首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is substantial evidence, both pharmacological and genetic, that hypofunction of the N-methyl-d-aspartate receptor (NMDAR) is a core pathophysiological feature of schizophrenia. There are morphological brain changes associated with schizophrenia, including perturbations in the dendritic morphology of cortical pyramidal neurons and reduction in cortical volume. Our experiments investigated whether these changes in dendritic morphology could be recapitulated in a genetic model of NMDAR hypofunction, the serine racemase knockout (SR-/-) mouse. Pyramidal neurons in primary somatosensory cortex (S1) of SR-/- mice had reductions in the complexity, total length, and spine density of apical and basal dendrites. In accordance with reduced cortical neuropil, SR-/- mice also had reduced cortical volume as compared to wild type mice. Analysis of S1 mRNA by DNA microarray and gene expression analysis revealed gene changes in SR-/- that are associated with psychiatric and neurologic disorders, as well as neurodevelopment. The microarray analysis also identified reduced expression of brain derived neurotrophic factor (BDNF) in SR-/- mice. Follow-up analysis by ELISA confirmed a reduction of BDNF protein levels in the S1 of SR-/- mice. Finally, S1 pyramidal neurons in glycine transporter heterozygote (GlyT1+/-) mutants, which display enhanced NMDAR function, had increased dendritic spine density. These results suggest that proper NMDAR function is important for the arborization and spine density of pyramidal neurons in cortex. Moreover, they suggest that NMDAR hypofunction might, in part, be contributing to the dendritic and synaptic changes observed in schizophrenia and highlight this signaling pathway as a potential target for therapeutic intervention.  相似文献   

2.
We have recently demonstrated that paradoxical sleep deprivation (PSD) potentiates the induction of amphetamine (AMPH)-induced behavioural sensitization by increasing its conditioned component. In the present study, the effects of sleep rebound (induced by 24 h recovery period from PSD) were studied on AMPH-induced behavioural sensitization. Sleep rebound attenuated the acute locomotor-stimulating effect of AMPH. AMPH-induced behavioural sensitization was context-specific and was also attenuated by sleep rebound. These results strengthen the notion that sleep conditions can influence AMPH-induced behavioural sensitization.  相似文献   

3.
BACKGROUND: In rats, neonatal ventral hippocampal lesions (NVHLs) result in the postpubertal emergence of alterations reminiscent of several features of schizophrenia, including increased responsivity to the behavioral effects of amphetamine (AMPH). The precise nature of presynaptic aspects of accumbal dopamine (DA) function in these alterations is however uncertain: previous studies have found that the exacerbated responses to AMPH of NVHL rats are associated with either decreased or unchanged DA efflux in the nucleus accumbens (NAc) as compared with shams. Because these studies investigated DA output in the whole NAc, it was considered of interest to examine the impact of NVHLs on DA transmission in NAc subregions involved in distinct aspects of goal-directed behavior. METHODS: The effects of AMPH (.25 mg/kg, subcutaneous) on the accumbal DA efflux of adult rats were evaluated using brain microdialysis, and motor activity was recorded alongside dialysate sample collection. RESULTS: The enhanced behavioral responsivity to AMPH of NVHL rats is associated with potentiation of AMPH-induced DA output in the NAc core and a concomitant attenuation of DA overflow in the NAc shell. CONCLUSIONS: The functional alterations in the NAc core induced by NVHLs provide a link between the hippocampal damage and striatal DA hyperactivity in schizophrenia.  相似文献   

