首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to evaluate the effect of various processing and formulation factors on the characteristics of amifostine hybrid microcapsules. Amifostine-loaded hybrid microcapsules were prepared using PLGA and chitosan. In short, amifostine powder was dissolved in de-aerated water with or without chitosan. The amifostine solution was later emulsified into PLGA solution in dichloromethane containing phosphatidylcholine. The resultant emulsion was fed through the inner capillary of a coaxial ultrasonic atomizer. The liquid fed through the coaxial outer capillary was either water or chitosan solution. The atomized droplets were collected into PVA solution and the droplets formed microcapsules immediately. The hybrid microcapsules prepared with chitosan solution only as an outer layer liquid showed the maximum efficiency of encapsulation (30%). The median sizes of all three formulations were 33-44 microm. These formulations with chitosan showed positive zeta-potential and sustained drug release with 13-45% amifostine released in 24 h. When chitosan was incorporated into inner as well as outer liquid layers, the drug release increased significantly, 45% (compared with other formulations) released in 24 h and almost 100% released in 11 days. Hybrid microcapsules of amifostine showed moderately high efficiency of encapsulation. The cationic charge (due to the presence of chitosan) of these particles is expected to favour oral absorption and thus overall bioavailability of orally administered amifostine.  相似文献   

2.
A new microencapsulation technique based on the solvent exchange method was implemented using an ultrasonic atomizer system to encapsulate a protein drug in mild conditions. The reservoir-type microcapsules encapsulating lysozyme as a model protein were prepared by inducing collisions between the aqueous droplets containing lysozyme and the droplets of organic solvent with dissolved poly(lactic acid-co-glycolic acid) (PLGA). The main focus of the study was to examine formulation variables on the size and the encapsulation efficiency of the formed microcapsules. The formulation variables examined were concentrations of mannose in the aqueous cores, NaCl in the aqueous collection medium, and PLGA in organic solvent. The mean diameter of the microcapsules ranged from 40 microm to 100 microm. Smaller microcapsules showed lower encapsulation efficiencies. The resulting microcapsules released native lysozyme in a sustained manner, and the release rate was dependent on the formulation conditions, such as the concentration and molecular weight of the polymer used. The solvent exchange method does not induce lysozyme aggregation and loss of its biological activity. The solvent exchange method, implemented by the ultrasonic atomizer system, provides an effective tool to prepare reservoir-type microcapsules for delivering proteins.  相似文献   

3.
目的制备蛋白的海藻酸-壳聚糖-聚乳酸羟乙醇酸(PLGA)复合微球,以增加蛋白药物的包封率、减少突释和不完全释放。方法以牛血清白蛋白为模型药物采用修饰的乳化、醇洗法制备小粒径海藻酸微囊,再以壳聚糖孵育制得海藻酸-壳聚糖双层微囊,并进一步用PLGA包裹制得复合微球。采用微量BCA试剂盒测定蛋白浓度,考察其包封率及释放行为,改变各种制备因素调节微球的释放特性。结果复合微球粒径约30 μm,形态圆整。与单纯PLGA微球相比,包封率由60%-70%上升至80%以上。复合微球在磷酸盐缓冲液的1 h突释量由40%-50%下降至25%以下,在生理盐水中则进一步下降至5%以下。结论海藻酸-壳聚糖-PLGA复合微球提高了蛋白药物的包封率,减少了药物的突释,并可通过调节PLGA比例调节药物的释放。  相似文献   

4.
The primary objective of this study was to develop a method for the preparation of porous biodegradable controlled release formulation of poly(lactide/glycolide) (PLGA). The model drug used for this study was pentamidine. Scanning electron microscopy pictures showed that these microparticles are highly porous and spherical in shape. A comparison of particle size reveals a similar median particle size (54-68 microm) in all six batches. The particles are all smaller than 90 microm. Differential scanning calorimetry thermograms revealed that pentamidine was mostly present in the crystalline form in the microparticles and did not dissolve in PLGA. The efficiency of encapsulation of pentamidine was higher than 58% in all six batches. The amount of drug released from these microparticles was at least 12% within the first 60 min. At least 50% of the total drug was released within the first 4 h. Drug release from these microparticles continued for up to 12 h. This faster drug dissolution was due to the highly porous surface. This highly porous surface will allow large molecules to release at a much faster rate than the regular microcapsules/microspheres.  相似文献   

