首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
ATM mutation and BIRC3 deletion and/or mutation have independently been shown to have prognostic significance in chronic lymphocytic leukemia. However, the relative clinical importance of these abnormalities in patients with a deletion of 11q encompassing the ATM gene has not been established. We screened a cohort of 166 patients enriched for 11q-deletions for ATM mutations and BIRC3 deletion and mutation and determined the overall and progression-free survival among the 133 of these cases treated within the UK LRF CLL4 trial. SNP6.0 profiling demonstrated that BIRC3 deletion occurred in 83% of 11q-deleted cases and always co-existed with ATM deletion. For the first time we have demonstrated that 40% of BIRC3-deleted cases have concomitant deletion and mutation of ATM. While BIRC3 mutations were rare, they exclusively occurred with BIRC3 deletion and a wild-type residual ATM allele. In 11q-deleted cases, we confirmed that ATM mutation was associated with a reduced overall and progression-free survival comparable to that seen with TP53 abnormalities, whereas BIRC3 deletion and/or mutation had no impact on overall and progression-free survival. In conclusion, in 11q-deleted patients treated with first-line chemotherapy, ATM mutation rather than BIRC3 deletion and/or mutation identifies a subgroup with a poorer outcome.  相似文献   

2.
Chronic lymphocytic leukaemia (CLL) is a genetically heterogeneous disease characterised by genomic alterations and gene mutations that may portend worse survival or resistance to treatments. A total of 680 blood or bone marrow samples underwent targeted sequencing of 29 genes previously identified as being mutated in CLL, which were correlated to known prognostic clinical characteristics. Overall, 400 (59%) patients were treatment-naïve (TN) and 280 (41%) were relapsed/refractory (R/R). Most patients (70%) had ≥1 mutation, with TP53 (22%), SF3B1 (18%), NOTCH1 (13%) and ATM (13%) being the most commonly mutated genes. A higher proportion of R/R patients had mutations in SF3B1 (P = 0·01) and TP53 (P < 0·001). Patients with mutated IGHV CLL more often had mutations in KLHL6 (P = 0·001) and MYD88 (P < 0·001). Pairwise associations showed mutational co-occurrences in the TN group including SF3B1/ATM [false discovery rate (FDR) < 0·05] and NOTCH1/POT1 (FDR < 0·01). Recurrent mutations resulting in premature truncation prior to the ubiquitination domains of NOTCH1 in its PEST domain and BIRC3 in its RING domain can produce proteins that constitutively activate CLL. Frequent missense mutations, such as K700E in SF3B1 and E571K in XPO1, have unknown function but are most likely to be activating mutations. Future directions include using these mutations to identify pathways for therapeutic targeting and rational drug design.  相似文献   

3.

Background

The genetic characterization of chronic lymphocytic leukemia cells correlates with the behavior, progression and response to treatment of the disease.

Design and Methods

Our aim was to investigate the role of ATM gene alterations, their biological consequences and their value in predicting disease progression. The ATM gene was analyzed by denaturing high performance liquid chromatography and multiplex ligation probe amplification in a series of patients at diagnosis. The results were correlated with immunoglobulin gene mutations, cytogenetic abnormalities, ZAP-70 and CD38 expression, TP53 mutations, gene expression profile and treatment-free interval.

Results

Mutational screening of the ATM gene identified point mutations in 8/57 cases (14%). Multiplex ligation probe amplification analysis identified six patients with 11q deletion: all of them had at least 20% of deleted cells, analyzed by fluorescent in situ hybridization. Overall, ATM point mutations and deletions were detected in 14/57 (24.6%) cases at presentation, representing the most common unfavorable genetic anomalies in chronic lymphocytic leukemia, also in stage A patients. Patients with deleted or mutated ATM had a significantly shorter treatment-free interval compared to patients without ATM alterations. ATM-mutated cases had a peculiar gene expression profile characterized by the deregulation of genes involved in apoptosis and DNA repair. Finally, definition of the structure of the ATM-mutated protein led to a hypothesis that functional abnormalities are responsible for the unfavorable clinical course of patients carrying these point mutations.

