首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The effects on 5-HT turnover (5-HIAA/5-HT ratio) and extracellular 5-HT and 5-HIAA levels (in vivo microdialysis in freely moving animals) were analysed in guinea-pig brains following the 5-HT1B receptor antagonist, GR 127935 {N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2’-methyl-4’-(5-methyl-1,2,4-oxadiazol-3-yl) [1,1-biphenyl]-4-carboxamide}, or the 5-HT1A receptor antagonist, WAY-100635 (N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride), administered alone or in combination. GR 127935, injected alone, increased 5-HT turnover with maximal effects approximately 50% above the control levels in the four brain regions examined (hypothalamus, hippocampus, striatum and frontal cortex). GR 127935 significantly increased extracellular concentrations of 5-HT and 5-HIAA in frontal cortex (40%), whereas 5-HIAA, but not 5-HT, was elevated in striatum (20–30%). WAY-100635 did not significantly change 5-HT turnover but caused a small significant increase in the extracellular 5-HT and 5-HIAA concentrations in both striatum and frontal cortex. The combined treatment with GR 127935 and WAY-100635 resulted in an increased 5-HT turnover reaching maximal effects of 70–90% above the control values in all brain regions tested and produced a significant elevation of striatal and frontal cortex extracellular 5-HT (40% and 60%, respectively) and 5-HIAA (60% and 70%, respectively) concentrations. The synergistic effect of the two receptor antagonists on the 5-HT turnover and the terminal release of 5-HT indicate somatodendritic 5-HT release and stimulation of inhibitory 5-HT1A receptors at this level. Extracellular 5-HIAA seems to be a better marker than 5-HT itself for the evoked 5-HT release when the reuptake mechanism is intact. Received: 2 September 1998 / Accepted: 19 November 1998  相似文献   

2.
Bovine pulmonary supernumerary arteries are more sensitive to 5-hydroxtryptamine (5-HT) (pD(2) 6.43+/-0.25) than conventional arteries (pD(2) 5.32+/-0.16). This study investigated receptors for 5-HT in ring segments of these arteries. The 5-HT(2) receptor agonist, 2,5 dimethoxy-4-iodoamphetamine hydrobromide (DOI) constricts both arteries. The selective 5-HT(2) receptor antagonist ritanserin produced insurmountable antagonism of 5-HT concentration-response curves in both arteries, whereas the 5-HT(1B/1D) receptor antagonist N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'(5-methyl- 1,2,4-oxadiazol-3-yl[1,1,-biphenyl]-4-carboxamide hydrochloride (GR127935) produced much greater antagonism in supernumerary arteries. In rings preconstricted with 9,11-dideoxy-9, 11-methanoepoxy prostalagdin F(2alpha) (U46619) and relaxed with the adenylyl cyclase activator forskolin, the selective 5-HT(ID) receptor agonist 2-[5-[3-(4-methylsulphonylamino) benzyl-1,2, 4-oxadiazol-5-yl]-1H-indole-3-yl] ethylamine (L694247) reversed the relaxation. Concentration-response curves for L694247-induced reversal of forskolin-relaxation were antagonised by GR127935 in supernumerary (pK(B) 8.6) and conventional (pK(B) 8.4) arteries, whereas concentration-response curves to 5-HT-were less sensitive to antagonism by GR127935T and this was more obvious in conventional (pK(B) 7.6) than supernumerary (pK(B) 8.1) arteries. Neither the selective 5-HT(1D) receptor antagonist (1-(3-chlorophenyl)-4-[3, 3-diphenyl (2-(S,R) hydroxypropanyl)piperazine] hydrochloride (BRL15572) nor the 5-HT(1B) receptor antagonist (2,3,6, 7-tetrahydro-1'-methyl-5-[2'methyl-4'5-(methyl-1,2,4-oxadiazol-3-y l) biphenyl-4-carbonyl]furo[2,3-f]indole-3-spiro-4'-piperidine hydrochloride (SB224289) antagonised concentration-response curves induced by 5-HT or 5-HT(1)-receptor-selective agonists. In addition to the 5-HT(2A) receptor, 5-HT activates a GR127935-sensitive and a GR127935-insensitive receptor in these arteries. Supernumerary arteries have a greater proportion of GR127935-sensitive receptors, which display only some of the pharmacological characteristics of the cloned 5-HT(ID) receptor. It is possible that the GR127935-sensitive receptor could be a species homologue of the human 5-HT(1B) receptor that is insensitive to SB224289.  相似文献   