5.
The purpose of this work was to obtain an optimised long-term aciclovir PLGA microspheres formulation for intravitreal administration to minimise, as much as possible, the dose of microspheres to be administered with a suitable particle size for its injection through a 27G needle in a single dose. Microspheres were prepared by the solvent evaporation method. To obtain the optimum formulation a two-factor five-level central rotatable composite 2(2) + star design was employed. The independent variables were aciclovir and gelatin (added to the external phase of the emulsion). The dependent variables were the yield of production (%), the encapsulation efficiency (%), the initial burst release (%), the cumulative amount released from 1 to 14 days and the amount of aciclovir at the end of the release assay (microg aciclovir/mg microspheres). The best formulation according to the studied variables was (0,0), prepared with 80 mg of aciclovir and 80 mg of gelatin. This formulation showed good yield of production (70.14 +/- 3.72 %) and encapsulation efficiency ( 70.77 +/- 2.62 %), and released the drug at a constant rate for 63 days with a mean release constant of 1.73 +/- 0.08 microg/day per mg microspheres. The selected formulation reduces a 40% the dose of microspheres to be administered through a 27G needle with respect to previous studies.  相似文献   

6.
The objective of this study was to investigate the potential of various formulation strategies to achieve sustained release of the peptide, from injectable poly(D,L-lactide-co-glycolide) (PLGA) and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) microparticles. The microparticles were prepared by a solvent evaporation method. Peptide loaded PLGA microparticles exhibited a pronounced initial burst release (22.3% in 1 day) and lag phase in phosphate buffer of pH 7.0. In contrast, blending of 5.0% TPGS (8.6% release in 1 day) or 10.0% TPGS (5.5% release in 1 day) in PLGA microparticles reduced initial burst release and the lag-phase time. Incorporation of TPGS in PLGA microparticles further increased drug release, attributable to improved drug encapsulation, increased particle size, and exempt of pores. PLGA+ 10.0% TPGS composite microparticles exhibited the most desirable drug release among all the formulations tested, and demonstrated triphasic release after minimal initial burst.  相似文献   

7.
To develop a long-acting injectable huperzine A-PLGA microsphere for the chronic therapy of Alzheimer's disease, the microsphere was prepared by using o/w emulsion solvent extraction evaporation method based on a series of formulation design of the emulsion. The dialysis method was used for release analysis. The encapsulation efficiency and release amount of the microspheres were determined by UV/VIS spectrophotometry. The morphology of the microspheres was observed by scanning electron microscopy. The distribution of the drug within microspheres was observed by a confocal laser scanning microscope. The results indicated that the PLGA 15 000 microspheres possessed a smooth and round appearance with average particle size of 50 microm or so. The encapsulation percentages of microspheres prepared from PLGA 15 000, 20 000 and 30 000 were 62.75, 27.52 and 16.63%, respectively. The drug release percentage during the first day decreased from 22.52% of PLGA 30 000 microspheres to 3.97% of PLGA 15 000 microspheres, the complete release could be prolonged to 3 weeks. The initial burst release of microspheres with higher molecular weight PLGA could be explained by the inhomogeneous distribution of drug within microspheres. The encapsulation efficiency of the microspheres improved as the polymer concentration increase in oil phase and PVA concentration decreased in aqueous phase. The burst release could be controlled by reducing the polymer concentration. Evaporation temperature had a large effect on the drug release profiles. It had better be controlled under 30 degrees C. Within a certain range of particle size, encapsulation efficiency decreased and drug release rate increased with the reducing of the particle size.  相似文献   

