首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Vaccine development and vaccination is a major growth area of the pharmaceutical industry. As new vaccine products become available, potential will be given to physicians to provide prophylaxis for diseases that were previously not preventable, or to improve immunisation for some diseases that are currently suboptimally covered. Many factors influence vaccine effectiveness but one of the most important is the route of delivery of the product. Mucosal delivery of vaccines allows primary immunisation at the sites of the body where many of mankind’s mortality- and morbidity-causing diseases are initiated. Effective mucosal immunity is best induced by mucosal delivery of vaccines, due to the specialised and interlinked nature of the mucosal lymphoid tissues. As well as the potential for enhanced immunity, mucosal vaccine delivery is expected to increase patient compliance, make vaccines easier to use and reduce the pain, side-effects and fear of parenteral injection. However, mucosal delivery of vaccines is not straightforward and several strategies have been developed to allow for administration by the oral, nasal, rectal, genito-urinary and even pulmonary routes. These strategies include the use of live attenuated micro-organisms, attenuated toxins, bioadhesive polymers and emulsions, liposomes and proteosomes, biodegradable microparticles and immune stimulatory complexes (ISCOMS) as mucosal vaccine delivery systems/adjuvants. Details of some of the recent advances utilising these systems for mucosal antigen delivery are included in the article with a brief discussion on some of the strengths and weaknesses of the various strategies.  相似文献   

2.
It has long been known that protection against pathogens invading the organism via mucosal surfaces correlates better with the presence of specific antibodies in local secretions than with serum antibodies. The most effective way to induce mucosal immunity is to administer antigens directly to the mucosal surface. The development of vaccines for mucosal application requires antigen delivery systems and immunopotentiators that efficiently facilitate the presentation of the antigen to the mucosal immune system. This review provides an overview of the events within mucosal tissues that lead to protective mucosal immune responses. The understanding of those biological mechanisms, together with knowledge of the technology of vaccines and adjuvants, provides guidance on important technical aspects of mucosal vaccine design. Not being exhaustive, this review also provides information related to modern adjuvants, including polymeric delivery systems and immunopotentiators.  相似文献   

3.
Mucosal vaccines can effectively induce an immune response at the mucosal site and form the first line of defense against microbial invasion.The induced mucosal immunity includes the proliferation of effector T cells and the production of IgG and IgA antibodies,thereby effectively blocking microbial infection and transmis sion.However,after a long period of development,the transformation of mucosal vaccines into clinical use is still relatively slow.To date,fewer than ten mucosal vaccines have b...  相似文献   

4.
《药学学报(英文版)》2023,13(7):2897-2925
Despite the global administration of approved COVID-19 vaccines (e.g., ChAdOx1 nCoV-19®, mRNA-1273®, BNT162b2®), the number of infections and fatalities continue to rise at an alarming rate because of the new variants such as Omicron and its subvariants. Including COVID-19 vaccines that are licensed for human use, most of the vaccines that are currently in clinical trials are administered via parenteral route. However, it has been proven that the parenteral vaccines do not induce localized immunity in the upper respiratory mucosal surface, and administration of the currently approved vaccines does not necessarily lead to sterilizing immunity. This further supports the necessity of a mucosal vaccine that blocks the main entrance route of COVID-19: nasal and oral mucosal surfaces. Understanding the mechanism of immune regulation of M cells and dendritic cells and targeting them can be another promising approach for the successful stimulation of the mucosal immune system. This paper reviews the basic mechanisms of the mucosal immunity elicited by mucosal vaccines and summarizes the practical aspects and challenges of nanotechnology-based vaccine platform development, as well as ligand hybrid nanoparticles as potentially effective target delivery agents for mucosal vaccines.  相似文献   

5.
黏膜疫苗能同时诱导系统和局部黏膜免疫应答,是预防感染性疾病最理想的一类疫苗.但黏膜疫苗存在两大障碍:抗原无效摄取和难以引发有效免疫反应.因此,研发新型黏膜疫苗传递系统必须要克服这些障碍.本文综述了黏膜免疫的作用机制、黏膜疫苗的特点及其传递系统的研究现状.  相似文献   

6.
Recently, microneedle arrays (MAs) have been developed for painless inoculation of vaccines and possess many prominent advantages, including convenience for inoculation, and exact delivery of vaccine to the exact epidermal and dermal or mucosal compartments which teem with antigen-presenting cells (APCs). Among different types of MAs, while the micro-environmental stimulus-responsive MAs represent one of the developmental trends in the field, the MAs combined with the conventional vaccines that are based on nonvirulent viruses, such as live attenuated or whole inactivated viruses, and antigen-encoding DNA viral vectors, have developed rapidly into the advanced stages, with certain products already on clinical trials. The pre- and clinical research outcomes showed that the painless MA delivery of the conventional vaccines through mammalian skin or mucosa can not only elicit robust systemic and even mucosal immunity to pathogens but also, in certain circumstances, redirect the immune response toward a specific Th1 pathway, resulting in cytotoxic T lymphocytes (CTL) to erase the cell-hidden pathogens, thanks to the robust adjuvant function of MAs exerted through damaging the contacted cells to release dangerous signals. This paper focuses on reviewing the latest research and advancements in MA delivery of the conventional vaccines that are based on nonvirulent viruses, underlining MA enhancement of the overall vaccine performance and the most advanced MA vaccine products that are relatively close to markets.  相似文献   

