首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of dopamine (DA) on a persistent Na(+) current (I(NaP)) in layer V-VI prefrontal cortical (PFC) pyramidal cells were studied using whole cell voltage-clamp recordings in rat PFC slices. After blocking K(+) and Ca (2+) currents, a tetrodotoxin-sensitive I(NaP) was activated by slow depolarizing voltage ramps or voltage steps. DA modulated the I(NaP) in a voltage-dependent manner: increased amplitude of I(NaP) at potentials more negative than -40 mV, but decreased at more positive potentials. DA also slowed the inactivation process of I(NaP). The D1/D5 dopamine receptor agonists SKF 38393, SKF 81297, and dihydrexidine (3-10 microM), but not the dopamine D2/D3 receptor agonist qiunpirole (1-20 microM), mimicked the effects of DA on I(NaP). Modulation of I(NaP) by D1/D5 agonists was blocked by the D1/D5 antagonist SCH23390. Bath application of specific protein kinase C inhibitor, chelerhythrine, or inclusion of the specific protein kinase C inhibiting peptide([19-36]) in the recording pipette, but not protein kinase A inhibiting peptide([5-24]), blocked the effect of D1/D5 agonists on I(NaP). In current-clamp recordings, D1/D5 receptors activation enhanced the excitability of cortical pyramidal cells. Application of the D1/D5 agonist SKF 81297 induced a long-lasting decrease in the first spike latency in response to depolarizing current ramp. This was associated with a shift in the start of nonlinearity in the slope resistance to more negative membrane potentials. We proposed that this effect is due to a D1/D5 agonist-induced leftward shift in the activation of I(NaP). This enables DA to facilitate the firing of PFC neurons in response to depolarizing inputs.  相似文献   

2.
Dopaminergic modulation of prefrontal cortex (PFC) is important for neuronal integration in this brain region known to be involved in cognition and working memory. Because of the complexity and heterogeneity of the effect of dopamine on synaptic transmission across layers of the neocortex, dopamine's net effect on local circuits in PFC is difficult to predict. We have combined whole cell patch-clamp recording and voltage-sensitive dye imaging to examine the effect of dopamine on the excitability of local excitatory circuits in rat PFC in vitro. Whole cell voltage-clamp recording from visually identified layer II/III pyramidal neurons in rat brain slices revealed that, in the presence of bicuculline (10 microM), bath-applied dopamine (30-60 microM) increased the amplitude of excitatory postsynaptic currents (EPSCs) evoked by weak intracortical stimulus. The effect was mimicked by the selective D1 receptor agonist SKF 81297 (1 microM). Increasing stimulation resulted in epileptiform discharges. SKF 81297 (1 microM) significantly lowered the threshold stimulus required for generating epileptiform discharges to 83% of control. In the imaging experiments, bath application of dopamine or SKF 81297 enhanced the spatiotemporal spread of activity in response to weak stimulation and previously subthreshold stimulation resulted in epileptiform activity that spread across the whole cortex. These effects could be blocked by the selective D1 receptor antagonist SCH 23390 (10 microM) but not by the D2 receptor antagonist eticlopride (5 microM). These results indicate that dopamine, by a D1 receptor-mediated mechanism, enhances spatiotemporal spread of synaptic activity and lowers the threshold for epileptiform activity in local excitatory circuits within PFC.  相似文献   