3.
1. The aims of the present study were (i) to characterize further the pharmacology of 5-HT1D autoreceptors modulating 5-HT release in guinea-pig mesencephalic raphe, hippocampus and frontal cortex; (ii) to determine whether 5-HT1D receptors in the mesencephalic raphe are located on 5-HT neurones; (iii) to determine whether 5-HT1D autoreceptors are coupled to G proteins; and (iv) to assess their sensitivity following long-term 5-HT reuptake blockade and inhibition of type-A monoamine oxidase. 2. In mesencephalic raphe, hippocampus and frontal cortex slices, the 5-HT1D/1B receptor agonist, sumatriptan and the 5-HT1 receptor agonist, 5-methoxytryptamine (5-MeOT) but not the 5-HT1B receptor agonist, CP93129, inhibited electrically the evoked release of [3H]-5-HT in a concentration-dependent manner. This effect was antagonized by the 5-HT1D/1B receptor antagonist GR127935 in the three structures, but not by the 5-HT1A receptor antagonist, (+)-WAY100635 in mesencephalic raphe slices. These results confirm the presence of functional 5-HT1D autoreceptors controlling 5-HT release within the mesencephalic raphe as well as in terminal regions. 3. The inhibitory effect of sumatriptan on K(+)-evoked release of [3H]-5-HT was not reduced by the addition of the Na+ channel blocker, tetrodotoxin to the superfusion medium, suggesting that these 5-HT1D receptors in the mesencephalic raphe are located on 5-HT neurones and may be considered autoreceptors. 4. The in vitro treatment with the alkylating agent N-ethylmaleimide (NEM) was used to determine whether these 5-HT1D autoreceptors are coupled to G proteins. The inhibitory effect of sumatriptan on electrically evoked release of [3H]-5-HT was attenuated in NEM-pretreated slices from mesencephalic raphe, hippocampus and frontal cortex, indicating that the 5-HT1D autoreceptors activated by sumatriptan are coupled to G proteins in these three structures. Taken together with our previous results, this suggests that, in addition to the 5-HT1D autoreceptor activated by sumatriptan, another subtype of 5-HT autoreceptor is activated by 5-MeOT in the hippocampus. 5. Following a 3-week treatment with the selective 5-HT reuptake inhibitor, paroxetine (10 mg kg-1 day-1) and a 48 h washout period, the electrically evoked release of [3H]-5-HT was enhanced in mesencephalic raphe, hippocampus and frontal cortex slices. There was an attenuation of the capacity of sumatriptan to inhibit the evoked release of [3H]-5-HT from mesencephalic raphe slices but not from frontal cortex and hippocampus slices. Only in the latter structure was the suppressant effect of 5-MeOT attenuated. After a 3-week treatment with the reversible type-A monoamine oxidase inhibitor, befloxatone (0.75 mg kg-1 day-1) and 48 h washout period, the effectiveness of sumatriptan and 5-MeOT on the evoked release of [3H]-5-HT was unaltered in the same brain structures. 6. The enhancement of [3H]-5-HT release by long-term paroxetine treatment is possibly due to a desensitization of 5-HT1D autoreceptors activated by sumatriptan in mesencephalic raphe and by terminal 5-HT autoreceptors activated by 5-MeOT in hippocampus. In the case of the frontal cortex, it appears that 5-MeOT and sumatriptan may act on the same 5-HT1D autoreceptor which is not desensitized either after paroxetine or befloxatone treatment, as previously reported.  相似文献   

4.
Endogenous serotonin (5-hydroxytryptamine, 5-HT)-mediated regulation of dopamine release in the rat prefrontal cortex was pharmacologically characterized using in vivo microdialysis. To increase synaptic 5-HT availability, a selective 5-HT uptake inhibitor fluoxetine was applied via the dialysis probe. Local perfusion of fluoxetine (30 and 100 microM) increased dopamine levels in a concentration-dependent manner. The fluoxetine (100 microM)-induced increases in dopamine release were abolished by pretreatment with the 5-HT(1B/1D) receptor antagonist GR 127935 (N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5- methyl-1,2,4-oxadiazol-3-yl)-[1,1-biphenyl]-4-carboxamide] ) (10 and 100 microM). The facilitation of dopamine release was also prevented by selective inactivation of the mRNA encoding 5-HT(6) receptors using antisense oligonucleotides techniques. These findings suggest that not only 5-HT(1B) receptors but also 5-HT(6) receptors are associated with the endogenous 5-HT-mediated facilitation of dopamine release. In other words, 5-HT(6) receptors may play, in part, a significant role in the functional interaction between the dopaminergic and serotonergic neuronal system in the rat prefrontal cortex.  相似文献   