Conclusions

ATM alterations are present at diagnosis in about 25% of individuals with chronic lymphocytic leukemia; these alterations are associated with a peculiar gene expression pattern and a shorter treatment-free interval.  相似文献   

4.
Recurrent gene mutations contribute to the pathogenesis of chronic lymphocytic leukaemia (CLL). We developed a next‐generation sequencing (NGS) platform to determine the genetic profile, intratumoural heterogeneity, and clonal structure of two independent CLL cohorts. TP53, SF3B1, and NOTCH1 were most frequently mutated (16·3%, 16·9%, 10·7%). We found evidence for subclonal mutations in 67·5% of CLL cases with mutations of cancer consensus genes. We observed selection of subclones and found initial evidence for convergent mutations in CLL. Our data suggest that assessment of (sub)clonal structure may need to be integrated into analysis of the mutational profile in CLL.  相似文献   

5.
ATM abnormalities are frequent in chronic lymphocytic leukemia and represent an important prognostic factor. Sole 11q deletion does not result in ATM inactivation by contrast to biallelic defects involving mutations. Therefore, the analysis of ATM mutations and their functional impact is crucial. In this study, we analyzed ATM mutations in predominantly high-risk patients using: i) resequencing microarray and direct sequencing; ii) Western blot for total ATM level; iii) functional test based on p21 gene induction after parallel treatment of leukemic cells with fludarabine and doxorubicin. ATM dysfunction leads to impaired p21 induction after doxorubicin exposure. We detected ATM mutation in 16% (22 of 140) of patients, and all mutated samples manifested demonstrable ATM defect (impaired p21 upregulation after doxorubicin and/or null protein level). Loss of ATM function in mutated samples was also evidenced through defective p53 pathway activation after ionizing radiation exposure. ATM mutation frequency was 34% in patients with 11q deletion, 4% in the TP53-defected group, and 8% in wild-type patients. Our functional test, convenient for routine use, showed high sensitivity (80%) and specificity (97%) for ATM mutations prediction. Only cells with ATM mutation, but not those with sole 11q deletion, were resistant to doxorubicin. As far as fludarabine is concerned, this difference was not observed. Interestingly, patients from both these groups experienced nearly identical time to first treatment. In conclusion, ATM mutations either alone or in combination with 11q deletion uniformly led to demonstrable ATM dysfunction in patients with chronic lymphocytic leukemia and mutation presence can be predicted by the functional test using doxorubicin.  相似文献   

6.
Induction therapy with fludarabine followed by rituximab and consolidation plus maintenance with rituximab improved response duration (RD) and overall survival (OS) in our patients with chronic lymphocytic leukemia (CLL). The aim of our study was to investigate the clinical impact of NOTCH1 mutations in this setting of patients. The study included 123 progressive CLL patients homogeneously assigned to first-line induction treatment with fludarabine followed by rituximab. Fifty-nine patients either in complete remission (CR) minimal residual disease positive (MRD+) after induction (n?=?39) or in partial remission (PR, n?=?20) underwent consolidation/maintenance therapy with rituximab. Sixteen patients in CR MRD?+?or PR underwent observation only. The presence of NOTCH1 mutations was investigated by amplification refractory mutation system (ARMS) PCR and by Sanger sequencing. NOTCH1 mutations occurred in 20 out of 123 (16.3 %) cases. Consolidated patients showed longer OS than unconsolidated patients (p?=?0.030). Both NOTCH1 mutated and CR MRD+ or PR NOTCH1 mutated patients showed significantly shorter OS after treatment (p?=?0.00014 and p?=?0.0021, respectively). Moreover, NOTCH1 wild-type consolidated cases experienced significantly longer RD and OS than NOTCH1 mutated consolidated or not consolidated cases (p?=?0.00001 and p?=?0.018, respectively). Finally, the independent prognostic impact of NOTCH1 mutations for OS was confirmed in multivariate analysis (p?NOTCH1 mutations identifies a CLL subset with worse prognosis in the setting of a rituximab-based induction and consolidation treatment.  相似文献   