3.
Dopamine (DA) effects on prefrontal cortex (PFC) neurons are essential for the cognitive functions mediated by this cortical area. However, the cellular mechanisms of DA neuromodulation in neocortex are not well understood. We characterized the effects of D1-type DA receptor (D1R) activation on the amplification (increase in duration and area) of excitatory postsynaptic potentials (EPSPs) at depolarized potentials, in layer 5 pyramidal neurons from rat PFC. Simulated EPSPs (sEPSPs) were elicited by current injection, to determine the effects of D1R activation independent of modulation of transmitter release or glutamate receptor currents. Application of the D1R agonist SKF81297 attenuated sEPSP amplification at depolarized potentials in a concentration-dependent manner. The SKF81297 effects were inhibited by the D1R antagonist SCH23390. The voltage-gated Na+ channel blocker tetrodotoxin (TTX) abolished the effects of SKF81297 on sEPSP amplification, suggesting that Na+ currents are necessary for the D1R effect. Furthermore, blockade of 4-AP- and TEA-sensitive K+ channels in the presence of TTX significantly increased EPSP amplification, arguing against the possibility that SKF81297 up-regulates currents that attenuate sEPSP amplification. SKF81297 application attenuated the subthreshold response to injection of depolarizing current ramps, in a manner consistent with a decrease in the persistent Na+ current. In addition, D1R activation decreased the effectiveness of temporal EPSP summation during 20 Hz sEPSP trains, selectively at depolarized membrane potentials. Therefore, the effects of D1R activation on Na+ channel-dependent EPSP amplification may regulate the impact of coincidence detection versus temporal integration mechanisms in PFC pyramidal neurons.  相似文献   

4.
Dopaminergic regulation of primate dorsolateral prefrontal cortex (PFC) activity is essential for cognitive functions such as working memory. However, the cellular mechanisms of dopamine neuromodulation in PFC are not well understood. We have studied the effects of dopamine receptor activation during persistent stimulation of excitatory inputs onto fast-spiking GABAergic interneurons in monkey PFC. Stimulation at 20 Hz induced short-term excitatory postsynaptic potential (EPSP) depression. The D1 receptor agonist SKF81297 (5 microM) significantly reduced the amplitude of the first EPSP but not of subsequent responses in EPSP trains, which still displayed significant depression. Dopamine (DA; 10 microM) effects were similar to those of SKF81297 and were abolished by the D1 antagonist SCH23390 (5 microM), indicating a D1 receptor-mediated effect. DA did not alter miniature excitatory postsynaptic currents, suggesting that its effects were activity dependent and presynaptic action potential dependent. In contrast to previous findings in pyramidal neurons, in fast-spiking cells, contribution of N-methyl-D-aspartate receptors to EPSPs at subthreshold potentials was not significant and fast-spiking cell depolarization decreased EPSP duration. In addition, DA had no significant effects on temporal summation. The selective decrease in the amplitude of the first EPSP in trains delivered every 10 s suggests that in fast-spiking neurons, DA reduces the amplitude of EPSPs evoked at low frequency but not of EPSPs evoked by repetitive stimulation. DA may therefore improve detection of EPSP bursts above background synaptic activity. EPSP bursts displaying short-term depression may transmit spike-timing-dependent temporal codes contained in presynaptic spike trains. Thus DA neuromodulation may increase the signal-to-noise ratio at fast-spiking cell inputs.  相似文献   

5.
6.
Dopamine (DA), via activation of D1 receptors, enhances N-methyl-D-aspartate (NMDA)-evoked responses in striatal neurons. The present investigation examined further the properties of this enhancement and the potential mechanisms by which this enhancement might be effected. Dissociated medium-sized striatal neurons were obtained from intact rats and mice or mutant mice lacking the DA and cyclic adenosine 3',5' monophosphate (cAMP)-regulated phosphoprotein of M(R) 32,000 (DARPP-32). NMDA (10-1,000 microM) induced inward currents in all neurons. In acutely dissociated neurons from intact rats or mice, activation of D1 receptors with the selective agonist, SKF 81297, produced a dose-dependent enhancement of NMDA currents. This enhancement was reduced by the selective D1 receptor antagonist SKF 83566. Quinpirole, a D2 receptor agonist alone, produced small reductions of NMDA currents. However, it consistently and significantly reduced the enhancement of NMDA currents by D1 agonists. In dissociated striatal neurons, in conditions that minimized the contributions of voltage-gated Ca(2+) conductances, the D1-induced potentiation was not altered by blockade of L-type voltage-gated Ca(2+) conductances in contrast to results in slices. The DARPP-32 signaling pathway has an important role in D1 modulation of NMDA currents. In mice lacking DARPP-32, the enhancement was significantly reduced. Furthermore, okadaic acid, a protein phosphatase 1 (PP-1) inhibitor, increased D1-induced potentiation, suggesting that constitutively active PP-1 attenuates D1-induced potentiation. Finally, activation of D1 receptors produced differential effects on NMDA and gamma aminobutyric acid (GABA)-induced currents in the same cells, enhancing NMDA currents and inhibiting GABA currents. Thus simultaneous activation of D1, NMDA, and GABA receptors could predispose medium-sized spiny neurons toward excitation. Taken together, the present findings indicate that the unique potentiation of NMDA receptor function by activation of the D1 receptor signaling cascade can be controlled by multiple mechanisms and has major influences on neuronal function.  相似文献   