4.
The present study investigated the effect of prenatal stress (PS) on juvenile behavior and adult amphetamine (AMPH) sensitization, as well as the effect of the interaction between experience (i.e. PS) and drug (i.e. AMPH) on cortical thickness and neuronal morphology in corticolimbic regions in rats. Juvenile male and female rats, exposed to gestational stress, were tested in behavioral tasks that included open field locomotion, elevated plus maze, novel object recognition, and play fighting behavior. The development and persistence of drug-induced behavioral sensitization in adults were tested by chronic AMPH administration and challenge, respectively. Spine density in corticolimbic regions was examined for structural plasticity. The findings showed that PS produced anxiety-like behavior in males. Furthermore, PS in males resulted in female-like play and enhanced partial rotation defense, whereas in females PS increased the probability of evasion in response to an attack. AMPH administration resulted in gradual increase in behavioral sensitization that persisted at least for 2 weeks; however, PS did not influence AMPH-induced behavioral sensitization in either male or female rats. Moreover, PS increased the spine density in the nucleus accumbens (NAc) and decreased it in the medial prefrontal cortex (mPFC) without any alteration in the orbital frontal cortex (OFC). Similarly, AMPH administration increased spine density in the NAc and mPFC, whereas a decrease was observed in the OFC. However, PS prevented the drug-induced alterations in the spine density observed in controls. In sum, PS modulated juvenile behavior and altered brain morphology without influencing AMPH-induced behavioral sensitization substantially.  相似文献   

5.
We examined the role of GlyT1, the high‐affinity glycine transporter, in the mouse retina with an emphasis on the role of glycine as a coagonist of N‐methyl‐D‐aspartic acid (NMDA) receptors. We pursued this objective by studying heterozygote mice deficient in the GlyT1 transporter (GlyT1?/+) and compared those results with wild‐type (WT) littermate controls (GlyT1+/+). Capillary electrophoresis was used to separate and quantitatively measure glycine release from isolated retina preparations; pharmacologically blocking GlyT1 with N‐[3‐([1,1‐biphenyl]‐4‐yloxy)‐3‐(4‐fluorophenyl)propyl]‐N‐methylglycine in the WT retina generated a significantly larger accumulation of glycine into the bathing environment when compared with the GlyT1?/+ retinas. The relative occupancy state of the NMDA receptor coagonist sites was tested using whole‐cell recordings from ganglion cells while bath applying D‐serine or D‐serine + NMDA. The interpretation of these studies was simplified by blocking post‐synaptic inhibition with picrotoxinin and strychnine. NMDA receptor coagonist sites were more saturated and less enhanced by D‐serine in the GlyT1?/+ mice compared with the WT controls. Immunoblots of NMDA receptor subunits (NR1, NR2A and NR2B) in WT and GlyT1?/+ animals showed that the NR1 subunits were identical. These observations are discussed in view of contemporary issues about NMDA receptor coagonist function in the vertebrate retina and the role of glycine vs. D‐serine as the endogenous coagonist.  相似文献   

6.
N-methyl-D-aspartate (NMDA) receptor hypofunction is believed to comprise a central factor in the cognitive symptoms of psychotic illnesses such as schizophrenia. In the MK801 model of psychosis in rats, NMDA hypofunction also occurs, and animals display a profound impairment of both hippocampus-dependent learning and synaptic plasticity. The NMDA receptor may thus comprise a useful target for therapeutic amelioration of the symptoms of psychosis. However, direct activation of the receptor could lead to disturbed synaptic information storage. One possibility, however, is to enhance NMDA receptor function indirectly through elevation of glycine levels. We investigated the effects of inhibition of the glycine transporter-1, GlyT1, on long-term potentiation (LTP) and long-term depression (LTD) in the dentate gyrus of freely behaving rats that had been treated previously with MK801. LTP, but not LTD, was impaired in MK801-treated animals. Systemic application of the GlyT1-inhibitor N[3-(4'-flurophenyl)-3-(4'-phenylphenoxy) propyl]sarcosine (NFPS) rescued LTP but had no effect on LTD in MK801-treated animals. Application of the antagonist to vehicle-treated controls resulted in a disruption of LTP but not LTD. NFPS significantly ameliorated reference memory deficits in a radial maze that occurred following MK801 treatment. NFPS-treated controls performed less well, however, than vehicle-injected controls. These data support that treatment with a glycine transporter inhibitor can ameliorate deficits in both LTP and learning that occur in a rat model of psychosis, and may therefore prove a useful strategy to address cognitive disruption in psychotic illnesses. Use of the inhibitor in healthy subjects is neither beneficial to synaptic plasticity nor hippocampus-dependent learning.  相似文献   