7.
Needle-free vaccine delivery   总被引:8,自引:0,他引:8  
The search for methods of vaccine delivery not requiring a needle and syringe has been accelerated by recent concerns regarding pandemic disease, bioterrorism, and disease eradication campaigns. Needle-free vaccine delivery could aid in these mass vaccinations by increasing ease and speed of delivery, and by offering improved safety and compliance, decreasing costs, and reducing pain associated with vaccinations. In this article, we summarize the rationale for delivery of needle-free vaccines and discuss several methods currently in use and under development, focusing on needle-free injection devices, transcutaneous immunization, and mucosal immunization. Jet injectors are needle-free devices that deliver liquid vaccine through a nozzle orifice and penetrate the skin with a high-speed narrow stream. They generate improved or equivalent immune responses compared with needle and syringe. Powder injection, a form of jet injection using vaccines in powder form, may obviate the need for the "cold chain." Transcutaneous immunization involves applying vaccine antigen and adjuvant to the skin, using a patch or "microneedles," and can induce both systemic and mucosal immunity. Mucosal immunization has thus far been focused on oral, nasal, and aerosol vaccines. Promising newer technologies in oral vaccination include using attenuated bacteria as vectors and transgenic plant "edible" vaccines. Improved knowledge regarding the immune system and its responses to vaccination continues to inform vaccine technologies for needle-free vaccine delivery.  相似文献   

8.
The Gene Based Vaccines: Optimising Development and Delivery conference, held in Vienna, included topics covering new therapeutic developments in the field of gene-based vaccines. This conference report highlights selected presentations on gene-based vaccine delivery systems, anti-vector immunity in such vaccines, gene-based influenza vaccines, prime-boost strategies for influenza vaccines, DNA vaccines for the prevention of malaria, considerations in DNA vaccine manufacturing, and the ImmunoBody DNA vaccine technology from Scancell.  相似文献   

9.
The mucosal immune system acts as the first line of defense against microbial infection through a dynamic immune network based on innate and acquired mucosal immunity. To prevent infectious diseases, it is pivotal to develop effective mucosal vaccines that can induce both mucosal and systemic immune responses, especially secretory IgA (S-IgA) and plasma IgG, against pathogens. Recent advances in medical and biomolecular engineering technology and progress in cellular and molecular immunology and infectious diseases have made it possible to develop versatile mucosal vaccine systems. In particular, mucosal vaccines have become more attractive due to recent development and adaptation of new types of drug delivery systems not only for the protection of antigens from the harsh conditions of the mucosal environment but also for effective antigen delivery to mucosa-associated lymphoid tissues such as Peyer's patches and nasopharynx-associated lymphoid tissue, the initiation site for the induction of the antigen-specific immune response. In this review, we shed light on the dynamics of the mucosal immune system and recent advances toward the development of prospective mucosal antigen delivery systems for vaccines.  相似文献   

10.
Most vaccines approved by regulatory bodies are administered via intramuscular or subcutaneous injections and have shortcomings, such as the risk of needle-associated blood infections, pain and swelling at the injection site. Orally administered vaccines are of interest, as they elicit both systemic and mucosal immunities, in which mucosal immunity would neutralize the mucosa invading pathogen before the onset of an infection. Hence, oral vaccination can eliminate the injection associated adverse effects and enhance the person's compliance. Conventional approaches to manufacturing oral vaccines, such as coacervation, spray drying, and membrane emulsification, tend to alter the structural proteins in vaccines that result from high temperature, organic and toxic solvents during production. Electrohydrodynamic processes, specifically electrospraying, could solve these challenges, as it also modulates antigen release and has a high loading efficiency. This review will highlight the mucosal immunity and biological basis of the gastrointestinal immune system, different oral vaccine delivery approaches, and the application of electrospraying in vaccines development.  相似文献   

11.
With very few adjuvants currently being used in marketed human vaccines, a critical need exists for novel immunopotentiators and delivery vehicles capable of eliciting humoral, cellular and mucosal immunity. Such crucial vaccine components could facilitate the development of novel vaccines for viral and parasitic infections, such as hepatitis, HIV, malaria, cancer, etc. In this review, we discuss clinical trial results for various vaccine adjuvants and delivery vehicles being developed that are approximately nanoscale (< 1000 nm) in size. Humoral immune responses have been observed for most adjuvants and delivery platforms while only viral vectors, ISCOMs and Montanide™ ISA 51 and 720 have shown cytotoxic T cell responses in the clinic. MF59 and MPL® have elicited Th1 responses, and virus-like particles, non-degradable nanoparticles and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical successes reported for intranasal delivery of viral vectors and proteosomes and oral delivery of a VLP vaccine.  相似文献   

