首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8–4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity  相似文献   

2.
Development of auditory function can be affected by environment and experience. In this study, we investigated whether the NMDA receptor mediates the plasticity of auditory spatial representation during development of the rat auditory cortex. We found that early auditory experience significantly increased the auditory spatial sensitivity of A1 neurons and induced training-dependent plasticity. Implantation of Elvax-APV in the auditory cortex gradually reduced the auditory spatial sensitivity of A1 neurons and blocked the auditory spatial plasticity induced by early auditory experience. These results indicate that the NMDA receptor has a key role in experience-dependent plasticity of auditory cortical circuits immediately after birth.  相似文献   

3.
Summary The auditory response properties of single neurons in claustrum and putamen were studied in response to simple dichotic stimuli (viz. noise- and tone-bursts) in chloralose-anaesthetized cats. Neurons in claustrum were commonly weakly driven with long latency, were broadly tuned and were excited by stimulation of either ear (EE). Putamen neurons, in contrast, were securely driven with short latency, showed irregular tuning with a preference for low frequencies and were either EE or excited only by the contralateral ear (EO). The differences between claustrum and putamen responses can be related to differences in connections with the auditory cortical fields and with auditory thalamus. Some neurons were also tested for visual responsiveness: auditory and visual cells were intermingled in both nuclei and only a small percentage of cells were bimodal. In contrast to the visual and somatosensory input to claustrum, which are derived from primary cortical fields, the auditory input to claustrum is apparently derived from non-primary cortical regions, suggesting a fundamentally different role for processing of auditory information in claustrum.  相似文献   

4.
Sensory experiences contribute to the development and specialization of signal processing capacities in the mammalian auditory system during a "critical period" of postnatal development. Earlier studies have shown that passive exposure to tonal stimuli during this postnatal epoch induces a large-scale expansion of the representations of those stimuli within the primary auditory cortex (A1) [Zhang LI, Bao S, Merzenich MM (2001) Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat Neurosci 4:1123-1130]. Here, we show that exposing rat pups through the normal critical period epoch and beyond to continuous, un-modulated, moderate-level tones induces no such representational distortion, and in fact disrupts the normal development of frequency response selectivity and tonotopicity all across area A1. The area of cortex responding selectively to continuously exposed sound frequencies was actually reduced, when compared with rats reared in normal environments. Strong exposure-driven plasticity characteristic of the critical period could be induced well beyond the normal end of the critical period, by simply modulating the tonal stimulus. Thus, continuous tone exposure, like continuous noise exposure [Chang EF, Merzenich MM (2003) Environmental noise retards auditory cortical development. Science 300:498-502], ineffectively induces critical period plasticity, and indefinitely blocks the closure of a normally-brief critical period window. These findings again demonstrate the crucial role of temporally structured inputs for inducing the progressive cortical maturational changes that result in the closure of the critical period window.  相似文献   

5.
Using Western blot analyses and a quantitative ELISA, we identified the presence and developmental accumulation of the astroglial S-100 protein(s) in rat and cat visual cortex. There is a steep rise in the S-100 content, comprising mainly S-100β, during the time period of highest cortical malleability in both species. A possible role of the astroglial S-100 protein(s) in experience-dependent plasticity of the visual cortex of kittens was tested by infusing antiserum against this protein during the critical period for cortical malleability. Following 1 week of monocular deprivation, the ocular dominance of single cells in the visual cortex was investigated. The vast majority of cells in the hemispheres infused with anti-S-100 serum maintained binocular responses. This finding suggests that extracellular S-100 protein is essential for ocular-dominance plasticity. Infusion of S-100β during the critical period of cortical malleability had no effect on deprivation-induced ocular-dominance plasticity, but interfered with the experience-dependent refinement of orientation selectivity of visual cortical neurons. It is suggested that S-100β may play an important role in the refinement of cortical circuitries by selectively affecting active or activated neuronal compartments. As S-100β is synthesized in astroglial cells, the effects on neuronal plasticity imply that glia-neuronal information transfer occurs during activity-dependent plasticity. Possible underlying mechanisms are discussed on the basis of current knowledge on the S-100 protein family, especially S-100β (Marshak, 1990).  相似文献   