8.
To develop a long-acting injectable huperzine A-PLGA microsphere for the chronic therapy of Alzheimer's disease, the microsphere was prepared by using an o/w emulsion solvent extraction evaporation method based on a series of formulation design of the emulsion. The dialysis method was used for release analysis. The encapsulation efficiency and release amount of the microspheres were determined by a UV/VIS spectrophotometer. The morphology of the microspheres was observed by scanning electron microscopy. The distribution of the drug within microspheres was observed by a confocal laser scanning microscope. The results indicated that the PLGA 15,000 microspheres possessed a smooth and round appearance with average particle size of 50 microm or so. The encapsulation percentages of microspheres prepared from PLGA 15,000, 20,000 and 30,000 were 62.75%, 27.52% and 16.63%, respectively. The drug release percentage during the first day decreased from 22.52% of PLGA 30,000 microspheres to 3.97% of PLGA 15,000 microspheres, the complete release could be prolonged to 3 weeks. The initial burst release of microspheres with higher molecular weight PLGA could be explained by the inhomogeneous distribution of drug within microspheres. The encapsulation efficiency of the microspheres improved as the polymer concentration increased in the oil phase and PVA concentration decreased in the aqueous phase. The burst release could be controlled by reducing the polymer concentration. Evaporation temperature had a large effect on the drug release profiles. It had better be controlled under 30 degrees C. Within a certain range of particle size, encapsulation efficiency decreased and drug release rate increased with the reducing of the particle size.  相似文献   

9.
Purpose To evaluate the real-time effects of formulation and instrumental variables on microcapsule formation via natural jet segmentation, a new microencapsulation system termed the microenvironment-controlled encapsulation (MiCE) process was developed. Methods A modified flow cytometer nozzle hydrodynamically focuses an inner drug and outer polymer solution emanating from a coaxial needle assembly into a two-layer compound jet. Poly(lactic-co-glycolic acid) (PLGA) dissolved in a water-miscible organic solvent resulted in formation of reservoir-type microcapsules by interfacial phase separation induced at the boundary between the PLGA solution and aqueous sheath. Results The MiCE process produced microcapsules with mean diameters ranging from 15–25 μm. The resultant microcapsule size distribution and number of drug cores existing within each microcapsule was largely influenced by the PLGA concentration and microcapsule collection method. Higher PLGA concentrations yielded higher mean diameters of single-core microcapsules. Higher drug solution flow rates increased the core size, while higher PLGA solution flow rates increased the PLGA film thickness. Conclusion The MiCE microencapsulation process allows effective monitoring and control of the instrumental parameters affecting microcapsule production. However, the microcapsule collection method in this process needs to be further optimized to obtain microcapsules with desired morphologies, precise membrane thicknesses, high encapsulation efficiencies, and tight size distributions.  相似文献   

10.
Efficient delivery of adequate active ingredients to targeted malignant cells is critical, attributing to recurrent biophysical and biochemical challenges associated with conventional pharmaceutical delivery systems. These challenges include drug leakage, low targeting capability, high systemic cytotoxicity, and poor pharmacokinetics and pharmacodynamics. Targeted delivery system is a promising development to deliver sufficient amounts of drug molecules to target cells in a controlled release pattern mode. Aptameric ligands possess unique affinity targeting capabilities which can be exploited in the design of high pay-load drug formulations to navigate active molecules to the malignant sites. This study focuses on the development of a copolymeric and multifunctional drug-loaded aptamer-conjugated poly(lactide-co-glycolic acid)–polyethylenimine (PLGA-PEI) (DPAP) delivery system, via a layer-by-layer synthesis method, using a water-in-oil-in-water double emulsion approach. The binding characteristics, targeting capability, biophysical properties, encapsulation efficiency, and drug release profile of the DPAP system were investigated under varying conditions of ionic strength, polymer composition and molecular weight (MW), and degree of PEGylation of the synthetic core. Experimental results showed increased drug release rate with increasing buffer ionic strength. DPAP particulate system obtained the highest drug release of 50% at day 9 at 1 M NaCl ionic strength. DPAP formulation, using PLGA 65:35 and PEI MW of ∼800 Da, demonstrated an encapsulation efficiency of 78.93%, and a loading capacity of 0.1605 mg bovine serum albumin per mg PLGA. DPAP (PLGA 65:35, PEI MW∼25 kDa) formulation showed a high release rate with a biphasic release profile. Experimental data depicted a lower targeting power and reduced drug release rate for the PEGylated DPAP formulations. The outcomes from the present study lay the foundation to optimize the performance of DPAP system as an effective synthetic drug carrier for targeted delivery.  相似文献   