7.
Chronic myelomonocytic leukemia is a heterogeneous disease with multifactorial molecular pathogenesis. Various recurrent somatic mutations have been detected alone or in combination in chronic myelomonocytic leukemia. Recently, recurrent mutations in spliceosomal genes have been discovered. We investigated the contribution of U2AF1, SRSF2 and SF3B1 mutations in the pathogenesis of chronic myelomonocytic leukemia and closely related diseases. We genotyped a cohort of patients with chronic myelomonocytic leukemia, secondary acute myeloid leukemia derived from chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia for somatic mutations in U2AF1, SRSF2, SF3B1 and in the other 12 most frequently affected genes in these conditions. Chromosomal abnormalities were assessed by nucleotide polymorphism array-based karyotyping. The presence of molecular lesions was correlated with clinical endpoints. Mutations in SRSF2, U2AF1 and SF3B1 were found in 32%, 13% and 6% of cases of chronic myelomonocytic leukemia, secondary acute myeloid leukemia derived from chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia, respectively. Spliceosomal genes were affected in various combinations with other mutations, including TET2, ASXL1, CBL, EZH2, RAS, IDH1/2, DNMT3A, TP53, UTX and RUNX1. Worse overall survival was associated with mutations in U2AF1 (P=0.047) and DNMT3A (P=0.015). RAS mutations had an impact on overall survival in secondary acute myeloid leukemia (P=0.0456). By comparison, our screening of juvenile myelomonocytic leukemia cases showed mutations in ASXL1 (4%), CBL (10%), and RAS (6%) but not in IDH1/2, TET2, EZH2, DNMT3A or the three spliceosomal genes. SRSF2 and U2AF1 along with TET2 (48%) and ASXL1 (38%) are frequently affected by somatic mutations in chronic myelomonocytic leukemia, quite distinctly from the profile seen in juvenile myelomonocytic leukemia. Our data also suggest that spliceosomal mutations are of ancestral origin.  相似文献   

8.
Cancer therapeutics is evolving to precision medicine, with the goal of matching targeted compounds with molecular aberrations underlying a patient’s cancer. While murine models offer a pre-clinical tool, associated costs and time are not compatible with actionable patient-directed interventions. Using the paradigm of T-cell acute lymphoblastic leukemia, a high-risk disease with defined molecular underpinnings, we developed a zebrafish human cancer xenotransplantation model to inform therapeutic decisions. Using a focused chemical genomic approach, we demonstrate that xenografted cell lines harboring mutations in the NOTCH1 and PI3K/AKT pathways respond concordantly to their targeted therapies, patient-derived T-cell acute lymphoblastic leukemia can be successfully engrafted in zebrafish and specific drug responses can be quantitatively determined. Using this approach, we identified a mutation sensitive to γ-secretase inhibition in a xenograft from a child with T-cell acute lymphoblastic leukemia, confirmed by Sanger sequencing and validated as a gain-of-function NOTCH1 mutation. The zebrafish xenotransplantation platform provides a novel cost-effective means of tailoring leukemia therapy in real time.  相似文献   

9.
Prognostic stratification is critical for making therapeutic decisions and maximizing survival of patients with acute myeloid leukemia. Advances in the genomics of acute myeloid leukemia have identified several recurrent gene mutations whose prognostic impact is being deciphered. We used HaloPlex target enrichment and Illumina-based next generation sequencing to study 24 recurrently mutated genes in 42 samples of acute myeloid leukemia with a normal karyotype. Read depth varied between and within genes for the same sample, but was predictable and highly consistent across samples. Consequently, we were able to detect copy number changes, such as an interstitial deletion of BCOR, three MLL partial tandem duplications, and a novel KRAS amplification. With regards to coding mutations, we identified likely oncogenic variants in 41 of 42 samples. NPM1 mutations were the most frequent, followed by FLT3, DNMT3A and TET2. NPM1 and FLT3 indels were reported with good efficiency. We also showed that DNMT3A mutations can persist post-chemotherapy and in 2 cases studied at diagnosis and relapse, we were able to delineate the dynamics of tumor evolution and give insights into order of acquisition of variants. HaloPlex is a quick and reliable target enrichment method that can aid diagnosis and prognostic stratification of acute myeloid leukemia patients.  相似文献   

