (haloperidol, clozapine, risperidone, olanzapine, quetiapine, and ziprasidone) had no effect on basal PPI (0.01-2.5 to 2.5-40 mg/kg). DISCUSSION: The present data demonstrate that some putative antipsychotics with pronounced 5-HT(1A) agonist activity, coupled with partial agonist activity at DA D(2) receptors, markedly diminish PPI of the startle reflex in rats. CONCLUSIONS: These data raise the issue of the influence of such compounds on sensorimotor gating in humans.  相似文献   

10.
Sensitisation (i.e. progressive enhancement) of behavioural abnormalities induced by repeated treatment with non-competitive NMDA receptor antagonists in animals is considered an animal model for schizophrenia. Here, male Wistar rats were treated for 11 days with either dizocilpine (0.1 mg/kg), phencyclidine (PCP, 2 mg/kg), or saline and tested for prepulse inhibition (PPI) of the acoustic startle response (ASR). The aims of this study were twofold: First, we tested whether sensitisation of PPI deficits previously found in Sprague-Dawley rats were also found in Wistar rats, and, second, whether these effects can be ameliorated by the atypical antipsychotic clozapine. PPI is a paradigm for the assessment of sensorimotor gating (and its deficits) and is impaired in schizophrenic patients. After the sub-chronic treatment the rats were tested drug-free (day 12), and on the following days after drug challenge by PCP (2 mg/kg), combinations of PCP (2 mg/kg) and clozapine (5 and 10 mg/kg), or clozapine (5 mg/kg) alone. PPI was significantly reduced by both NMDA receptor antagonists. This effect was not further enhanced by the daily treatment. Startle magnitude was increased after eight days of dizocilpine-treatment only, indicating sensitisation of startle-potentiation by this drug. Testing the rats drug-free on day 12 revealed enhanced PPI and reduced startle (compared to the matching test on day 0) irrespective of previous treatment. Drug challenge with PCP (2 mg/kg) again reduced PPI in all groups. Clozapine (5 and 10 mg/kg) failed to antagonise the PPI-disruptive effects of PCP and even enhanced the PCP-induced PPI-deficits in rats pretreated with PCP or dizocilpine. These findings suggest: (1) that PPI and startle are influenced differently by non-competitive NMDA receptor antagonists, (2) that PCP and dizocilpine reduce PPI in Wistar rats, but do not lead to a sensitisation of this effect; and (3) that under the present schedule of treatments, the antipsychotic compound clozapine does not antagonise but rather enhances PPI-disruptive effects of non-competitive NMDA receptor antagonists, pointing towards a complex interaction of the brain processes underlying the action of psychotomimetic and atypical antipsychotic drugs.  相似文献   

11.
Rationale Prepulse inhibition (PPI) of the acoustic startle reflex is a measure of sensorimotor gating, which occurs across species and is deficient in severe neuropsychiatric disorders such as schizophrenia. In monkeys, as in rodents, phencyclidine (PCP) induces schizophrenia-like deficits in PPI. In rodents, in general, typical antipsychotics (e.g. haloperidol) reverse PPI deficits induced by dopamine (DA) agonists (e.g. apomorphine), but not those induced by N-methyl-d-aspartate (NMDA) receptor antagonists [e.g. phencyclidine (PCP)], whereas atypical antipsychotics (e.g. clozapine) reverse PPI deficits induced by DA agonists and NMDA antagonists. However, some discrepancies exist with some compounds and strains of rodents.Objectives This study investigated whether a typical (haloperidol, 0.035 mg/kg) and an atypical (clozapine, 2.5 mg/kg) antipsychotic could be distinguished in their ability to reverse PCP-induced deficits in PPI in eight monkeys (Cebus apella).Methods First, haloperidol dose was determined by its ability to attenuate apomorphine-induced deficits in PPI. Then, haloperidol and clozapine were tested in eight monkeys with PCP-induced deficits of PPI. Experimental parameters were similar to standard human PPI procedures, with 115 dB white noise startle pulses, either alone or preceded by 120 ms with a prepulse 16 dB above the 70 dB background noise.Results Clozapine reversed PCP-induced PPI deficits. In contrast, haloperidol did not significantly attenuate PCP-induced PPI deficits even at doses that significantly attenuated apomorphine effects.Conclusions In this primate model, clozapine was distinguishable from haloperidol by its ability to attenuate PCP-induced deficits in PPI. The results provide further evidence that PPI in nonhuman primates may provide an important animal model for the development of novel anti-schizophrenia medications.  相似文献   