7.
Properties of repetitive firing, including spike adaptation, are considered to play an essential role in controlling neural excitability in the central nervous system. Noradrenaline is one of major neurotranmitters that modulate repetitive firing in the cerebral cortex. Although activation of beta-adrenoceptors increases firing frequency similarly to noradrenaline, it is still controversial whether alpha(1)-adrenoceptor activation influences repetitive firing. In the present study, we examined the effects of adrenoceptor agonists on firing properties and the intracellular mechanism for alpha(1)-adrenoceptor-dependent modulation of firing in pyramidal neurons of rat cerebral cortex. In agreement with previous reports, bath application of 100microM isoproterenol, a beta-adrenoceptor agonist, increased firing frequency in response to a long intracellular depolarizing current injection. Phenylephrine (100microM), an alpha(1)-adrenoceptor agonist, also increased firing rate, which was inhibited by 100microM prazosin, an alpha1-adrenoceptor antagonist. The extent of increment in firing rate is comparable to that induced by isoproterenol. Furthermore, phenylephrine's effects on firing properties were mimicked by 2-5microM phorbol ester, a protein kinase C (PKC) activator, and pre-application of 10microM chelerythrine, a PKC inhibitor, prevented phenylephrine-induced facilitation of repetitive firing. These results suggest that phenylephrine has a facilitatory effect on repetitive firing through PKC activation.  相似文献   

8.
Type B photoreceptors in Hermissenda exhibit increased excitability (e.g., elevated membrane resistance and lowered spike thresholds) consequent to the temporal coincidence of a light-induced intracellular Ca(2+) increase and the release of GABA from presynaptic vestibular hair cells. Convergence of these pre- and postsynaptically stimulated biochemical cascades culminates in the activation of protein kinase C (PKC). Paradoxically, exposure of the B cell to light alone generates an inositol triphosphate-regulated rise in diacylglycerol and intracellular Ca(2+), co-factors sufficient to stimulate conventional PKC isoforms, raising questions as to the unique role of synaptic stimulation in the activation of PKC. GABA receptors on the B cell are coupled to G proteins that stimulate phospholipase A(2) (PLA(2)), which is thought to regulate the liberation of arachidonic acid (AA), an "atypical" activator of PKC. Here, we directly assess whether GABA binding or PLA(2) stimulation liberates AA in these cells and whether free AA potentiates the stimulation of PKC. Free fatty-acid was estimated in isolated photoreceptors with the fluorescent indicator acrylodan-derivatized intestinal fatty acid-binding protein (ADIFAB). In response to 5 microM GABA, a fast and persistent increase in ADIFAB emission was observed, and this increase was blocked by the PLA(2) inhibitor arachidonyltrifluoromethyl ketone (50 microM). Furthermore, direct stimulation of PLA(2) by melittin (10 microM) increased ADIFAB emission in a manner that was kinetically analogous to GABA. In response to simultaneous exposure to the stable AA analogue oleic acid (OA, 20 microM) and light (to elevate intracellular Ca(2+)), B photoreceptors exhibited a sustained (>45 min) increase in excitability (membrane resistance and evoked spike rate). The excitability increase was blocked by the PKC inhibitor chelerythrine (20 microM) and was not induced by exposure of the cells to light alone. The increase in excitability in the B cell that followed exposure to light and OA persisted for > or =90 min when the pairing was conducted in the presence of the protein synthesis inhibitor anisomycin (1 microm), suggesting that the synergistic influence of these signaling agents on neuronal excitability did not require new protein synthesis. These results indicate that GABA binding to G-protein-coupled receptors on Hermissenda B cells stimulates a PLA(2) signaling cascade that liberates AA, and that this free AA interacts with postsynaptic Ca(2+) to synergistically stimulate PKC and enhance neuronal excitability. In this manner, the interaction of postsynaptic metabotropic receptors and intracellular Ca(2+) may serve as the catalyst for some forms of associative neuronal/synaptic plasticity.  相似文献   