10.
T-cell large granular lymphocytic leukemia and chronic lymphoproliferative disorder of natural killer cells are intriguing entities between benign and malignant lymphoproliferation. The molecular pathogenesis has partly been uncovered by the recent discovery of somatic activating STAT3 and STAT5b mutations. Here we show that 43% (75/174) of patients with T-cell large granular lymphocytic leukemia and 18% (7/39) with chronic lymphoproliferative disorder of natural killer cells harbor STAT3 mutations when analyzed by quantitative deep amplicon sequencing. Surprisingly, 17% of the STAT3-mutated patients carried multiple STAT3 mutations, which were located in different lymphocyte clones. The size of the mutated clone correlated well with the degree of clonal expansion of the T-cell repertoire analyzed by T-cell receptor beta chain deep sequencing. The analysis of sequential samples suggested that current immunosuppressive therapy is not able to reduce the level of the mutated clone in most cases, thus warranting the search for novel targeted therapies. Our findings imply that the clonal landscape of large granular lymphocytic leukemia is more complex than considered before, and a substantial number of patients have multiple lymphocyte subclones harboring different STAT3 mutations, thus mimicking the situation in acute leukemia.  相似文献   

11.
Chronic lymphocytic leukemia (CLL) is characterized by low CD20 expression, in part explained by an epigenetic-driven downregulation triggered by mutations of the NOTCH1 gene. In the present study, by taking advantage of a wide and well-characterized CLL cohort (n=537), we demonstrate that CD20 expression is downregulated in SF3B1-mutated CLL to an extent similar to NOTCH1-mutated CLL. In fact, SF3B1-mutated CLL cells show common features with NOTCH1- mutated CLL cells, including a gene expression profile enriched in NOTCH1-related gene sets and elevated expression of the active intracytoplasmic NOTCH1. Activation of the NOTCH1 signaling and downregulation of surface CD20 in SF3B1-mutated CLL cells correlate with overexpression of an alternatively spliced form of DVL2, a component of the Wnt pathway and negative regulator of the NOTCH1 pathway. These findings were confirmed by separately analyzing the CD20dim and CD20bright cell fractions from SF3B1-mutated cases as well as by DVL2 knockout experiments in CLL-like cell models. Together, the clinical and biological features that characterize NOTCH1-mutated CLL may also be recapitulated in SF3B1-mutated CLL, contributing to explain the poor prognosis of this CLL subset and providing the rationale for expanding therapies based on novel agents to SF3B1-mutated CLL.  相似文献   

12.
The field of chronic lymphocytic leukemia (CLL) has witnessed considerable change since the time clinical staging was introduced in clinical practice in 1975. Over the years, the prognostication in CLL has expanded with the addition in late 90s of mutational status of variable region of immunoglobulin heavy chain (IGHV), and chromosomal analyses using fluorescent in situ hybridization (FISH). More recently, stereotypy of BCR (B cell receptor) and whole exome sequencing (WES) based discovery of specific mutations such as NOTCH1, TP53, SF3B1, XPO‐1, BIRC3, ATM, and RPS15 further refined the current prognostication system in CLL. In therapy, the field of CLL has seen major changes from oral chlorambucil and steroids prior to 1980s, to chemo‐immunotherapy (CIT) with fludarabine, cyclophosphamide, rituximab (FCR) to the orally administered targeted therapeutic agents inhibiting kinases in the B cell receptor (BCR) signaling pathway such as Ibrutinib (BTK inhibitor) and Idelalisib (p110 PI3Kδ inhibitor) and novel anti‐CD20 mAb's (monoclonal antibodies) such as obinutuzumab. This progress is continuing and other targeted therapeutics such as Bcl2 antagonists (Venetoclax or ABT‐199) and finally chimeric antigen receptor against T cells (CART) are in the process of being developed. This review is an attempt to summarize the major benchmarks in the prognostication and in the therapy of CLL. The topic allocated to us by Dr Ayalew Tefferi and Dr Carlo Brugnara is very appropriate to reminisce what our understanding of chronic lymphocytic leukemia (CLL) was in 1976 and how rapidly have the advances occurring in this field affected the patients with CLL. Am. J. Hematol. 91:330–340, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Analysis of the chronic lymphocytic leukemia (CLL) coding genome has recently disclosed that the NOTCH1 proto-oncogene is recurrently mutated at CLL presentation. Here, we assessed the prognostic role of NOTCH1 mutations in CLL. Two series of newly diagnosed CLL were used as training (n = 309) and validation (n = 230) cohorts. NOTCH1 mutations occurred in 11.0% and 11.3% CLL of the training and validation series, respectively. In the training series, NOTCH1 mutations led to a 3.77-fold increase in the hazard of death and to shorter overall survival (OS; P < .001). Multivariate analysis selected NOTCH1 mutations as an independent predictor of OS after controlling for confounding clinical and biologic variables. The independent prognostic value of NOTCH1 mutations was externally confirmed in the validation series. The poor prognosis conferred by NOTCH1 mutations was attributable, at least in part, to shorter treatment-free survival and higher risk of Richter transformation. Although NOTCH1 mutated patients were devoid of TP53 disruption in more than 90% cases in both training and validation series, the OS predicted by NOTCH1 mutations was similar to that of TP53 mutated/deleted CLL. NOTCH1 mutations are an independent predictor of CLL OS, tend to be mutually exclusive with TP53 abnormalities, and identify cases with a dismal prognosis.  相似文献   