6.
Sensory experience can reorganize cortical sensory representations in an epoch of early development. During this period, cortical sensory neurons may shift their response selectivity and become tuned to more frequently occurring stimuli. Although this enlarged cortical representation is believed to underlie improved sensory processing of the experienced stimuli, its precise perceptual consequences are still unknown. We show that rearing rats in a single-frequency tonal environment results in enlarged cortical representations of the frequencies near that of the experienced tone, but the animals are impaired in perceptual discrimination of the over-represented frequencies. By contrast, discrimination of the neighboring under-represented frequencies is substantially improved. Computational analysis indicated that the altered perceptual ability could be fully accounted for by the sound exposure-induced reorganization of cortical primary auditory representations. These results indicate that early experience shapes sensory perception. The same plasticity processes may be important in optimizing phonemic representations in humans.  相似文献   

7.
Summary This study investigated afferent projections to the cerebellum, in particular those from the auditory cerebral cortex. The parafloccular lobule of the rat cerebellum is shown to be a primary target for the auditory cortical information with the midvermal region being a receiving area from the inferior colliculus. The method of anterograde transport of tritiated amino acids was employed to determine projections of the auditory cortex to the pons. Autoradiography showed that the site of termination of efferents from the auditory cortex corresponds to the location of neurons that project to the paraflocculus. Histogram analysis of neuronal activity in halothane anesthetized rats was employed to determine the response characteristics of neurons in paraflocculus and midvermis following cortical and tectal electrical stimulation. In addition, unit recordings of parafloccular neurons in immobilized, locally anesthetized animals demonstrated general characteristics of the responses of these neurons to auditory field stimulation. Electrical stimulation of the auditory cortex evoked mixed, excitatory-inhibitory and pure inhibitory mossy fiber responses in 33% of neurons in the paraflocculus, with no responses evident in the midvermis. Following inferior collicular stimulation, 12.6% of the neurons in the midvermis elicited a response. Recordings from parafloccular neurons in unanesthetized, immobilized rats showed evidence for excitatory and inhibitory mossy fiber responses, following auditory field stimulation. This spectrum of basic studies establishes the existence of a pathway in which the paraflocculus is revealed as an integrating target for cortical auditory information.  相似文献   

8.
Over the last 50 yr, environmental enrichment has been shown to generate more than a dozen changes in brain anatomy. The consequences of these physical changes on information processing have not been well studied. In this study, rats were housed in enriched or standard conditions either prior to or after reaching sexual maturity. Evoked potentials from awake rats and extracellular recordings from anesthetized rats were used to document responses of auditory cortex neurons. This report details several significant, new findings about the influence of housing conditions on the responses of rat auditory cortex neurons. First, enrichment dramatically increases the strength of auditory cortex responses. Tone-evoked potentials of enriched rats, for example, were more than twice the amplitude of rats raised in standard laboratory conditions. Second, cortical responses of both young and adult animals benefit from exposure to an enriched environment and are degraded by exposure to an impoverished environment. Third, housing condition resulted in rapid remodeling of cortical responses in <2 wk. Fourth, recordings made under anesthesia indicate that enrichment increases the number of neurons activated by any sound. This finding shows that the evoked potential plasticity documented in awake rats was not due to differences in behavioral state. Finally, enrichment made primary auditory cortex (A1) neurons more sensitive to quiet sounds, more selective for tone frequency, and altered their response latencies. These experiments provide the first evidence of physiologic changes in auditory cortex processing resulting from generalized environmental enrichment.  相似文献   

9.
Layer 6 (L6) of primary sensory cortices is distinct from other layers in that it provides a major cortical input to primary sensory thalamic nuclei. L6 pyramidal neurons in the primary visual cortex (V1) send projections to the lateral geniculate nucleus (LGN), as well as to the thalamic reticular nucleus and higher order thalamic nuclei. Although L6 neurons are proposed to modulate the activity of thalamic relay neurons, how sensory experience regulates L6 neurons is largely unknown. Several days of visual deprivation homeostatically adjusts excitatory synapses in L4 and L2/3 of V1 depending on the developmental age. For instance, L4 exhibits an early critical period during which visual deprivation homeostatically scales up excitatory synaptic transmission. On the other hand, homeostatic changes in L2/3 excitatory synapses are delayed and persist into adulthood. In the present study we examined how visual deprivation affects excitatory synapses on L6 pyramidal neurons. We found that L6 pyramidal neurons homeostatically increase the strength of excitatory synapses following 2 days of dark exposure (DE), which was readily reversed by 1 day of light exposure. This effect was restricted to an early critical period, similar to that reported for L4 neurons. However, at a later developmental age, a longer duration of DE (1 wk) decreased the strength of excitatory synapses, which reversed to normal levels with light exposure. These changes are opposite to what is predicted from the homeostatic plasticity theory. Our results suggest that L6 neurons differentially adjust their excitatory synaptic strength to visual deprivation depending on the age of the animals.  相似文献   