9.
Prefrontal cortical dopamine (DA) modulates pyramidal cell excitability directly and indirectly by way of its actions on local circuit GABAergic interneurons. DA modulation of interneuronal functions is implicated in the computational properties of prefrontal networks during cognitive processes and in schizophrenia. Morphologically and electrophysiologically distinct classes of putative GABAergic interneurons are found in layers II-V of rat prefrontal cortex. Our whole cell patch-clamp study shows that DA induced a direct, TTX-insensitive, reversible membrane depolarization, and increased the excitability of fast-spiking (FS) interneurons. The DA-induced membrane depolarization was reduced significantly by D1/D5 receptor antagonist SCH 23390, but not by the D2 receptor antagonist (-)sulpiride, D4 receptor antagonists U101958 or L-745870, alpha1-adrenoreceptor antagonist prazosin, or serotoninergic receptor antagonist mianserin. The D1/5 agonists SKF81297 or dihydrexidine, but not D2 agonist quinpirole, also induced a prolonged membrane depolarization. Voltage-clamp analyses of the voltage-dependence of DA-sensitive currents, and the effects of changing [K(+)](O) on reversal potentials of DA responses, revealed that DA suppressed a Cs(+)-sensitive inward rectifier K(+) current and a resting leak K(+) current. D1/D5, but not D2 agonists mimicked the suppressive effects of DA on the leak current, but the DA effects on the inward rectifier K(+) current were not mimicked by either agonist. In a subgroup of FS interneurons, the slowly inactivating membrane outward rectification evoked by depolarizing voltage steps was also attenuated by DA. Collectively, these data showed that DA depolarizes FS interneurons by suppressing a voltage-independent 'leak' K(+) current (via D1/D5 receptor mechanism) and an inwardly rectifying K(+) current (via unknown DA mechanisms). Additional suppression of a slowly inactivating K(+) current led to increase in repetitive firing in response to depolarizing inputs. This D1-induced increase in interneuron excitability enhances GABAergic transmission to PFC pyramidal neurons and could represent a mechanism via which DA suppresses persistent firing of pyramidal neurons in vivo.  相似文献   

10.
Dopaminergic modulation of neuronal networks in the dorsolateral prefrontal cortex (PFC) is believed to play an important role in information processing during working memory tasks in both humans and nonhuman primates. To understand the basic cellular mechanisms that underlie these actions of dopamine (DA), we have investigated the influence of DA on the cellular properties of layer 3 pyramidal cells in area 46 of the macaque monkey PFC. Intracellular voltage recordings were obtained with sharp and whole cell patch-clamp electrodes in a PFC brain-slice preparation. All of the recorded neurons in layer 3 (n = 86) exhibited regular spiking firing properties consistent with those of pyramidal neurons. We found that DA had no significant effects on resting membrane potential or input resistance of these cells. However DA, at concentrations as low as 0.5 microM, increased the excitability of PFC cells in response to depolarizing current steps injected at the soma. Enhanced excitability was associated with a hyperpolarizing shift in action potential threshold and a decreased first interspike interval. These effects required activation of D1-like but not D2-like receptors since they were inhibited by the D1 receptor antagonist SCH23390 (3 microM) but not significantly altered by the D2 antagonist sulpiride (2.5 microM). These results show, for the first time, that DA modulates the activity of layer 3 pyramidal neurons in area 46 of monkey dorsolateral PFC in vitro. Furthermore the results suggest that, by means of these effects alone, DA modulation would generally enhance the response of PFC pyramidal neurons to excitatory currents that reach the action potential initiation site.  相似文献   