5.
We have examined the effect of lesions of 5-hydroxytryptamine (5-HT) neurons, produced by p-chloroamphetamine (p-CA; 2 x 10 mg kg(-1)), and the influence of flumazenil (Ro 15-1788, 10 mg kg(-1)), a benzodiazepine receptor antagonist, on the anxiolytic-like activity of CP 94253 (5-propoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-pyrrolo[3,2-b]pyridine), a 5-HT1B receptor agonist, SB 216641 (N-[3-[3-(dimethylamino)ethoxy]-4-methoxyphenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl]-4-carboxamide), a 5-HT1B receptor antagonist, and GR 127935 (N-[4-methoxy-3-(4-methyl-l-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-l, l'-biphenyl-4-carboxamide), a 5-HT1B/1D receptor antagonist, in the Vogel conflict drinking test in rats. Diazepam was used as a reference compound. CP 94253 (2.5 mg kg(-1)), SB 216641 (2.5 mg kg(-1)), GR 127935 (10 mg kg(-1)) and diazepam (5 mg kg(-1)) significantly increased the number of shocks accepted during experimental sessions in the conflict drinking test in vehicle- and p-CA-pretreated rats. Flumazenil did not change the anxiolytic-like effect of CP 94253 (2.5 mg kg(-1)), but wholly blocked the anxiolytic-like effects of SB 216641 (2.5 mg kg(-1)), GR 127935 (10 mg kg(-1)) and diazepam (5 mg kg(-1)). p-CA and flumazenil alone were inactive in the conflict drinking test. The results suggested that the anxiolytic-like effect of the 5-HT1B receptor ligands CP 94253, SB 216641 and GR 127935 was possibly linked to the postsynaptic 5-HT1B receptors or/and 5-HT1B heteroreceptors. The results suggested also that benzodiazepine receptors were indirectly involved in the effects of SB 216641 and GR 127935 (but not of CP 94253), which might have been due to a possible interaction between the 5-HT and the GABA/benzodiazepine systems.  相似文献   

6.
Effects of the 5-hydroxytryptamine (5-HT)(1A/1B/2C) receptor agonist N-[3-(trifluoromethyl)phenyl] piperazine (TFMPP, 0-3.0 mg/kg s.c.) and the 5-HT2C receptor agonist 8,9-dichloro-2,3,4,4a-tetrahydro-1H-pyrazino[1,2-a]quinoxalin-5(6H)-one (WAY 161503, 0-3.0 mg/kg s.c.) in place conditioning were measured in male Sprague-Dawley rats. Effects of TFMPP, alone and with the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl] ethyl]-N-2-pyridinyl-cyclohexanecarboxamine (WAY 100635), the 5-HT(1B) receptor antagonist N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-1,1'-biphenyl-4-carboxamide (GR 127935) or the 5-HT2C receptor antagonist 6-chloro-5-methyl-1-[[2-(2-methylpyrid-3-yloxy)pyrid-5-yl]carbamoyl]indoline (SB 242084) and of WAY 161503 alone and with SB 242084 on locomotor activity were also assessed. Neither TFMPP nor WAY 161503 induced place conditioning. WAY 161503 (1.0 and 3.0 mg/kg s.c.) decreased locomotor activity; SB 242084 (1.0 mg/kg i.p.) blocked this effect. Reduced locomotor activity following TFMPP was blocked by SB 242084 but not WAY 100635 (0.1 mg/kg s.c.) or GR 127935 (3.0 mg/kg s.c.). Behaviourally relevant levels of 5-HT2C receptor stimulation may not exert reinforcing effects, although other studies indicate that such manipulations alter reinforcing effects of drugs of abuse.  相似文献   