7.
We studied the long-term influence of maternal separation (MS) on periadolescent behavior, adult amphetamine (AMPH) sensitization, and structural plasticity in the corticolimbic regions in rats. Male and female pups, separated daily for 3 h from the dam during postnatal day 3-21, were tested for periadolescent exploratory, emotional, cognitive, and social behaviors. The development and persistence of drug-induced behavioral sensitization were tested by repeated AMPH administration and a challenge, respectively. The spine density was examined in the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the orbital frontal cortex (OFC) from Golgi-Cox stained neurons. The results showed that MS enhanced anxiety-like behavior in males. MS abolished the sex difference in playful attacks observed in controls with resultant feminization of male play behavior. Furthermore, the probability of complete rotation defense to face an attack was decreased in females. AMPH administration resulted in the development of behavioral sensitization that persisted at least for two weeks. Sensitization was not influenced by MS. MS increased the spine density in the NAc, the mPFC, and the OFC. Repeated AMPH administration increased the spine density in the NAc and the mPFC, and decreased it in the OFC. MS blocked the drug-induced alteration in these regions. In sum, MS during development influenced periadolescent behavior in males, and structurally reorganized cortical and subcortical brain regions without affecting AMPH-induced behavioral sensitization.  相似文献   

8.
Repeated amphetamine (AMPH) administration results in behavioral sensitization. To investigate the neuroanatomical basis of this phenomenon, we examined the effects of AMPH sensitization on AMPH-induced Fos expression in 24 regions of the rat brain. Rats received repeated injections of AMPH (4 mg/kg, intraperitoneally, once every other day, eight times in total) or saline (same schedule as for AMPH). After a 14-day drug abstinence period, rats were challenged with 2 mg/kg AMPH intraperitoneally. As measured by Fos immunohistochemistry, the AMPH sensitization procedure enhanced subsequent AMPH-induced Fos expression in only one structure, the medial part of the lateral habenula. These results indicate that AMPH-induced behavioral sensitization is not accompanied by widespread increases in the ability of AMPH to increase regional Fos expression in the forebrain. The lateral habenula appears to be involved in the possible neural framework that is responsible for the expression of behavioral sensitization.  相似文献   

9.
The principal polyunsaturated fatty acid acids found in brain, arachidonic acid (AA) and docosahexaenoic acid (DHA), preferentially accumulate in synaptic membranes. Although neurochemical studies have found that dietary-induced deficits in rat brain DHA composition significantly alter mesocorticolimbic dopamine (DA) neurotransmission, its impact on DA-mediated behavior remains poorly understood. In the present study, we determined the effects of dietary-induced deficits in brain DHA composition on amphetamine (AMPH)-induced locomotor activity and sensitization in DBA/2J mice, an inbred strain previously found to be hyporesponsive to AMPH, as well as monoamine concentrations in the PFC and ventral striatum following the AMPH challenge. Chronic dietary omega-3 fatty acid deficiency significantly decreased PFC (-25%) and ventral striatum (-20%) DHA composition, increased PFC (+7%) and ventral striatum (+6%) AA composition, and increased the AA:DHA ratio in PFC (+30%) and ventral striatum (+24%). The development and expression of AMPH-induced sensitization was significantly increased in DHA-deficient mice, whereas novelty- and acute AMPH-induced locomotor activity were not altered. DHA-deficient mice exhibited significantly greater ventral striatum, but not PFC, DA and DA metabolite concentrations following the AMPH challenge, whereas serotonin and noradrenalin concentrations were not altered. Ventral striatum AA composition and the AA:DHA ratio were both positively correlated with DA concentrations, and both ventral striatum AA composition and DA concentrations were positively correlated with locomotor activity during the preceding AMPH challenge. These results demonstrate that dietary-induced brain DHA deficiency, and associated elevation in the AA:DHA ratio, augment AMPH-induced sensitization in DBA/2J mice, and that this augmented response is associated with selective alterations in the mesolimbic DA pathway.  相似文献   