11.
The master circadian clock of mammals in the suprachiasmatic nucleus (SCN) of the hypothalamus entrains to a 24-h daily light-dark cycle and regulates circadian rhythms. The SCN is composed of multiple neurons with cell autonomous clocks exhibiting robust firing rhythms with a high firing rate during the subjective day. The membrane target(s) of the cellular clock responsible for circadian modulation of the firing rate in SCN neurons still remain unclear. Previously, L-type Ca(2+) currents and fast delayed rectifier (FDR) K(+) currents have been suggested to contribute directly to circadian modulation of electrical activity. Using long-term continuous recording of activity from dispersed rat SCN neurons in multielectrode dish and ionic channel blockers, we tested these hypotheses. Neither an L-type Ca(2+) current blocker (20 microM of nifedipine for 2 days) nor an FDR current blocker (500 microM of 4-aminopyridine (4-AP) for 4 days) suppressed the circadian modulation of firing rate. A specific blocker of Na(+) persistent current (5 microM of riluzole for 1 day followed by 10 microM during the next day) reversibly suppressed firing activity in a dose-dependent manner. These data indicate that neither nifedipine-sensitive Ca(2+) current(s) nor 4-AP-sensitive K(+) current(s) are key membrane targets for circadian modulation of electrical firing rate in SCN neurons.  相似文献   

12.
There is growing evidence linking alterations in serotonergic signaling in the prefrontal cortex to the etiology of schizophrenia. Prefrontal pyramidal neurons are richly innervated by serotonergic fibers and express high levels of serotonergic 5-HT(2)-class receptors. It is unclear, however, how activation of these receptors modulates cellular activity. To help fill this gap, whole cell voltage-clamp and single-cell RT-PCR studies of acutely isolated layer V-VI prefrontal pyramidal neurons were undertaken. The vast majority (>80%) of these neurons had detectable levels of 5-HT(2A) or 5-HT(2C) receptor mRNA. Bath application of 5-HT(2) agonists inhibited voltage-dependent Ca(2+) channel currents. L-type Ca(2+) channels were a particularly prominent target of this signaling pathway. The L-type channel modulation was blocked by disruption of G(alphaq) signaling or by inhibition of phospholipase Cbeta. Antagonism of intracellular inositol trisphosphate signaling, chelation of intracellular Ca(2+), or depletion of intracellular Ca(2+) stores also blocked this modulation. Inhibition of the Ca(2+)-dependent phosphatase calcineurin prevented receptor-mediated modulation of L-type currents. Last, the 5-HT(2) receptor modulation was robustly expressed in neurons from Ca(v)1.3 knockout mice. These findings argue that 5-HT(2) receptors couple through G(alphaq) proteins to trigger a phospholipase Cbeta/inositol trisphosphate signaling cascade resulting in the mobilization of intracellular Ca(2+), activation of calcineurin, and inhibition of Ca(v)1.2 L-type Ca(2+) currents. This modulation and its blockade by atypical neuroleptics could have wide-ranging effects on synaptic integration and long-term gene expression in deep-layer prefrontal pyramidal neurons.  相似文献   

13.
Sorg BA  Li N  Wu W  Bailie TM 《Neuroscience》2004,127(1):187-196
We examined the effects of repeated stress and D1 receptor activation in the medial prefrontal cortex (mPFC) on acute-cocaine-induced locomotor activity in rats. Male rats were given 7 days of either handling (Controls) or a variety of stressors. After 8-17 days' withdrawal, rats received an intra-mPFC microinjection of the full D1 agonist, SKF 81297: 0, 0.03, 0.1 or 0.3 microg/side followed by an i.p. saline or cocaine injection (15 mg/kg, i.p.). The target sites were either the dorsal or ventral mPFC. We also divided rats into either high or low responders based on their locomotor response to an acute cocaine injection. In the dorsal PFC, low responder Control and Stress groups demonstrated an augmentation of cocaine-induced increases in activity after SKF 81297, compared with vehicle, microinjection. In contrast, high responder rats demonstrated a suppression of cocaine-induced increases in activity after intra-mPFC SFK 81297 infusion, with an apparent 10 times higher sensitivity in the Stress group. In the ventral PFC, low responder Controls showed no changes after SKF 81297 infusion, while the Stress group showed an increase in cocaine-induced activity in response to SKF 81297. In high responders given SFK 81297 into the ventral mPFC, cocaine-induced activity was suppressed in Controls, while stress pretreatment rendered animals resistant to SKF 81297 effects. These results indicate that D1 receptor activation effects in the mPFC are bidirectional depending on whether rats have a high or low locomotor response to cocaine. Further, daily stress alters the sensitivity of the mPFC to SKF 81297, which is dependent on whether the dorsal or ventral mPFC is targeted.  相似文献   