7.
Previous studies in guinea pigs have shown that while a serotonin 5-HT(1B/D) receptor agonist, GR46611, does not induce locomotor activation when given alone, it markedly enhances the locomotor response to selective 5-HT(1A) receptor agonists, 8-OH-DPAT and buspirone. In these studies, we found that another 5-HT(1B/D) agonist, 3-(2-dimethylaminoethyl)-4-chloro-5-propoxyindole hemifumarate (SKF99101H), significantly elevated locomotor activity in guinea pigs when given alone. We assessed the relative contribution of 5-HT1(1A) and 5-HT(1B/D) receptors in the mediation of this effect.Activity was measured by photobeam interrupts in opaque Perspex cylinders linked to a computer. SKF99101H (20 mg/kg s. c.) significantly increased the locomotor activity in guinea pigs. The locomotor stimulant effect of SKF99101H (20 mg/kg s.c) was reversed by the selective 5-HT(1B/D) receptor antagonist N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl -1,2,4-oxadiazol-3-yl)[1,1biphenyl]4-carboxamide (GR127935; 0.06-0. 25 mg/kg s.c.). The 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride (WAY100635; 0.05-0.25 mg/kg s.c.), slightly but significantly attenuated the hyperactivity induced by SKF99101H. These findings suggest that 5-HT(1B/D) receptor agonists may require concomitant activation of 5-HT(1A) receptors to induce locomotor activity in guinea pigs. The 5-HT(2A) receptor antagonist 6[2-[4-[bis(4-fluorophenyl)methylene]-1-piperidinyl]-ethyl]-7-methyl- 5H-thiazol[3,2-a]pyrimidin-5-one (ritanserin) had no effect on SKF99101H-induced hyperactivity, suggesting that these receptors are not involved in the mediation of SKF99101H-induced hyperactivity. SKF99101H-induced hyperactivity was significantly attenuated by the D(1) dopamine receptor antagonist SCH 23390 (0.005-025 mg/kg), but not by the D(2) dopamine receptor antagonist raclopride (0.25-1.0 mg/kg), possibly suggesting the selective involvement of D(1) dopaminergic receptors in the mediation of the stimulant actions of the 5-HT(1B/D) agonist.  相似文献   

8.
Previous studies have shown that guinea-pigs handled daily from birth exhibit on exposure to the elevated plus maze similar behaviour to rats and increased cortical extracellular 5-HT determined by in vivo microdialysis. The present study investigates the effects of a non-selective 5-HT(1) agonist 5-carboxamidotryptamine (5-CT) and the 5-HT(1D) antagonist GR 127935 on behaviour and the release of cortical extracellular 5-HT both in a familiar environment and on exposure to the elevated plus maze. In the familiar environment of the home cage GR 127935 (0.3mg/kg i.p.) had no effect on extracellular 5-HT. The non-selective agonist 5-CT (0.1 mg/kg i.p) produced a prolonged decrease (-25%) in cortical 5-HT release, an effect noT antagonized by GR 127935 (0.3mg/kg). Under aversive conditions, exposure to the elevated plus maze, the release of extracellular 5-HT increased (155% of basal release), an effect abolished by 5-CT. Pre-treatment with the selective 5.HT(1D) antagonist GR 127935 antagonized the effect of 5-CT on the aversion-induced increase in extracellular 5-HT on exposure to the elevated plus maze, but did not change the effects of 5-CT on basal 5-HT release. The results suggest that GR 127935 is an effective antagonist at the 5 -HT(1D) terminal autoreceptor in vivo under conditions of increased 5- HT function. Furthermore, the results indicate that the 5-HT( 1D) receptor in the frontal cortex is functionally active under aversive conditions.  相似文献   

9.
1. The presence of 5-HT(7) receptor mRNA and protein in 5-HT neurons suggests that this receptor may act as a 5-HT autoreceptor. In this study, the effect of the 5-HT(7) receptor antagonist, SB-269970 ((R)-1-[3-hydroxy phenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine), was investigated on 5-HT release in the guinea-pig and rat cortex and the rat dorsal raphe nucleus (DRN), using the techniques of in vitro [(3)H]-5-HT release or fast cyclic voltammetry, respectively. 2. Cortical slices were loaded with [(3)H]-5-HT and release was evoked by electrical stimulation. 5-CT inhibited the evoked release of [(3)H]-5-HT in a concentration-dependent manner. SB-269970 had no significant effect on [(3)H]-5-HT release while the 5-HT(1B) receptor antagonist, SB-224289 significantly potentiated [(3)H]-5-HT release. In addition, SB-269970 was unable to attenuate the 5-CT-induced inhibition of release while SB-224289 produced a rightward shift of the 5-CT response, generating estimated pK(B) values of 7.8 and 7.6 at the guinea-pig and rat terminal 5-HT autoreceptors respectively. 3. Rat DRN slices were electrically stimulated and the evoked 5-HT efflux detected by voltammetric analysis. 8-OH-DPAT inhibited evoked 5-HT efflux and was fully reversed by WAY 100635. SB-269970 had no effect on either 5-HT efflux per se or 8-OH-DPAT-induced inhibition of 5-HT efflux. In addition, 5-CT inhibited 5-HT efflux in a concentration-dependent manner. SB-269970 was unable to attenuate the 5-CT-induced inhibition of 5-HT efflux. 4. In conclusion, we were unable to provide evidence to suggest a 5-HT autoreceptor role for 5-HT(7) receptors. However, investigations with more selective 5-HT(7) receptor agonists are needed to confirm the data reported here.  相似文献   