10.
This study used novel behavioral measures to examine the effects of the competitive N-methyl-D-aspartate (NMDA) receptor antagonist, CPP, on the development and expression of conditioned hyperactivity and sensitization produced with cocaine. The first experiment confirmed that horizontal locomotor activity measured in the central zone of an activity enclosure could be increased by 10.0 mg/kg cocaine. This increased activity showed sensitization after repeated cocaine injections, and it could be conditioned to the test environment. Subsequent experiments demonstrated that CPP (0.2 and 0.4 nmol, i.c.v.) could block the development, but not the expression, of conditioned hyperactivity and sensitization in the central zone. These findings confirm that NMDA receptors are critically involved in the development of conditioned hyperactivity and sensitization, but indicate that such receptors may not be necessary for the expression of these neurobehavioral adaptations.  相似文献   

11.
Neuroadaptations of the mesoaccumbens dopamine (DA) system likely underlie the emergence of locomotor sensitization following the repeated intermittent systemic administration of amphetamine (AMPH). In the nucleus accumbens (NAc), such neuroadaptations include enhanced DA overflow in response to a subsequent AMPH challenge as well as increased sensitivity to the inhibitory effects of D1 DA receptor (D1R) activation and an altered profile of D1R-dependent induction of immediate early genes (IEGs). Previous results indicate that AMPH acts in the ventral tegmental area (VTA) to initiate those changes leading to sensitization of the locomotor activity and NAc DA overflow produced by systemic administration of this drug. These observations are intriguing, given that acute infusion of AMPH into the VTA does not stimulate locomotor activity or, as we report presently, increase extracellular NAc DA concentrations. Two experiments, therefore, assessed the ability of repeated VTA AMPH to produce adaptations in D1R signaling in the NAc. Rats were administered three bilateral VTA infusions of saline or AMPH (2.5 microg/0.5 microl/side, one every third day). In the first experiment, in vivo extracellular electrophysiological recordings revealed that previous exposure to VTA AMPH enhanced the sensitivity of NAc neurons to the inhibitory effects of iontophoretic application of the D1R agonist SKF 38393. This effect was observed early (2-3 days) and at 1 month of withdrawal, but not after 2 months. Similarly, in the second experiment it was found that the D1R-dependent induction by AMPH of Fos, FosB, and JunB, but not NGFI-A, in the NAc was enhanced in rats exposed 1 week earlier to repeated VTA AMPH. These findings indicate that repeated VTA AMPH administration initiates relatively long-lasting adaptations in D1R signaling in the NAc that may, together with presynaptic adaptations affecting DA overflow, contribute to the expression of locomotor sensitization by this drug.  相似文献   