10.
It has recently been reported that exogenous supply of nerve growth factor prevents the effects of monocular deprivation both in rats and in cats. Here we have extended these experiments to the case of strabismus. Repeated intraventricular injections of nerve growth factor were performed in rats made surgically strabismic early in the critical period. At the end of the critical period the ocular dominance distribution of visual cortical neurons was assessed in strabismic untreated, strabismic nerve growth factor-treated and strabismic Cytochrome C-treated (control) rats by means of extracellular recordings. We found that in rats surgical strabismus causes a consistent loss of binocular neurons. By contrast the treatment with nerve growth factor maintains the normal ocular dominance distribution of neurons in the primary visual cortex. We conclude that nerve growth factor exogenously supplied prevents the effects induced by surgical strabismus in rats and suggest that nerve growth factor has a role in visual cortical plasticity.  相似文献   

11.
Changes in NMDA receptor expression in auditory cortex after learning   总被引:4,自引:0,他引:4  
Extensive practice on auditory learning tasks dramatically alters the functional organization and response properties of neurons in the auditory cortex. The cellular mechanisms responsible for this auditory learning-induced cortical plasticity are unclear; however, changes in synaptic function involving NMDA receptors have been strongly implicated. To test this hypothesis, we measured the change in gene expression of NMDA receptors and associated proteins in the auditory cortex of adult rats trained to perform an auditory identification task. NMDA receptor 2A and 2B gene expression in auditory cortex decreased significantly as auditory discrimination improved whereas expression of Arc, an immediate early gene involved in memory stabilization, increased. These results suggest that changes in NMDA receptors 2A and 2B and Arc enhance synaptic plasticity, thereby facilitating experience-dependent cortical remodeling and auditory learning.  相似文献   

12.
It has been demonstrated in kittens that binocular lid suture has more deleterious and irreversible effects on plasticity of the developing visual system than rearing in complete darkness. The present study using immunocytochemistry focuses on the effects of the two types of visual deprivation on the inducibility of c-fos protein in visual cortical neurons of rats. Rats were subjected to binocular suture or dark rearing for 1 week during (postnatal days 14-21; P14-P21) and after (P50-P57) the critical period for activity-dependent modifiability of cortical ocular dominance. In rats of both age groups reared in the normal light-dark condition, only a small number of Fos-immunoreactive neurons was obtained in the visual cortex. By contrast, in dark-reared pups and adult rats, numerous c-fos neurons were detected in the layers II-IV and VI of the visual cortex following a brief light exposure (1 h). In rats of both ages subjected to binocular suture, Fos neurons were detected in the same layers as in the dark-reared rats, but significantly less in number. We speculate that the reduced plasticity of the visual cortex in the rats subjected to binocular suture may be due partly to the repressed AP-1 activity in visual cortical neurons. No significant difference was detected in c-fos expression in the visual cortex between visually manipulated pups and adult rats.  相似文献   

13.
During early brain development and through 'adult' experience-dependent plasticity, neural circuits are shaped to represent the external world with high fidelity. When raised in a quiet environment, the rat primary auditory cortex (A1) has a well-defined 'critical period', lasting several days, for its representation of sound frequency. The addition of environmental noise extends the critical period duration as a variable function of noise level. It remains unclear whether critical period closure should be regarded as a unified, externally gated event that applies for all of A1 or if it is controlled by progressive, local, activity-driven changes in this cortical area. We found that rearing rats in the presence of a spectrally limited noise band resulted in the closure of the critical period for A1 sectors representing the noise-free spectral bands, whereas the critical period appeared to remain open in noise-exposed sectors, where the cortex was still functionally and physically immature.  相似文献   

14.
We investigated the relationships between cortical arousal and cholinergic facilitation of evoked responses in the auditory cortex. The basal forebrain (BF) was stimulated unilaterally, while cluster recordings were obtained simultaneously from both auditory cortices in urethane-anesthetized rats. The global electroencephalogram (EEG; large frontoparietal derivation) and the local EEG (from the auditory cortex) were recorded. The BF was stimulated at two intensities, a lower one which did not desynchronize the EEG and a higher one which did. Twenty pairing trials were delivered, during which a tone was presented 50 ms after the end of the BF stimulation. At low intensity, the pairing procedure led to a transient increase in the ipsilateral tone-evoked responses. At high intensity, the pairing increased the ipsilateral evoked responses up to 15 min after pairing. Such effects were not observed for the contralateral recordings. Systemic atropine injection prevented the facilitations observed ipsilaterally. BF stimulations alone did not induce any increased evoked response either at low or at high intensity. These results show (1) that a tone, presented while the cortex is activated by cholinergic neurons of the BF, evokes enhanced cortical responses, and (2) that the duration of this facilitation is dependent on the stimulation intensity. These results are discussed in the context of neural mechanisms involved in general arousal and cortical plasticity.  相似文献   