12.
Disruption of prepulse inhibition (PPI) of acoustic startle in rats has been widely used as an animal model for the sensorimotor gating deficit state usually found in schizophrenia. PPI was reported to be regulated by forebrain circuits, including mesolimbic cortex, nucleus accumbens, ventral pallidum, thalamus, and pedunculopontine tegmentum nucleus. Phencyclidine or dopamine agonists, which causes psychotomimetic symptoms in humans, disrupts PPI in animals. The ED50 value of the drugs to reverse the phencyclidine-induced PPI disruption was significantly correlated with the affinity for the serotonin 2A receptor, but not for the dopamine D2 receptor of each drug (including atypical antipsychotics). In contrast, the ED50 value of the drugs to reverse the apomorphine-induced PPI disruption was significantly correlated with the affinity for the dopamine D2 receptor (including typical antipsychotics). Thus the drug that antagonizes the disruption of PPI caused by PCP or DA agonists would be a candidate for a therapeutic agent for the sensorimotor gating deficit state in schizophrenic patients. Neural mechanisms underlying the disruption of PPI were reviewed.  相似文献   

13.
Antagonism of prepulse inhibition (PPI) deficits produced by psychotomimetic drugs has been widely used as an effective tool for the study of the mechanisms of antipsychotic action and identifying potential antipsychotic drugs. Many studies have relied on the acute effect of a single administration of antipsychotics, whereas patients with schizophrenia are treated chronically with antipsychotic drugs. The clinical relevance of acute antipsychotic effect in this model is still an open question. In this study, we investigated the time course of repeated antipsychotic treatment on persistent PPI deficit induced by repeated phencyclidine (PCP) treatment. After a baseline test with saline, male Sprague-Dawley rats were repeatedly injected with either vehicle, haloperidol (0.05 mg/kg), clozapine (5.0 or 10.0 mg/kg), olanzapine (2.0 mg/kg), risperidone (1.0 mg/kg) or quetiapine (10 mg/kg), followed by PCP (1.5 mg/kg, sc) and tested for PPI once daily for 6 consecutive days. A single injection of PCP disrupted PPI and this effect was maintained with repeated PCP injections throughout the testing period. Acute clozapine, but not other antipsychotic drugs, attenuated acute PCP-induced PPI disruption at both tested doses. With repeated treatment, clozapine and quetiapine maintained their attenuation, while risperidone enhanced its effect with a significant reduction of PCP-induced disruption toward the end of treatment period. In contrast, repeated haloperidol and olanzapine treatments were ineffective. The PPI effects of these drugs were more conspicuous at a higher prepulse level (e.g. 82 dB) and were dissociable from their effects on startle response and general activity. Overall, the repeated PCP-PPI model appears to be a useful model for the study of the time-dependent antipsychotic effect, and may help identify potential treatments that have a quicker onset of action than current antipsychotics.  相似文献   

14.
Although substantial literature describes the modulation of prepulse inhibition (PPI) by dopamine (DA) in rats, few reports address the effects of dopaminergic manipulations on PPI in mice. We characterized the effects of subtype-specific DA agonists in the PPI paradigm to further delineate the specific influences of each DA receptor subtype on sensorimotor gating in mice. The mixed D1/D2 agonist apomorphine and the preferential D1-family agonists SKF82958 and dihydrexidine significantly disrupted PPI, with differing or no effects on startle. In contrast to findings in rats, the D2/D3 agonist quinpirole reduced startle but had no effect on PPI. Pergolide, which has affinity for D2/D3 and D1-like receptors, reduced both startle and PPI, but only at the higher, nonspecific doses. In addition, the D1-family receptor antagonist SCH23390 blocked the PPI-disruptive effects of apomorphine on PPI, but the D2-family receptor antagonist raclopride failed to alter the disruptive effect of apomorphine. These studies reveal potential species differences in the DA receptor modulation of PPI between rats and mice, where D1-family receptors may play a more prominent and independent role in the modulation of PPI in mice than in rats. Nevertheless, due to the limited selectivity of DA receptor agonists, further studies using specific receptor knockout mice are warranted to clarify the respective roles of specific DA receptor subtypes in modulating PPI in mice.  相似文献   

15.