12.
Augmentation strategy in the treatment of schizophrenia with the NMDA receptor co-agonist glycine has demonstrated significant improvement in patient symptoms. Interestingly, the therapeutic efficacy of glycine was more consistent among patients that were not co-administered clozapine suggesting that clozapine modulates glycine levels in brain. Since cerebral glycine concentration in the vicinity of NMDA receptors is thought to be controlled by the glia expressed glycine transporter type 1 (GlyT1), the effects of several typical and atypical antipsychotics on glycine uptake were examined in human placenta choriocarcinoma (JAR) cells expressing human GlyT1a. The selectivity of these compounds was investigated by measuring their inhibitory potency at the closely related glycine transporter type 2 (GlyT2). Typical antipsychotics haloperidol, thioridazine and chlorpromazine non-selectively inhibited [(14)C]glycine uptake mediated by GlyT1a and GlyT2 with potency of 9-21 microM. The atypical antipsychotic, clozapine antagonized glycine transport by human GlyT1a with an IC(50) of 100 microM and was weaker at recombinant GlyT2. Its main metabolites, N-desmethylclozapine and clozapine N-oxide were very weak inhibitors at all glycine transporters. Similarly, olanzapine did not potently block GlyT1a- and GlyT2-mediated uptake. Detailed kinetic analysis of hGlyT1a in the presence and absence of haloperidol and clozapine revealed that both drugs were not competitive inhibitors of glycine uptake. Data also indicated that these compounds did not interact with the Na(+) and Cl(-) sites of hGlyT1a. Our results have revealed the existence of an inhibitory interaction between some antipsychotics and hGlyT1a and raise the possibility that these drugs could interact with GlyT1 function at therapeutic doses.  相似文献   

13.
Repeated, intermittent treatment with amphetamine (AMPH) leads to long-term neurobiological adaptations in rat brain including an increased number and branching of dendritic spines. This effect depends upon several different cell types in the intact brain. Here we demonstrate that repeated, intermittent AMPH treatment induces neurite outgrowth in cultured PC12 cells without the requirement for integrated synaptic pathways. PC12 cells were treated with 1 micro M AMPH for 5 min a day, for 5 days. After 10 days of withdrawal, there was an increase in the percentage of cells with neurites ( approximately 30%) and the length of neurites as well as an increase in the level of GAP-43 and neurofilament-M. Neurite outgrowth was enhanced as withdrawal time was increased. Neurite outgrowth was much greater following repeated, intermittent treatment with AMPH compared to continuous or single treatment with AMPH. Pretreatment with cocaine, a monoamine transporter blocker, inhibited the AMPH-mediated increase in neurite outgrowth. Neither NGF antibody nor DA receptor antagonists blocked AMPH-induced neurite outgrowth, demonstrating that AMPH-induced neurite outgrowth is not dependent on endogenous NGF release or DA receptors. Thus we have demonstrated that repeated, intermittent treatment with AMPH has a neurotrophic effect in PC12 cells. The effect requires the action of AMPH on the norepinephrine transporter, and shares characteristics in its development with other forms of sensitization but does not require an intact neuroanatomy.  相似文献   

14.
Summary. Glycine acts as an obligatory co-agonist with glutamate on N-methyl-D-aspartate (NMDA) receptors. Brain glycine availability is determined by glycine transporters (GlyT1 or SLC6A9), which mediate glycine reuptake into nerve terminals. Since hypofunction of NMDA receptors has been implicated in the pathophysiology of schizophrenia, this study tests the hypothesis that GlyT1 genetic variants confer susceptibility to schizophrenia. Four GlyT1 polymorphisms were studied in a sample population of 249 people with schizophrenia and 210 normal controls. One polymorphism (rs16831541) was not informative in our Chinese population while the other three polymorphisms (rs1766967, rs2248632 and rs2248253) were analysed with chi-square tests and haplotype analysis. Significant linkage disequilibrium was obtained among the three polymorphisms. Neither single marker nor haplotype analysis revealed an association between variants at the GlyT1 locus and schizophrenia, suggesting that it is unlikely that the GlyT1 polymorphisms investigated play a substantial role in conferring susceptibility to schizophrenia in the Chinese population. Further studies with other GlyT1 variants, relating either to schizophrenia, psychotic symptoms or to therapeutic response in schizophrenia, are suggested.  相似文献   