14.
We measured pharmacologically isolated GABAergic currents from layer II/III neurons of the rat auditory cortex using patch-clamp recording. Activation of muscarinic receptors by muscarine (1 microM) or oxotremorine (10 microM) decreased the amplitude of electrically evoked inhibitory postsynaptic currents to about one third of their control value. Neither miniature nor exogenously evoked GABAergic currents were altered by the presence of muscarinic agonists, indicating that the effect was spike-dependent and not mediated postsynaptically. The presence of the N- or P/Q-type Ca(2+) channel blockers omega-conotoxin GVIA (1 microM) or omega-AgaTx TK (200 nM) greatly blocked the muscarinic effect, suggesting that Ca(2+)-channels were target of the muscarinic modulation. The presence of the muscarinic M(2) receptor (M(2)R) antagonists methoctramine (5 muM) or AF-DX 116 (1 microM) blocked most of the muscarinic evoked inhibitory postsynaptic current (eIPSC) reduction, indicating that M(2)Rs were responsible for the effect, whereas the remaining component of the depression displayed M(1)R-like sensitivity. Tissue preincubation with the specific blockers of phosphatidyl-inositol-3-kinase (PI(3)K) wortmannin (200 nM), LY294002 (1 microM), or with the Ca(2+)-dependent PKC inhibitor G? 6976 (200 nM) greatly impaired the muscarinic decrease of the eIPSC amplitude, whereas the remaining component was sensitive to preincubation in the phospholipase C blocker U73122 (10 microM). We conclude that acetylcholine release enhances the excitability of the auditory cortex by decreasing the release of GABA by inhibiting axonal V-dependent Ca(2+) channels, mostly through activation of presynaptic M(2)Rs/PI(3)K/Ca(2+)-independent PKC pathway and-to a smaller extent-by the activation of M(1)/PLC/Ca(2+)-dependent PKC.  相似文献   

15.
16.
Although D2 dopamine receptors have been localized to olfactory receptor neurons (ORNs) and dopamine has been shown to modulate voltage-gated ion channels in ORNs, dopaminergic modulation of either odor responses or excitability in mammalian ORNs has not previously been demonstrated. We found that <50 microM dopamine reversibly suppresses odor-induced Ca2+ transients in ORNs. Confocal laser imaging of 300-microm-thick slices of neonatal mouse olfactory epithelium loaded with the Ca(2+)-indicator dye fluo-4 AM revealed that dopaminergic suppression of odor responses could be blocked by the D2 dopamine receptor antagonist sulpiride (<500 microM). The dopamine-induced suppression of odor responses was completely reversed by 100 microM nifedipine, suggesting that D2 receptor activation leads to an inhibition of L-type Ca2+ channels in ORNs. In addition, dopamine reversibly reduced ORN excitability as evidenced by reduced amplitude and frequency of Ca2+ transients in response to elevated K(+), which activates voltage-gated Ca2+ channels in ORNs. As with the suppression of odor responses, the effects of dopamine on ORN excitability were blocked by the D2 dopamine receptor antagonist sulpiride (<500 microM). The observation of dopaminergic modulation of odor-induced Ca2+ transients in ORNs adds to the growing body of work showing that olfactory receptor neurons can be modulated at the periphery. Dopamine concentrations in nasal mucus increase in response to noxious stimuli, and thus D2 receptor-mediated suppression of voltage-gated Ca2+ channels may be a novel neuroprotective mechanism for ORNs.  相似文献   