14.
Squamous cell carcinomas (SCCs) are one of the most frequent forms of human malignancy, but, other than TP53 mutations, few causative somatic aberrations have been identified. We identified NOTCH1 or NOTCH2 mutations in ~75% of cutaneous SCCs and in a lesser fraction of lung SCCs, defining a spectrum for the most prevalent tumor suppressor specific to these epithelial malignancies. Notch receptors normally transduce signals in response to ligands on neighboring cells, regulating metazoan lineage selection and developmental patterning. Our findings therefore illustrate a central role for disruption of microenvironmental communication in cancer progression. NOTCH aberrations include frameshift and nonsense mutations leading to receptor truncations as well as point substitutions in key functional domains that abrogate signaling in cell-based assays. Oncogenic gain-of-function mutations in NOTCH1 commonly occur in human T-cell lymphoblastic leukemia/lymphoma and B-cell chronic lymphocytic leukemia. The bifunctional role of Notch in human cancer thus emphasizes the context dependency of signaling outcomes and suggests that targeted inhibition of the Notch pathway may induce squamous epithelial malignancies.  相似文献   

15.
16.

Background

NOTCH1 mutations have been associated with a favorable outcome in pediatric acute T-lymphoblastic leukemia. However, the results of studies on the prognostic significance of NOTCH1 mutations in adult T-lymphoblastic leukemia remain controversial.

Design and Methods

Here we have investigated the prognostic impact of mutations in the NOTCH1 pathway, in particular, the NOTCH1 and FBXW7 genes, in a large cohort of adult patients with T-lymphoblastic leukemia (n=126). We determined the occurrence of mutations in NOTCH1 and FBXW7 by DNA amplification and direct sequencing of polymerase chain reaction products.

Results

Mutations were identified in 57% and 12% of the NOTCH1 and FBXW7 genes, respectively. The characteristics of patients carrying NOTCH1 and/or FBXW7 (NOTCH1-FBXW7) mutations were similar to those with wild-type genes. Patients with NOTCH1-FBXW7 mutations more often showed a thymic immunophenotype (p=0.001). In the overall cohort, no significant differences were seen in the complete remission or event-free survival rates between patients with mutated or wild-type NOTCH1-FBXW7 (p=0.39).