15.
The roles that glutamate N-methyl-D-aspartate (NMDA) and dopamine D1-like and D2-like receptors play in the cortical neurotoxicity occurring in rats exposed to multiple doses of amphetamine (AMPH) for 2 days was evaluated. Neurodegeneration in rats that did not become hyperthermic during AMPH exposure was quantified by counting isolectin B4-labeled phagocytic microglia and Fluoro-Jade (F-J)-labeled neurons in the somatosensory parietal cortex, piriform cortex and posterolateral cortical amygdaloid nucleus (PLCo). The NMDA receptor antagonist, dizocilpine (0.63 mg/kg day) blocked AMPH-induced neurodegeneration in the somatosensory cortex. However, it did not affect degeneration in the piriform cortex and PLCo indicating that limbic degeneration was not NMDA-mediated. The dopamine antagonists, eticlopride (D2/3, 0.25 mg/kg day) and SCH-23390 (D1, 0.25 mg/kg day), blocked the stereotypic behavior and neurodegeneration in the somatosensory cortex. However, eticlopride had a lesser protective effect in the limbic regions. As well, the dopamine D2/D3 agonist quinpirole (1.5 mg/kg day) protected against cortical neurodegeneration when it was given during AMPH exposure and continued until sacrifice. The dopamine D1 agonist (SKF-38393, 12.5 mg/kg day) had no significant effect on neurodegeneration. These data indicate that there are significant differences in NMDA and dopamine D2 modulation of AMPH-induced neurodegeneration in the somatosensory cortex compared to the limbic cortices, and limbic cortical degeneration is not necessarily dependent on excessive stimulation of NMDA receptors as it is in the somatosensory cortex. Although excessive dopamine receptor stimulation during amphetamine exposure may trigger the neurodegenerative processes, continued D2 stimulation after AMPH exposure is neuroprotective in the cortex.  相似文献   

16.
Chronic pharmacological experiments were conducted to evaluate the relationship between sensitization induced by repeated administration of amphetamine (AMPH) and electrical stimulation of the amygdala. While AMPH withdrawal did not influence the kindling process, AMPH administered during the kindling procedure increased the rate at which seizures evolved, and under these conditions withdrawal from chronic AMPH further facilitated the propensity to kindle. Haloperidol (HAL) treatment failed to block the stimulant-induced increase in kindling acquisition indicating that changes in dopamine (DA) are not necessary for the AMPH/kindling synergism to develop. Scopolamine dose-dependently retarded kindling evolution irrespective of prior AMPH pretreatment also ruling out a cholinergic mechanism in the kindling sensitization. Subsequent experiments assessed the interactive effects of AMPH and desipramine (DMI) on the kindling process. Animals chronically exposed to AMPH and switched to DMI treatment during the kindling procedure kindled faster than control subjects. In addition, withdrawal from DMI preexposure advanced the AMPH-induced increase in kindling rate. These results were discussed in terms of the role of norepinephrine-mediated inhibition of the kindling process, and were related to drug-elicited alterations in beta-adrenergic receptor functioning. Taken together, these findings implicate the amygdala as an important structure in the development of non-DA forms of AMPH sensitization.  相似文献   

17.
The dopamine agonist apomorphine (apo) elicits bouts of stereotyped pecking in pigeons, a response which increases with successive apo injections. This sensitization is strongly context-specific and has been suggested to arise through a Pavlovian conditioning to both external and internal cues. We hypothetized that this learning involves dopamino-glutamatergic interactions and investigated the issue by inducing NMDA glutamate receptor blockades with the antagonist dizocilpine (diz). A first experiment examined the effects that four different doses (ranging between 0.05 and 0.12 mg/kg) of diz co-administered with a standard dose of 0.5 mg/kg of apo had on the development of the incremented response and on the later expression of the conditioned pecking response. Both responses were impaired by doses of around 0.10 mg/kg diz. A second experiment assessed whether either a diz treatment or a diz plus apo co-treatment affected the development of a subsequent sensitization to apo. The first treatment had no effect on the latter sensitization. A part sensitization that arose with the second treatment did not transfer to the final sensitization. The last experiment examined whether the administration of diz had an immediate effect on the incremented responding to apo and on the conditioned response shown by already sensitized pigeons. No effect was apparent with the first treatment, but there was a marked response inhibition with the second treatment. It is concluded that NMDA glutamate receptors play an important role in apo-induced sensitization in pigeons which is compatible with the Pavlovian conditioning account of sensitization.  相似文献   