15.
Age-related changes in the effects of nitric oxide (NO) on neurons of the auditory cortex have not been determined. We therefore evaluated the anatomical changes and neurophysiological characteristics of these neurons in rats as a function of age. The numbers of cresyl violet stained cells, the numbers and areas of NADPH-d-positive neuronal cell bodies, and their optical density, were measured in Sprague-Dawley rats aged 24 months (aged group) and 4 months (control group). The modulatory effects of NO on K+ currents of acutely isolated rat auditory cortical neurons were also assessed. There were no between-group differences in the distribution patterns of glial cells and neurons, or in the numbers and areas of NADPH-d-positive neuronal cell bodies. However, the optical density of NADPH-d-positive neuronal cell bodies was significantly greater in the aged group than in the control group. In addition, voltage-gated K+ currents of rat auditory cortical neurons were activated by increased levels of NO. As activation of the K+ current likely suppresses neuronal excitability, age-associated increases in NO production can hinder the function of the acoustic center by inhibiting neuron excitability.  相似文献   

16.
Auditory conditioning (associative learning) or focal electric stimulation of the primary auditory cortex (AC) evokes reorganization (plasticity) of the cochleotopic (frequency) map of the inferior colliculus (IC) as well as that of the AC. The reorganization results from shifts in the best frequencies (BFs) and frequency-tuning curves of single neurons. Since the importance of the cholinergic basal forebrain for cortical plasticity and the importance of the somatosensory cortex and the corticofugal auditory system for collicular and cortical plasticity have been demonstrated, Gao and Suga proposed a hypothesis that states that the AC and corticofugal system play an important role in evoking auditory collicular and cortical plasticity and that auditory and somatosensory signals from the cerebral cortex to the basal forebrain play an important role in augmenting collicular and cortical plasticity. To test their hypothesis, we studied whether the amount and the duration of plasticity of both collicular and cortical neurons evoked by electric stimulation of the AC or by acoustic stimulation were increased by electric stimulation of the basal forebrain and/or the somatosensory cortex. In adult big brown bats (Eptesicus fuscus), we made the following major findings. 1) Collicular and cortical plasticity evoked by electric stimulation of the AC is augmented by electric stimulation of the basal forebrain. The amount of augmentation is larger for cortical plasticity than for collicular plasticity. 2) Collicular and cortical plasticity evoked by AC stimulation is augmented by somatosensory cortical stimulation mimicking fear conditioning. The amount of augmentation is larger for cortical plasticity than for collicular plasticity. 3) Collicular and cortical plasticity evoked by both AC and basal forebrain stimulations is further augmented by somatosensory cortical stimulation. 4) A lesion of the basal forebrain tends to reduce collicular and cortical plasticity evoked by AC stimulation. The reduction is small and statistically insignificant for collicular plasticity but significant for cortical plasticity. 5) The lesion of the basal forebrain eliminates the augmentation of collicular and cortical plasticity that otherwise would be evoked by somatosensory cortical stimulation. 6) Collicular and cortical plasticity evoked by repetitive acoustic stimuli is augmented by basal forebrain and/or somatosensory cortical stimulation. However, the lesion of the basal forebrain eliminates the augmentation of collicular and cortical plasticity that otherwise would be evoked by somatosensory cortical stimulation. These findings support the hypothesis proposed by Gao and Suga.  相似文献   

17.
目的:研究sD大鼠生后发育过程中,听皮质神经元NMDA受体亚单位NR2B蛋白质的表达规律。方法:采用免疫组织化学反应和蛋白质印迹技术,分别检测生后1、2、3周和成年动物听皮质神经元NMDA受体亚单位NR2B蛋白质的表达。结果:NR2B阳性神经元在生后第1周密度最高,随着生后周龄增长,NR2B阳性神经元密度递减.3周龄后降至成年动物的低表达水平。结论:大鼠生后发育过程巾.听皮质NR2B亚单位蛋白质呈现年龄-依赖性表达,此结果与mRNA水平上的表达趋势一致。  相似文献   