11.
The aim of this study was to evaluate the effect of different grades of poly D, L lactide-co-glycolide (PLGA) on the properties of microspheres encapsulated with Cyclosporine A (CyA). Microspheres were prepared by solvent evaporation method using three grades of PLGA. Various characteristics of microspheres such as morphology, size distribution, encapsulation efficiency and release profile were evaluated. Complementary studies were also carried out by Infrared (IR) spectroscopy and Differential scanning calorimetry (DSC) to evaluate possible drug-polymer interactions. Scanning electron microscopy (SEM) studies showed microspheres as spherical particles with CyA deposited as islands on the surface of spheres. Particle size range was 1-25 microm for microspheres made of PLGA (50:50) which showed the minimum size. Encapsulation efficiency was found to vary from 75% to 92% in various formulations. The profile of release was biphasic, showing an initial rapid phase followed by a continuous and slower rate thereafter. Microspheres made of grades 50:50 and 85:15 showed the highest and lowest amount of drug release, respectively. IR spectra for drug, polymer and microspheres did not indicate any chemical interaction between the components of microsphere and DSC thermograms revealed that CyA was present in its amorphous state within microspheres. In conclusion, the effect of polymer characteristics should be considered in microsphere formulations. In this study, suitable microspheres especially with PLGA (50:50) were prepared which allow the controlled release of CyA over a prolonged period of time.  相似文献   

12.
目的:制备长春西汀聚乳酸-聚乙醇酸(PLGA)缓释微球,并研究其药剂学性质。方法:采用改良O/W乳化-溶剂挥发法制备微球,以PLGA浓度、理论载药量、有机相与分散介质的比例和分散介质中明胶的浓度为4因素,每个因素选定3个水平,按L9(34)的正交设计方案,以载药量、包封率和粒径分布为指标,优化处方。用扫描电镜观察微球的形态,用光学显微镜观察并计算微球的粒径分布,用差示扫描量热(DSC)法研究药物在载体中的分散状态,用紫外分光光度法检测微球中长春西汀含量并计算载药量和包封率,用动态透析释药法进行微球的体外释放研究。结果:最佳处方为PLGA浓度16%,理论载药量20%,有机相与分散介质的比例1:10,分散介质中明胶的浓度1%;制备的长春西汀PLGA缓释微球的形态圆整、光滑,粒径分布均匀,平均粒径为(10.0±0.18)μm(n=500),DSC法分析药物确已被包裹于微球中,载药量为(18.46±0.26)%,包封率为(91.30±0.98)%(n=3),24h累积释药率约为18%。结论:长春西汀PLGA缓释微球制备工艺稳定,质量符合药剂学要求,缓释性好。  相似文献   

13.
Ketoprofen powder was encapsulated with Eudragit RL/RS polymer solutions in isopropanol-acetone 1:1, using a simple and rapid method. Microcapsules were prepared using Eudragit solutions with different RL/RS ratios. The encapsulation process produces free-flowing microcapsules with good drug content and marked decrease in dissolution rate. The retardation in release profile of ketoprofen from microcapsules was a function of the polymer ratio employed in the encapsulation process. In vitro release of ketoprofen from microcapsules either filled in gelatin capsules or compressed into tablets, using calcium sulphate as diluent, confirmed the efficiency of the encapsulation process for preparing prolonged release medication. A capsule formulation with optimum sustained-release profile was suggested.  相似文献   