17.
1. The role of synaptic activation of NMDA (N-methyl-D-aspartate) receptor-mediated conductances on CA1 hippocampal pyramidal cells in short-term excitability changes was studied with the use of a computational model. Model parameters were based on experimental recordings from dendrites and somata and previous hippocampal simulations. Representation of CA1 neurons included NMDA and non-NMDA excitatory dendritic synapses, dendritic and somatic inhibition, five intrinsic membrane conductances, and provision for activity-dependent intracellular and extracellular ion concentration changes. 2. The model simulated somatic and dendritic potentials recorded experimentally. The characteristic CA1 spike afterdepolarization was a consequence of the longitudinal spread of dendritic charge, reactivation of slow Ca(2+)-dependent K+ conductances, slow synaptic processes (NMDA-dependent depolarizing and gamma-aminobutyric acid-mediated hyperpolarizing currents) and was sensitive to extracellular potassium accumulation. Calcium currents were found to be less important in generating the spike afterdepolarization. 3. Repetitive activity was influenced by the cumulative activation of the NMDA-mediated synaptic conductances, the frequency-dependent depression of inhibitory synaptic responses, and a shift in the potassium reversal potential. NMDA receptor activation produced a transient potentiation of the excitatory postsynaptic potential (EPSP). The frequency dependence of EPSP potentiation was similar to the experimental data, reaching a maximal value near 10 Hz. 4. Although the present model did not have compartments for dendritic spines, Ca2+ accumulation was simulated in a restricted space near the intracellular surface of the dendritic membrane. The simulations demonstrated that the Ca2+ component of the NMDA-operated synaptic current can be a significant factor in increasing the Ca2+ concentration at submembrane regions, even in the absence of Ca2+ spikes. 5. Elevation of the extracellular K+ concentration enhanced the dendritic synaptic response during repetitive activity and led to an increase in intracellular Ca2+ levels. This increase in dendritic excitability was partly mediated by NMDA receptor-mediated conductances. 6. Blockade of Ca(2+)-sensitive K+ conductances in the dendrites increased the size of EPSPs leading to a facilitation of dendritic and somatic spike activity and increased [Ca2+]i. NMDA receptor-mediated conductances appeared as an amplifying component in this mechanism, activated by the relatively depolarized membrane potential. 7. The results suggest that dendritic NMDA receptors, by virtue of their voltage-dependency, can interact with a number of voltage-sensitive conductances to increase the dendritic excitatory response during periods of repetitive synaptic activation. These findings support experimental results that implicate NMDA receptor-mediated conductances in the short-term response plasticity of the CA1 hippocampal pyramidal neuron.  相似文献   

18.
Nitric oxide synthase (NOS)-containing mesopontine cholinergic (MPCh) neurons of the laterodorsal tegmental nucleus (LDT) are hypothesized to drive the behavioral states of waking and REM sleep through a tonic increase in firing rate which begins before and is maintained throughout these states. In principle, increased firing could elevate intracellular calcium levels and regulate numerous cellular processes including excitability, gene expression, and the activity of neuronal NOS in a state-dependent manner. We investigated whether repetitive firing, evoked by current injection and N-methyl-D-aspartate (NMDA) receptor activation, produces somatic and proximal dendritic [Ca(2+)](i) transients and whether these transients are modulated by serotonin, a transmitter thought to play a critical role in regulating the state-dependent firing of MPCh neurons. [Ca(2+)](i) was monitored optically from neurons filled with Ca(2+) indicators in guinea pig brain slices while measuring membrane potential with sharp microelectrodes or patch pipettes. Neither hyperpolarizing current steps nor subthreshold depolarizing steps altered [Ca(2+)](i). In contrast, suprathreshold currents caused large and rapid increases in [Ca(2+)](i) that were related to firing rate. TTX (1 microM) strongly attenuated this relation. Addition of tetraethylammonium (TEA, 20 mM), which resulted in Ca(2+) spiking on depolarization, restored the change in [Ca(2+)](i) to pre-TTX levels. Suprathreshold doses of NMDA also produced increases in [Ca(2+)](i) that were reduced by up to 60% by TTX. Application of 5-HT, which hyperpolarized LDT neurons without detectable changes in [Ca(2+)](i), suppressed both current- and NMDA-evoked increases in [Ca(2+)](i) by reducing the number of evoked spikes and by inhibiting spike-evoked Ca(2+) transients by approximately 40% in the soma and proximal dendrites. This inhibition was accompanied by a subtle increase in the spike repolarization rate and a decrease in spike width, as expected for inhibition of high-threshold Ca(2+) currents in these neurons. NADPH-diaphorase histochemistry confirmed that recorded cells were NOS-containing. These findings indicate the prime role of action potentials in elevating [Ca(2+)](i) in NOS-containing MPCh neurons. Moreover, they demonstrate that serotonin can inhibit somatic and proximal dendritic [Ca(2+)](i) increases both indirectly by reducing firing rate and directly by decreasing the spike-evoked transients. Functionally, these data suggest that spike-evoked Ca(2+) signals in MPCh neurons should be largest during REM sleep when serotonin inputs are expected to be lowest even if equivalent firing rates are reached during waking. Such Ca(2+) signals may function to trigger Ca(2+)-dependent processes including cfos expression and nitric oxide production in a REM-specific manner.  相似文献   