Rationale

Prepulse inhibition (PPI) of startle is a measure of sensorimotor gating that is heritable and deficient in certain psychiatric disorders, including schizophrenia. Sprague–Dawley (SD) rats are more sensitive to PPI disruptive effects of dopamine (DA) agonists at long interstimulus intervals (60–120 ms) and less sensitive to their PPI-enhancing effects at short (10–30 ms), compared with Long–Evans (LE) rats. These heritable strain differences in sensitivity to the PPI disruptive effects of DA agonists must ultimately reflect neural changes "downstream" from forebrain DA receptors.

Objective

The current study evaluated the effects of the DA agonist, apomorphine (APO), on ventral pallidal (VP) gamma-aminobutyric acid (GABA) and glutamate efflux and PPI in SD and LE rats.

Methods

PPI was tested in SD and LE rats after vehicle or APO (0.5 mg/kg, subcutaneously (s.c.)) in a within-subject design. In different SD and LE rats, VP dialysate was collected every 10 min for 120 min after vehicle or APO (0.5 mg/kg, s.c.) and analyzed for GABA and glutamate content by capillary electrophoresis (CE) coupled with laser-induced fluorescence (LIF).

Results

As predicted, SD rats exhibited greater APO-induced PPI deficits at long intervals and less APO-induced PPI enhancement at short intervals compared to LE rats. APO significantly reduced VP GABA efflux in SD but not in LE rats; glutamate efflux was unaffected in both strains.

Conclusion

Heritable strain differences in PPI APO sensitivity in SD vs LE rats parallel, and may be mediated by, strain differences in the VP GABA efflux.  相似文献   

16.
RATIONALE: Prepulse inhibition (PPI) of the startle response in mice is increasingly used as a paradigm of sensory gating with potential predictive and construct validity towards schizophrenia. OBJECTIVES: Establishment of a mouse PPI paradigm in which typical and atypical antipsychotic drugs directly improve a low performance PPI. METHODS: Three strains of mice--C57Bl/6J, 129S6/SvEvTac and DBA/2J--were tested in a startle paradigm with three prepulse intensities, 2, 4 and 8 dB above background. RESULTS: Under these conditions, risperidone (0, 0.25, 0.5 and 1 mg/kg i.p.) and clozapine (0, 1, 3 and 9 mg/kg i.p.) improved PPI in all three strains, with order of effect in DBA/2J > 129S6SvEvTac > C57Bl/6J. The DBA/2J strain showed larger PPI-enhancing effects, without disturbing the basal startle response. Two alpha7 nicotinic receptor agonists, GTS-21 (1-10 mg/kg i.p.) and AR-R17779 (1-10 mg/kg i.p.) were inactive in the PPI procedure in DBA/2J mice. CONCLUSIONS: DBA/2J mice were very sensitive to the antipsychotic-like effects of atypical (clozapine) and typical (risperidone) antipsychotics, and this strain is proposed as a model to directly measure sensory gating properties of drugs. Alpha7 Nicotinergic receptor agonists were ineffective in this PPI paradigm.  相似文献   

17.
We sought to determine the relationship between phencyclidine (PCP)-induced alterations in behavior and NMDAR expression in the cortex by examining the effect of anti-schizophrenic drug treatment on both. Sprague–Dawley rat pups were pretreated with risperidone or olanzapine prior to treatment with PCP on postnatal day 7 (PN7) or sub-chronically on PN7, 9, and 11. Pre-pulse inhibition (PPI) of acoustic startle was measured on PN24–26 and following a challenge dose of 4 mg/kg PCP, locomotor activity was measured on PN28–35. PCP treatment on PN7 did not cause a deficit in PPI, but did cause locomotor sensitization. This was prevented by both antipsychotics. PCP treatment on PN7 caused an up-regulation of NR1 and NR2B, which was not affected by either anti-schizophrenic drug. PCP treatment on PN7, 9, and 11 caused a deficit in PPI and a sensitized locomotor response to PCP challenge as well as an up-regulation of NR1 and NR2A, all of which were prevented by both atypical anti-schizophrenic drugs. These data support the hypothesis that sub-chronic, but not single injection PCP treatment in developing rats results in behavioral alterations that are sensitive to antipsychotic drugs and these behavioral changes observed could be related to up-regulation of cortical NR1/NR2A receptors.  相似文献   