14.
Nitrofurantoin crystals were encapsulated in a Gantrez-gelatin complex coacervation system. The encapsulation process was reproducible and inexpensive and the microcapsules were free flowing and directly compressible into tablets. In vitro release of nitrofurantoin from Gantrez-gelatin microcapsules was studied as a function of the core:coat ratio, the molecular weight of Gantrez and the particle size of the microcapsules. The release of the drug was significantly reduced using G149-gelatin microcapsules of core:coat ratio of 1:2. Release data were examined kinetically and were found to follow a diffusion-controlled model. In vitro release of the drug from the microcapsules filled in capsules and compressed into tablets confirmed the efficiency of the encapsulation process for preparing prolonged release formulations.  相似文献   

15.
This study describes the formulation and characterization of O/W and W/O creams containing urea-loaded microparticles prepared with poly (D, L-lactic-co-glycolic acid) (PLGA) in order to encapsulate and stabilize urea. The solvent evaporation method was used for preparing PLGA microparticles containing urea. The microparticles size was evaluated by laser light diffractometry. The resulting microparticles were then incorporated in O/W and W/O creams and stability and the release pattern from the creams was evaluated by UV-spectrophotometry. The particle size of PLGA microparticles was in the range of 1-5 microm and most microparticles had a particle size smaller than 3 microm. The encapsulation efficiency was calculated as 40.5% +/- 3.4. This study also examined release pattern of urea which varied among different formulations. The results showed that the release from O/W creams followed Higuchi kinetics while the release from W/O creams showed the zero order kinetics and the creams containing microparticulated urea had slower release than free urea creams.  相似文献   

16.
Two different PLGA samples (Resomer 502 and Resomer 506), either alone or in combinations, were used to prepare microcapsules. Microcapsules were prepared using a double emulsion solvent evaporation technique. The efficiency of encapsulation increased significantly when a mixture of 1 part Resomer 506 and 7 parts Resomer 502 was used to prepare the microcapsules. The efficiency of encapsulation of this batch was 23.7%, whereas the efficiency of encapsulations was only 13.9 and 9.8%, respectively, when the microcapsules were prepared with 100% Resomer 502 or 100% Resomer 506. In contrast, irrespective of the relative ratio of Resomer 502/Resomer 506, the median particle size of the microcapsules showed similar distribution pattern with the median size lies between 49 and 83 μm. The glass transition temperature (Tg) decreased significantly (44.6–25.5 °C) as the amount of Resomer 502 was increased in the formulation. The presence of Resomer 502 at lower concentration, along with Resomer 506, initially reduced the “burst effect.” However, incorporation of a higher amount of Resomer 502 increased the “burst effect.” Drug release from these microcapsules continued over 80 days. In conclusion, efficiency of encapsulation increased significantly when Resomer 506 was mixed with Resomer 502 at a ratio of 1:7. Blending of Resomer 502 with Resomer 506 reduced the glass transition temperature, which resulted in higher amount of drug release throughout the dissolution study.  相似文献   