19.
20.
Many studies have shown dopamine (DA) to have a modulatory effect on neuronal excitability, which cannot be simply classified as excitatory or inhibitory in the neostriatum. To clarify whether the responses to DA (10-30 microM) are excitatory or inhibitory in the mouse medium spiny neurons, we examined the effects of DA agonists on the synchronous potential trajectory from the resting potential to the subthreshold potential. The DA-induced potential changes, which were estimated at the subthreshold potential (approximately -60 mV), were summarized as the combination of three kinds of responses: an initial hyperpolarization lasting approximately 1 min and a slow depolarization and/or hyperpolarization lasting more than 20 min. A D(1)-like receptor agonist, R(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF81297, 1 microM) mainly induced the initial hyperpolarization and slow depolarization. A D(2)-like receptor agonist, trans-(-)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3,4-g]quinoline hydrochloride (quinpirole, 1 microM), mainly induced the initial hyperpolarization and slow hyperpolarization. D(1)-like receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390, 1 microM) depressed both the initial hyperpolarization and slow depolarization. D(2)-like receptor antagonist sulpiride (1 microM) depressed all the DA-induced responses except for the slow depolarization. TTX (0.5 microM) abolished all the DA-induced responses. Bicuculline (20 microM) and atropine (1 microM) abolished the DA-induced initial hyperpolarization and slow depolarization, respectively. Either DL-2-amino-5-phosphonopentanoic acid (AP5; 100 microM) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 20 microM) blocked both the initial hyperpolarization and slow depolarization. The application of exogenous glutamate (Glu) mimicked the initial hyperpolarization and slow depolarization. These results suggest that the initial hyperpolarization is mainly due to GABA release via the cooperative action of D(1)- and D(2)-like receptors and Glu receptors in GABAergic interneurons, whereas the slow depolarization is mediated by acetylcholine (ACh) release via the cooperative action of mainly D(1)-like receptors and Glu receptors in cholinergic interneurons. The potential oscillation was generated at the subthreshold level in a Ba(2+)-, AP5-, CNQX-, bicuculline-, and atropine-containing medium. The oscillation depressed after the addition of TTX, Co(2+), or DA. In DA agonists, quinpirole rather than SKF81297 had a more depressive effect on the potential oscillation. These results indicate that the slow hyperpolarization is due to the suppression of noninactivating Na(+)-Ca(2+) conductances via mainly D(2)-like receptors in the medium spiny neurons. In conclusion, the DA actions on the medium spiny neurons show a transient inhibition by the activation of D(1)- and D(2)-like receptors in mainly GABAergic interneurons and a tonic excitation and/or inhibition by the activation of mainly D(1)-like receptors in cholinergic interneurons and by the activation of mainly D(2)-like receptors in the medium spiny neurons, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号