10.
In the present study, we examined effects of the selective serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitor citalopram, the 5-HT/noradrenaline reuptake inhibitor imipramine, the selective noradrenaline reuptake inhibitor desipramine or the monoamine oxidase-A inhibitor moclobemide, administered in combination with the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridynyl)cyclohexanecarboxamide (WAY 100635) or the 5-HT(1B/1D) receptor antagonist N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)1,1'-biphenyl-4-carboxamide (GR 127935) and the 5-HT(1B) receptor antagonist N-[3-(2-dimethylamino) ethoxy-4-methoxyphenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-(1,1'-biphenyl)-4-carboxamide (SB 216641) in the forced swimming test in rats. When given alone, citalopram (20 and 30 mg/kg), imipramine (20 mg/kg), desipramine (20 mg/kg), moclobemide (20 mg/kg), WAY 100635 (0.1 and 1 mg/kg), GR 127935 (10 and 20 mg/kg) or SB 216641 (2 mg/kg) did not shorten the immobility time of rats. Co-administration of WAY 100635 (0.1 and 1 mg/kg) and citalopram (20 mg/kg), or imipramine (20 mg/kg), or moclobemide (20 mg/kg) did not affect the immobility time of rats, whereas WAY 100635 given jointly with desipramine (20 mg/kg) induced a weak anti-immobility effect. GR 127935 (10 and 20 mg/kg) or SB 216641 (2 mg/kg) co-administered with imipramine, desipramine or moclobemide, but not citalopram, produced a significant anti-immobility action in the forced swimming test in rats. These results indicate that the blockade of 5-HT(1B) rather than 5-HT(1A) receptors may facilitate the anti-immobility effect of imipramine, desipramine or moclobemide in the forced swimming test. No interaction was observed between 5-HT(1A) or 5-HT(1B/1D) receptor antagonists and citalopram.  相似文献   

11.
5-HT(1B/D) receptor agonists such as GR46611 (3-[3-(2-Dimethylaminoethyl)-H-indol-5-yl]-N-(4-methoxybenzyl)acrylamide ) are known to lower body temperature in guinea pigs. Although stimulation of their functional analogs in rats, the 5-HT1B receptor induces hyperlocomotion, this effect has yet to be demonstrated with 5-HT(1B/D) receptor agonists in the guinea pig. Previous studies have shown that 5-HT1A agonists increase locomotor activity in guinea pigs. The current study set out to examine the effects of 5-HT(1B/D) receptor stimulation on locomotor activity in the guinea pig and to examine the interaction between 5-HT1A and 5-HT(1B/D) receptor stimulation on locomotor activity in that species. The full agonist at 5-HT1A receptors, 8-OH-DPAT (R(+)-8-Hydroxy-dipropylaminotetralin HBr) dose-dependently increased locomotor activity in guinea pigs (0.3-1.25 mg kg(-1) s.c.), as to a lesser extent, did the partial agonist, buspirone (8-[4-[4-(2-Pyramidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5 ]decane-7,9-dione HCl) (5.0-20.0 mg kg(-1) s.c.). The 5-HT(1B/D) receptor agonist GR46611 had no effect on locomotor activity in guinea pigs at doses up to 40 mg kg(-1) s.c. 8-OH-DPAT-induced behavioural activation was reversed by the selective 5-HT1A receptor antagonist WAY100635 (N-[-2-[4-(-methoxyphenyl)-1-piperazinyl]ethyl]-N-(pyrinidyl) cyclo hexanocarboxamide trihydro-chloride), with a minimum effective dose of 0.006 mg kg(-1), but not by the 5-HT(1B/D) receptor antagonist GR127935 (2'-methyl-4-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carboxyli c acid [4-methoxy-3-(4-methyl-piperazin-1-yl)phenyl]-amide) (0.25-1.0 mg kg(-1)). GR46611, at doses that were without effect given alone (0.5-2.5 mg kg(-1)), significantly enhanced the locomotor response to subthreshold doses of 8-OH-DPAT (0.5 mg kg(-1)) and buspirone (10 mg kg(-1)). The effect of GR46611 on 8-OH-DPAT-induced hyperactivity was reversed by pretreatment with GR127935 and with WAY 100635 indicating that activation of both receptors was required for the expression of locomotor hyperactivity. These findings suggest that activation of 5-HT(1B/D) receptors alone may not stimulate locomotor activity but it does potentiate the locomotion induced by 5-HT1A receptor stimulation in guinea pigs.  相似文献   