18.
Accumulating evidence suggests that dopamine D3 receptor (D3R) stimulation is inhibitory to spontaneous and psychostimulant-induced locomotion through opposition of concurrent D1R and D2R-mediated signaling. To evaluate this model, we used homozygous D3R mutant mice and wild-type controls to investigate the role of the D3R in locomotor activity and stereotypy stimulated by acute amphetamine (AMPH) (0.2, 2.5, 5.0, 10.0 mg/kg). At the lowest dose tested (0.2 mg/kg), neither D3R mutant mice nor wild-type mice exhibited measurable change in locomotor activity or stereotypy relative to their respective saline-treated controls. D3R mutant mice exhibited a significantly greater increase in locomotor activity, but not stereotypy, relative to wild-type mice in response to treatment with AMPH 2.5 mg/kg. AMPH-induced locomotor activity and stereotypy were similar in both wild-type and D3R mutant mice at both the 5.0 and 10 mg/kg AMPH doses. These findings provide further support for an inhibitory role for the D3R in AMPH-induced locomotor activity, and demonstrate a more limited role for the D3R in modulating AMPH-induced stereotypy.  相似文献   

19.
Chronic cocaine use reduces glutamate levels in the nucleus accumbens (NAc), and is associated with experience-dependent changes in (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) glutamate receptor membrane expression in NAc neurons. These changes accompany behavioral sensitization to cocaine and increased susceptibility to cocaine relapse. The functional relationship between neuroplasticity in AMPA receptors and the behavioral manifestation of cocaine addiction remains unclear. Thus, we examined the behavioral effects of up- and downregulating basal AMPA receptor function in the NAc core and shell using viral-mediated gene transfer of wild-type glutamate receptor 1 (wt-GluR1) or a dominant-negative pore-dead GluR1 (pd-GluR1), respectively. Transient increases in wt-GluR1 during or after cocaine treatments diminished the development of cocaine sensitization, while pd-GluR1 expression exacerbated cocaine sensitization. Parallel changes were found in D2, but not D1, receptor-mediated behavioral responses. As a correlate of the sensitization experiments, we overexpressed wt- or pd-GluR1 in the NAc core during cocaine self-administration, and tested the effects on subsequent drug-seeking behavior 3 weeks after overexpression declined. wt-GluR1 overexpression during self-administration had no effect on cocaine intake, but subsequently reduced cocaine seeking in extinction and cocaine-induced reinstatement, whereas pd-GluR1 facilitated cocaine-induced reinstatement. When overexpressed during reinstatement tests, wt-GluR1 directly attenuated cocaine- and D2 agonist-induced reinstatement, while pd-GluR1 enhanced reinstatement. In both experimental procedures, neither wt- nor pd-GluR1 expression affected cue-induced reinstatement. Together, these results suggest that degrading basal AMPA receptor function in NAc neurons is sufficient to facilitate relapse via sensitization in D2 receptor responses, whereas elevating basal AMPA receptor function attenuates these behaviors.  相似文献   

20.
Multiple lines of evidence suggest that a dysfunction in the glutamatergic neurotransmission via the N-methyl-D-aspartate (NMDA) receptors contributes to the pathophysiology of psychiatric diseases including schizophrenia. The potentiation of NMDA receptor function may be a useful approach for the treatment of diseases associated with NMDA receptor hypofunction. One possible strategy is to increase synaptic levels of glycine by blocking the glycine transporter-1 (GlyT-1) in glia cells, since glycine acts as a co-agonist site on the NMDA receptor. In this article, the author reviews the recent important patents on GlyT-1 inhibitors for treatment of schizophrenia and other psychiatric diseases associated with the NMDA receptor hypofunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号