18.
The cortical representation of the sensory environment is continuously modified by experience. Changes in spatial (receptive field) and temporal response properties of cortical neurons underlie many forms of natural learning. The scale and direction of these changes appear to be determined by specific features of the behavioral tasks that evoke cortical plasticity. The neural mechanisms responsible for this differential plasticity remain unclear partly because important sensory and cognitive parameters differ among these tasks. In this report, we demonstrate that differential sensory experience directs differential plasticity using a single paradigm that eliminates the task-specific variables that have confounded direct comparison of previous studies. Electrical activation of the basal forebrain (BF) was used to gate cortical plasticity mechanisms. The auditory stimulus paired with BF stimulation was systematically varied to determine how several basic features of the sensory input direct plasticity in primary auditory cortex (A1) of adult rats. The distributed cortical response was reconstructed from a dense sampling of A1 neurons after 4 wk of BF-sound pairing. We have previously used this method to show that when a tone is paired with BF activation, the region of the cortical map responding to that tone frequency is specifically expanded. In this report, we demonstrate that receptive-field size is determined by features of the stimulus paired with BF activation. Specifically, receptive fields were narrowed or broadened as a systematic function of both carrier-frequency variability and the temporal modulation rate of paired acoustic stimuli. For example, the mean bandwidth of A1 neurons was increased (+60%) after pairing BF stimulation with a rapid train of tones and decreased (-25%) after pairing unmodulated tones of different frequencies. These effects are consistent with previous reports of receptive-field plasticity evoked by natural learning. The maximum cortical following rate and minimum response latency were also modified as a function of stimulus modulation rate and carrier-frequency variability. The cortical response to a rapid train of tones was nearly doubled if BF stimulation was paired with rapid trains of random carrier frequency, while no following rate plasticity was observed if a single carrier frequency was used. Finally, we observed significant increases in response strength and total area of functionally defined A1 following BF activation paired with certain classes of stimuli and not others. These results indicate that the degree and direction of cortical plasticity of temporal and receptive-field selectivity are specified by the structure and schedule of inputs that co-occur with basal forebrain activation and suggest that the rules of cortical plasticity do not operate on each elemental stimulus feature independently of others.  相似文献   

19.
Processing of rapidly successive acoustic stimuli can be markedly improved by sensory training. To investigate the cortical mechanisms underlying such temporal plasticity, we trained rats in a 'sound maze' in which navigation using only auditory cues led to a target location paired with food reward. In this task, the repetition rate of noise pulses increased as the distance between the rat and target location decreased. After training in the sound maze, neurons in the primary auditory cortex (A1) showed greater responses to high-rate noise pulses and stronger phase-locking of responses to the stimuli; they also showed shorter post-stimulation suppression and stronger rebound activation. These improved temporal dynamics transferred to trains of pure-tone pips. Control animals that received identical sound stimulation but were given free access to food showed the same results as naive rats. We conclude that this auditory perceptual learning results in improvements in temporal processing, which may be mediated by enhanced cortical response dynamics.  相似文献   

20.
Response properties of auditory cortical neurons measured in anesthetized preparations have provided important information on the physiological differences between neurons in different auditory cortical areas. Studies in the awake animal, however, have been much less common, and the physiological differences noted may reflect differences in the influence of anesthetics on neurons in different cortical areas. Because the behaving monkey is gaining popularity as an animal model in studies exploring auditory cortical function, it has become critical to physiologically define the response properties of auditory cortical neurons in this preparation. This study documents the response properties of single cortical neurons in the primary and surrounding auditory cortical fields in monkeys performing an auditory discrimination task. We found that neurons with the shortest latencies were located in the primary auditory cortex (AI). Neurons in the rostral field had the longest latencies and the narrowest intensity and frequency tuning, neurons in the caudomedial field had the broadest frequency tuning, and neurons in the lateral field had the most monotonic rate/level functions of the four cortical areas studied. These trends were revealed by comparing response properties across the population of studied neurons, but there was considerable variability between neurons for each response parameter other than characteristic frequency (CF) in each cortical area. Although the neuronal CFs showed a systematic spatial organization across AI, no such systematic organization was apparent for any other response property in AI or the adjacent cortical areas. The results of this study indicate that there are physiological differences between auditory cortical fields in the behaving monkey consistent with previous studies in the anesthetized animal and provide insights into the functional role of these cortical areas in processing acoustic information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号