12.
(R)-8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) depressed the monosynaptic reflex. This effect was not antagonized by 5-HT(1A) receptor antagonists. We examined whether 5-HT(1D) and 5-HT(7) receptors are involved in (R)-8-OH-DPAT-induced inhibition of the monosynaptic reflex in spinalized rats. Pretreatment with methiothepin and mesulergine, but not clozapine, inhibited (R)-8-OH-DPAT-induced monosynaptic reflex depression. Pretreatment with 2a-(4-phenyl-1,2,3,6-tetrahydropyridal)butyl)-2a,3,4,5-tetrahydrobenzo[c,d]indol-2(1H)-one (DR4004) and (R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrolidine (SB-269970), new selective 5-HT(7) receptors antagonists, and N-[methoxy-3-(4-methyl-l-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)[1,1-biphenyl]-4-carboxamide (GR127935), a selective 5-HT(1D) receptor antagonist, had no effect on (R)-8-OH-DPAT-induced depression. These results suggested that 5-HT(7) and 5-HT(1D) receptors are not involved in (R)-8-OH-DPAT-induced monosynaptic reflex depression.  相似文献   

13.
In the mammalian brain 5-HT(1B) receptors are present as autoreceptors regulating the release of serotonin (5-HT) by inhibitory feedback. The antagonistic properties of NAS-181 ((R)-(+)-2-[[[3-(Morpholinomethyl)-2H-chromen-8-yl]oxy]methyl] morpholine methane sulfonate), a new selective antagonist for the rodent 5-HT(1B) receptor, were determined by using an agonist-induced decrease of extracellular 5-HT. The 5-HT(1B) receptor agonist CP93129 (0.030.3 microM) applied by reversed microdialysis, dose-dependently reduced 5-HT levels in rat frontal cortex. The suppressant effect of CP93129 (0.1 microM) was smaller in the presence of fluvoxamine (3-10 microM), a 5-HT reuptake inhibitor. The effects of NAS-181 on CP93129 were compared with GR127935, a mixed 5-HT (1B/1D) receptor antagonist, and SB224289, a 5-HT(1B) receptor antagonist. Both in the presence and absence of fluvoxamine, the suppressant effect of CP93129 on extracellular 5-HT was attenuated by NAS-181 (1 microM) and GR127935 (10 microM), but not by SB224289 (1 microM). In the absence of fluvoxamine, GR127935, SB224289 and NAS-181 all reduced 5-HT levels, suggesting partial agonistic properties of these compounds. In conclusion, the results show that NAS-181 is a potent 5-HT(1B) receptor antagonist.  相似文献   

14.
Topical administration of 5-carboxamidotryptamine (5-CT; 0.01-1000 microM) to the exposed dura mater encephali of anesthetized rats produced decreases in blood pressure and dilatation in the middle meningeal artery. Pretreatment with the 5-HT(1B/1D) receptor antagonist, N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl) [1,1-biphenyl]-4-carboxamide hydrochloride monohydrate (GR-127935; 1 mg/kg, i.v.), unmasked meningeal dilator responses to lower concentrations of 5-CT, and attenuated those to higher concentrations; GR-127935 also inhibited 5-CT-induced hypotension. The 5-HT7 receptor antagonist, (R)-1-{(3-hydroxyphenyl)sulfonyl}-2-{2-(2-(4-methyl-1-piperidinyl) ethyl} pyrrolidine (SB-269970; 1 mg/kg, i.v.), strongly inhibited dilator and hypotensive responses to 5-CT; the combination of GR-127935+SB-269970 (1 mg/kg, i.v., each) further inhibited meningeal and hypotensive responses. Thus, 5-CT may produce dilatation in the middle meningeal artery via 5-HT7 receptors; complex effects appear to involve 5-HT(1B/1D) receptors.  相似文献   