Conclusions

NOTCH1 and FBXW7 mutations were not predictive of outcome in the overall cohort of adult patients with T-lymphoblastic leukemia, but there was a trend towards a favorable prognostic impact of NOTCH1-FBXW7 mutations in the small subgroup of patients with low-risk ERG/BAALC expression status. Our findings further confirm the high frequency of NOTCH1 mutations in adult T-lymphoblastic leukemia.  相似文献   

17.
RNA splicing plays a fundamental role in human biology. Its relevance in cancer is rapidly emerging as demonstrated by spliceosome mutations that determine the prognosis of patients with hematologic malignancies. We report studies using FD-895 and pladienolide-B in primary leukemia cells derived from patients with chronic lymphocytic leukemia and leukemia-lymphoma cell lines. We found that FD-895 and pladienolide-B induce an early pattern of mRNA intron retention – spliceosome modulation. This process was associated with apoptosis preferentially in cancer cells as compared to normal lymphocytes. The pro-apoptotic activity of these compounds was observed regardless of poor prognostic factors such as Del(17p), TP53 or SF3B1 mutations and was able to overcome the protective effect of culture conditions that resemble the tumor microenvironment. In addition, the activity of these compounds was observed not only in vitro but also in vivo using the A20 lymphoma murine model. Overall, these findings give evidence for the first time that spliceosome modulation is a valid target in chronic lymphocytic leukemia and provide an additional rationale for the development of spliceosome modulators for cancer therapy.  相似文献   

18.
Trisomy 12, the third most frequent chromosomal aberration in chronic lymphocytic leukemia (CLL), confers an intermediate prognosis. In our cohort of 104 untreated patients carrying +12, NOTCH1 mutations occurred in 24% of cases and were associated to unmutated IGHV genes (P=0.003) and +12 as a sole cytogenetic abnormality (P=0.008). NOTCH1 mutations in +12 CLL associated with an approximately 2.4 fold increase in the risk of death, a significant shortening of survival (P<0.01) and proved to be an independent predictor of survival in multivariate analysis. Analogous to +12 CLL with TP53 disruption or del(11q), NOTCH1 mutations in +12 CLL conferred a significantly worse survival compared to that of +12 CLL with del(13q) or +12 only. The overrepresentation of cell cycle/proliferation related genes of +12 CLL with NOTCH1 mutations suggests the biological contribution of NOTCH1 mutations to determine a poor outcome. NOTCH1 mutations refine the intermediate prognosis of +12 CLL.  相似文献   

19.
Therapy-related myelodysplastic syndromes and acute myelogenous leukemia comprise a poor-risk subset of myelodysplastic syndromes and acute myelogenous leukemia. Large-scale mutation profiling efforts in de novo myelodysplastic syndromes have identified mutations that correlate with clinical features, but such mutations have not been investigated in therapy-related myelodysplastic syndromes and acute myelogenous leukemia. Genomic DNA from 38 patient samples were subjected to high throughput polymerase chain reaction and sequenced for TP53, TET2, DNMT3A, ASXL1, IDH1, IDH2, EZH2, EED, SUZ12, RBBP4, SRSF2, U2AF35, and SF3B1. We identified somatic mutations in 16 of 38 (42%) patients. TP53 mutations were the most common lesion, detected in 8 of 38 (21%) patients, followed by TET2 in 4 of 38 (10.5%). Cases with a TP53 mutation or loss of the TP53 locus had a worse overall survival compared to those with wild-type TP53 (8.8 vs. 37.4 months; P=0.0035).  相似文献   

20.
A proportion of patients with chronic lymphocytic leukemia achieve a minimal residual disease negative status after therapy. We retrospectively evaluated the impact of minimal residual disease on the outcome of 255 consecutive patients receiving any front-line therapy in the context of a detailed prognostic evaluation, including assessment of IGHV, TP53, NOTCH1 and SF3B1 mutations. The median follow-up was 73 months (range, 2–202) from disease evaluation. The median treatment-free survival durations for patients achieving a complete response without or with minimal residual disease, a partial response and no response were 76, 40, 11 and 11 months, respectively (P<0.001). Multivariate analysis revealed that three variables had a significant impact on treatment-free survival: minimal residual disease (P<0.001), IGHV status (P<0.001) and β2-microglobulin levels (P=0.012). With regards to overall survival, factors predictive of an unfavorable outcome were minimal residual disease positivity (P=0.014), together with advanced age (P<0.001), unmutated IGHV status (P=0.001), TP53 mutations (P<0.001) and elevated levels of β2-microglobulin (P=0.003). In conclusion, for patients requiring front-line therapy, achievement of minimal residual disease negativity is associated with significantly prolonged treatment-free and overall survival irrespective of other prognostic markers or treatment administered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号