17.
Indomethacin-loaded dietheylaminoethyl trisacryl microspheres (DEAE-MS), originally designed for therapeutic embolization, were encapsulated using two methods: coacervation and solvent evaporation/extraction. This encapsulation was achieved using a biocompatible polymer, the PLGA 50 : 50, and aimed to control the release of the anti-inflammatory non-steroidal drug (AINSD) in the occluded vessel. PLGA degradation study showed that it had an erosion half-life of approximately 35 days. Scanning electron microscopy (SEM) photographs showed that microcapsules (MC) prepared by coacervation had a wrinkled surface while those prepared using solvent-removal process showed non-porous, smooth surface, those of originally DEAE-MS showed a macro-porous, rough surface. The mean diameters were 61 microm for naked DEAE-MS vs. 71 microm and 65 microm for MC prepared by coacervation and solvent evaporation/extraction method, respectively. In vitro release study of indomethacin adsorbed onto MS indicated that drug release from MC was controlled by a diffusion process. Indomethacin diffusivity from MC was much lower than its free diffusivity from MS (mean 14.5 and 10.5 times lower for formulations prepared by coacervation and solvent evaporation/extraction method, respectively). This indicates that efficient indomethacin concentrations could be maintained over much longer time-periods in the embolized region, which is assumed to be beneficial in inhibiting normally occurring inflammatory reaction and the subsequent revascularization; responsible for treatment failure when definitive occlusion is required.  相似文献   

18.
Our aim was to prepare an optimum formulation for a sustained-release preparation of insulin using biodegradable polymer composed of co-poly(D,L-lactic/glycolic) acids (PLGA)(L/G ratio: 50/50). Various kinds of PLGA microcapsules containing 3% insulin were administered subcutaneously (250 U/kg) as a single dose to rats with streptozotocin-induced diabetes, and plasma insulin levels were monitored. The following results were obtained. (1) Glycerin and water were suitable additives to prepare a reproducible injectable formulation. (2) Addition of zinc compounds was essential to diminish rapid insulin release and six-fold molar excess of ZnO to insulin was desirable. (3) The size of insulin particles showed the following order: human insulin > lyophilized human insulin > Zn-free human insulin. Zn-free insulin was similar to lyophilized insulin with respect to control of rapid release, so a smaller particle size was essential. (4) The size of the microcapsules also affected the release of insulin. With larger microcapsules (approximately 30 microm), there was gradual release and a significant second phase of insulin release, while smaller microcapsules did not allow sustained release. Some variation in microcapsule size contributed to more constant and sustained release. (5) Based on the insulin release profile in vivo, a suitable molecular weight for PLGA was around 6000. The biological activity of insulin extracted from the formulation was similar to that of normal insulin. These experiments allowed us to prepare a desirable sustained-release insulin formulation.  相似文献   

19.
Abstract

Ketoprofen powder was encapsulated with Eudragit RL/RS polymer solutions in isopropanol-acetone 1:1, using a simple and rapid method. Microcapsules were prepared using Eudragit solutions with different RL/RS ratios. The encapsulation process produces free-flowing microcapsules with good drug content and marked decrease in dissolution rate. The retardation in release profile of ketoprofen from microcapsules was a function of the polymer ratio employed in the encapsulation process. In vitro release of ketoprofen from microcapsules either filled in gelatin capsules or compressed into tablets, using calcium sulphate as diluent, confirmed the efficiency of the encapsulation process for preparing prolonged release medication. A capsule formulation with optimum sustained-release profile was suggested.  相似文献   

20.
Paclitaxel (PTX), an antimicrotubular agent used in the treatment of ovarian and breast cancer, was encapsulated in nanoparticles (NPs) of poly(lactide-co-glycolide) (PLGA) and poly(ε-caprolactone) (PCL) polymers using the spray-drying technique. Morphology, size distribution, drug encapsulation efficiency, thermal degradation and drug release were characterized. MCF7 cells were employed to evaluate the efficacy of the systems on cell cycle and cytotoxicity. The particle size was in the range 0.8-1?μm. The incorporation efficiency of PTX was more than 80% in all NPs obtained. In?vitro drug release took place during 35 days, and drug release rates were in the order PCL?>?PLGA 50:50?>?PLGA 75:25. Unloaded NPs showed to be cytocompatible at MCF7 cells. PTX-loaded NPs demonstrated the release of the drug block cells in the G2/M phase. All PTX-loaded formulations showed their efficacy in killing MCF7 cells, mainly PTX-loaded PLGA 50:50 and PLGA 75:25 that cause a decrease in cell viability lower than 20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号