15.
The 5-HT(1) receptor agonist GR46611 (3-30 mg/kg s.c.) caused a dose-related decrease in rectal temperature in the adult guinea-pig. A lower dose (20 μg) administered directly into the lateral cerebral ventricle also caused a hypothermic response, suggesting that this effect is centrally mediated. GR46611-induced (10 mg/kg s.c.) hypothermia was not attenuated by WAY100135 (3-10 mg/kg s.c.), ritanserin (0.3-1 mg/kg s.c.), spiperone (0.1-0.3 mg/kg s.c.) and ondansetron (0.1-1 mg/kg s.c.), suggesting that 5-HT(1A), 5-HT(2A), 5-HT( 2C) and 5-HT(3) receptors are unlikely to be involved in this response. In contrast, the poorly selective 5-HT receptor antagonist, metergoline (1-10 mg/kg s.c.), and the potent 5-HT(1D) receptor antagonist, GR127935 (0.1-1 mg/kg p.o.), antagonized the effects of GR46611. The present data suggest that antagonism of GR46611-induced hypothermia may be useful for assessing the potency and duration of action of centrally-acting 5-HT( 1D) receptor antagonists in the guinea-pig.  相似文献   

16.
A novel compound, SB-236057 (1'-ethyl-5-(2'-methyl-4'-(5-methyl-1,3,4-oxadiazol-2-yl)biphenyl- 4-carbonyl)-2,3,6,7-tetrahydrospiro[furo[2,3-f]indole-3,4'-piperid ine]) has been shown to have high affinity for human 5-hydroxytryptamine1B (5-HT1B) receptors (pKi = 8.2) and displays over 75 or more-fold selectivity for the human 5-HT1B receptor over other 5-HT receptors, including the human 5-HT1D receptor, and a range of other receptors, ion channels and enzymes. In functional studies using [35S]GTPgammaS binding, SB-236057 displayed negative intrinsic activity (pEC50 = 8.0) at human 5-HT1B receptors stably expressed in Chinese Hamster Ovary (CHO) cells and caused a rightward shift of agonist concentration response curves consistent with competitive antagonism (pA2 = 8.9). SB-236057 potentiated [3H]5-HT release from electrically stimulated guinea pig or human cortical slices. SB-236057 also abolished the inhibitory effect of exogenously superfused 5-HT on electrically-stimulated release from slices of the guinea pig cortex. These studies using SB-236057 confirm that, in both the guinea pig and human cerebral cortex, the terminal 5-HT autoreceptor is of the 5-HT1B subtype.  相似文献   

17.
5-Carboxamidotryptamine (5-CT; 0.003-310 microg/kg, i.v.) produced dose-dependent hypotensive responses which were blocked in a complex manner by the 5-HT(7) receptor antagonist, (R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl) ethyl] pyrrolidine (SB-269970; 1 mg/kg, i.v.), in anesthetized vagosympathectomized rats. Interestingly, the 5-HT(1B/1D) receptor antagonist, N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl) [1,1-biphenyl]-4-carboxamide hydrochloride monohydrate GR-127935 (1 mg/kg, i.v.), also inhibited 5-CT-induced hypotension but the effect was clearly noncompetitive. Finally, the combination of GR-127935+SB-269970 (1 mg/kg, i.v., each) produced a further decreased of 5-CT-induced responses as compared to the effect of individual treatments. These data suggest that, in addition to 5-HT(7) receptors, 5-HT(1B/1D) receptors may also mediate hypotension in rats.  相似文献   