18.
Neonatal ventral hippocampal (NVH) lesions in rats have been shown to induce behavioral abnormalities at adulthood thought to simulate some aspects of positive, negative and cognitive deficits classically observed in schizophrenic patients. Such lesions induced a post-pubertal emergence of prepulse inhibition deficits reminiscent of the sensorimotor gating deficits observed in a large majority of schizophrenic patients. Here we have investigated the capacity of typical and atypical antipsychotics to reverse PPI deficits seen in NVH-lesioned rats.We show that three atypical antipsychotics (clozapine, olanzapine and risperidone) were able to reverse lesion-induced PPI deficits, in contrast to haloperidol, a classical neuroleptic.These results show that the NVH lesion model seems to be endowed with a fair predictive validity as, like in schizophrenic patients, PPI deficits in lesioned animals were reversed by atypical antipsychotics but not by the typical neuroleptic haloperidol.  相似文献   

19.
The potential usefulness of amfonelic acid ( AFA ), a selective dopamine (DA)-releasing agent, in quantitatively assessing the antidopaminergic and antipsychotic potencies of drugs, was evaluated. The procedure consisted of determining the ED50S of a number of neuroleptics in inhibiting the locomotor-stimulant effect of amfonelic acid in mice. These results were compared with the published data on the relative potencies of the neuroleptics to induce catalepsy in rats, to block drug-induced stereotypy and to alleviate psychotic symptoms clinically. It was observed that the amfonelic acid model was as good as, but not superior to, the other three procedures in identifying the potencies of classical antipsychotics. This model, however, was able to predict the clinical effectiveness of two atypical antipsychotics, thioridazine and clozapine, much more accurately than could be achieved by the other methods. Certain other atypical antipsychotics such as, mezilamine , RMI 81, 582, sulpiride and sultopride also produced a dose-related blockade of the amfonelic acid induced locomotor stimulation in mice. The antagonism to amfonelic acid exhibited by mezilamine was weaker, and that of RMI 81,582 was stronger than that of chlorpromazine. Only large doses of the two benzamides were effective in blocking the effect of amfonelic acid, sultopride being about 3 times more effective than sulpiride in this regard. Another analogue of benzamide, YM-09151-2, known to have the profile of a classical antipsychotic, was more effective than haloperidol in blocking the stimulant effect of amfonelic acid. Trebenzomine , which is considered to have the properties of an atypical antipsychotic, although this was proved otherwise when tested clinically, actually potentiated the response of mice to amfonelic acid. Apomorphine antagonized the stimulant effect of amfonelic acid, which could be attributed to its agonist activity at presynaptic DA receptors. Apomorphine has been reported to have clinical antipsychotic effects. Certain non-antipsychotic drugs such as prazosin (but not phenoxybenzamine), promethazine, methysergide, diazepam, as well as the gamm -aminobutyric acid agonists, muscimol and THIP, also inhibited the amfonelic acid-induced locomotor stimulation. In spite of this drawback, the present procedure should prove to be a useful animal model for the evaluation of the antipsychotic potencies of drugs. Its ability to identify the potential usefulness of atypical antipsychotics is noteworthy.  相似文献   

20.
This study aimed to explore strain and species differences in the involvement of 5-HT1A receptors in the action of antipsychotic drugs, using prepulse inhibition (PPI), a model of sensory processing which is deficient in schizophrenia patients. We used automated startle boxes to compare the effect of the 5-HT1A receptor agonist, (+/-)-8-hydroxy-dipropyl-amino-tetralin (8-OH-DPAT), on PPI in three mouse strains. Balb/c mice were then pretreated with antipsychotics, treated with 8-OH-DPAT or saline, and tested for PPI. 8-OH-DPAT treatment dose dependently increased PPI in Balb/c mice, but had less effect in 129Sv and C57Bl/6 mice. In Balb/c mice, the effect of 8-OH-DPAT was blocked by the typical antipsychotic and dopamine D2 receptor antagonist, haloperidol and the third generation antipsychotic, aripiprazole, which has activity at both 5-HT1A and dopamine D2 receptors. The atypical antipsychotics, clozapine, olanzapine and risperidone, had lesser effects. Similar to our earlier studies in rats, the present PPI results suggest that 5-HT1A receptors are involved in the action of some antipsychotic drugs in mice. Despite strain and species differences in the magnitude and direction of the effect of 8-OH-DPAT, downstream dopamine D2 receptor activation seems to be an important mediator. These comparative results allow a theoretical framework of receptor interactions, which may guide further studies on the involvement of 5-HT1A receptors in schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号