18.
The effects of selective serotonin re-uptake inhibitor (SSRI), paroxetine, and 5-HT1A, 5-HT1B and 5-HT1B/1D receptor antagonists on in vivo extracellular 5-HT levels in the guinea-pig frontal cortex and dorsal hippocampus were investigated using the technique of microdialysis. The aim of the study was to further investigate the autoreceptor roles of the 5-HT1A, 5-HT1B and 5-HT1D receptors in the median vs dorsal raphe nuclei. In the frontal cortex, 5-HT1A (WAY 100635, 1 mg/kg i.p.) or 5-HT1B (SB-224289, 4 mg/kg i.p.) receptor antagonists had no effect on extracellular levels of 5-HT, whilst the mixed 5-HT1B/1D receptor antagonist (GR 127935, 0.3 mg/kg i.p) produced a significant decrease in extracellular 5-HT levels. Paroxetine (10 microM) significantly increased extracellular 5-HT levels when perfused locally into the cortex. Administration of SB-224289, followed 120 min later by WAY 100635, had no effect on extracellular 5-HT levels. In contrast, sequential administration of either WAY 100635 and GR 127935, or SB-224289 and paroxetine significantly increased extracellular 5-HT levels. In the dorsal hippocampus, whilst 5-HT1A receptor antagonism elicited by administration of WAY 100635 had no effect, both 5-HT1B and mixed 5-HT1B/1D receptor blockade significantly increased extracellular 5-HT levels. Administration of SB-224289 followed 120 min later with WAY 100635, or WAY 100635 followed 30 min later with GR 127935, potentiated the effect of the three compounds alone, significantly increasing extracellular 5-HT levels. These data demonstrate that to simultaneously increase extracellular 5-HT in both frontal cortex and dorsal hippocampus of the guinea-pig brain concurrent 5-HTA1A, 5-HT1B and 5-HT1D receptor blockade is required. Whereas in the dorsal hippocampus, 5-HT1B receptor blockade is sufficient to elicit an increase in extracellular 5-HT levels.  相似文献   

19.
It has been suggested that during a migraine attack trigeminal nerves release calcitonin gene-related peptide (CGRP), producing central nociception and vasodilatation of cranial arteries, including the extracranial branches of the external carotid artery. Since trigeminal inhibition may prevent this vasodilatation, the present study has investigated the effects of intrathecal dihydroergotamine on the external carotid vasodilatation to capsaicin, α-CGRP and acetylcholine. Anaesthetized vagosympathectomized dogs were prepared to measure blood pressure, heart rate and external carotid conductance. A catheter was inserted into the right common carotid artery for the continuous infusion of phenylephrine (to restore the carotid vascular tone), whereas the corresponding thyroid artery was cannulated for one-min intracarotid infusions of capsaicin, α-CGRP and acetylcholine (which dose-dependently increased the external carotid conductance). Another cannula was inserted intrathecally (C(1)-C(3)) for the administration of dihydroergotamine, the α(2)-adrenoceptor antagonist rauwolscine or the serotonin 5-HT(1B/1D) receptor antagonist GR127935 (N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)[1,1-biphenyl]-4-carboxamide hydrochloride monohydrate). Intrathecal dihydroergotamine (10, 31 and 100μg) inhibited the vasodilatation to capsaicin, but not that to α-CGRP or acetylcholine. This inhibition was: (i) unaffected by 10μg GR127935 or 100μg rauwolscine, but abolished by 31μg GR127935 or 310μg rauwolscine at 10μg dihydroergotamine; and (ii) abolished by the combination 10μg GR127935+100μg rauwolscine at 100μg dihydroergotamine. Thus, intrathecal (C(1)-C(3)) dihydroergotamine seems to inhibit the external carotid vasodilatation to capsaicin by spinal activation of serotonin 5-HT(1B/1D) (probably 5-HT(1B)) receptors and α(2) (probably α(2A/2C))-adrenoceptors.  相似文献   

20.
Electrically stimulated 5-hydroxytryptamine (5-HT) release was monitored in slices of rat dorsal raphé nucleus (DRN) by fast cyclic voltammetry. Pseudo-single pulse stimulations (5 pulses at 100 Hz) were used to enable the effect of various receptor agonists to be seen without competition from endogenously released transmitter. The selective 5-HT1A receptor agonist, (+)-8-OH-DPAT (1.0 microM) decreased stimulated 5-HT release to 31 +/- 3% of controls. This decrease was inhibited by the 5-HT1A receptor antagonists, (+)-WAY-100135 (1.0 microM) and WAY-100635 (0.1 microM) but not by the 5-HT1D/B antagonist, GR127935 (0.05 microM). The selective 5-HT1B receptor agonist, CP-93129 (0.3 microM) decreased stimulated 5-HT release to 61 +/- 4% of control. This effect was antagonized by the 5-HT1B receptor antagonist, isamoltane (0.5 microM) but not by (+)-WAY-100135. The 5-HT1D agonist, sumatriptan (0.5 microM) decreased stimulated 5-HT release to 52 +/- 2% of controls. This decrease was blocked by GR-127935 but not by WAY-100635. These results suggest that 5-HT release in the rat DRN is under the control of 5-HT1A, 5-HT1B and 5-HT1D autoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号