12.
The mucosal administration of vaccines is an area currently receiving a high level of interest due to potential advantages offered by this technique. These advantages include the ability to administer vaccines without need for needles, thus improving patient compliance with vaccination schedules, and the capacity to induce immune responses capable of preventing infections at the site of acquisition. Despite these advantages a number of limitations exist which currently inhibit our ability to successfully develop new mucosal vaccines. As such, much research is currently focused on developing new adjuvants and delivery systems to overcome these difficulties. However, despite high levels of interest in this area, relatively few mucosal vaccine candidates have successfully progressed to human clinical trials. In the review that follows, we aim to provide the reader with an overview of the immune system with respect to induction of mucosal immune responses. Furthermore, the review provides an overview of a number of microbial (bacterial toxins, CpG DNA, cytokines/chemokines, live vectors, and virus like particles) and synthetic (microspheres, liposomes, and lipopeptides) strategies that have been investigated as adjuvants or delivery systems for mucosal vaccine development, with a focus on the delivery of vaccines via the oral route.  相似文献   

13.
Foged C 《Therapeutic delivery》2011,2(8):1057-1077
A major challenge for current vaccine development is the fact that many new subunit vaccines based on highly purified recombinant proteins are poorly immunogenic and mobilize insufficient immune responses for protective immunity. Adjuvants are therefore needed in vaccine formulations to enhance, direct and maintain the immune response to vaccine antigens. Few adjuvants are currently approved for human use that mainly induce humoral immunity, and there is therefore an unmet medical need for development of effective and safe adjuvants that in addition can stimulate cellular or mucosal immunity, or combinations thereof, depending on the requirements for protection against the specific disease. Vaccine delivery systems are important components of adjuvants that allow proper delivery of antigens to antigen-presenting cells. Moreover, they often possess intrinsic immunopotentiating activity and/or can be customized towards a given immunological profile by the appropriate combination with immunopotentiating compounds. This article reviews the current status of human-tailored vaccine delivery with special focus on how to design safe particulate vaccine delivery systems with respect to composition, physicochemical properties, antigen association and choice of administration route, in order to better customize vaccine formulations towards specific diseases in the future.  相似文献   

14.
Attenuated salmonella and Shigella as carriers for DNA vaccines   总被引:3,自引:0,他引:3  
The discovery that genes can be functionally transferred from bacteria to mammalian cells has suggested the possible use of bacterial vectors as gene delivery vehicles for vaccines. Attenuated invasive human intestinal bacteria, such as Salmonella and Shigella, have been used as plasmid DNA vaccine carriers and their potency has been evaluated in several animal models. This delivery system allows the administration of DNA vaccines together with associated bacterial immunostimulators directly to professional antigen presenting cells via human mucosal surfaces. Various strategies have been taken to improve the use of this delivery system to achieve robust immune responses at both mucosal and systemic sites of the immunized animals.  相似文献   

15.
F. Xu 《Journal of drug targeting》2013,21(8-10):481-488
The discovery that genes can be functionally transferred from bacteria to mammalian cells has suggested the possible use of bacterial vectors as gene delivery vehicles for vaccines. Attenuated invasive human intestinal bacteria, such as Salmonella and Shigella, have been used as plasmid DNA vaccine carriers and their potency has been evaluated in several animal models. This delivery system allows the administration of DNA vaccines together with associated bacterial immunostimulators directly to professional antigen presenting cells via human mucosal surfaces. Various strategies have been taken to improve the use of this delivery system to achieve robust immune responses at both mucosal and systemic sites of the immunized animals.  相似文献   

16.
There is currently no acceptable vaccine available for the control of herpes simplex virus (HSV) infection. This review discusses the reasons for the past failures and evaluates the prospect that a fresh approach, such as that provided by plasmid DNA encoding viral proteins, could provide a solution. The issues addressed include immune responses generated by plasmids encoding glycoproteins of HSV, the mechanism of HSV, the nature of the response in neonates, mucosal barrier immunity, attempts at improving immunogenicity of DNA vaccines and the immunomodulation potential with DNA encoding cytokines. The review concludes that DNA vaccines against HSV may merit evaluation in man, but DNA vaccine research may be more useful for uncovering mechanisms by which the immune system functions against HSV infection.  相似文献   

17.
While the majority of human pathogens infect the body through mucosal sites, most licensed vaccines are injectable. In fact the only mucosal vaccine that has been widely used globally for infant and childhood vaccination programs is the oral polio vaccine (OPV) developed by Albert Sabin in the 1950s. While oral vaccines against Cholera, rotavirus and Salmonella typhi have also been licensed, the development of additional non-living oral vaccines against these and other enteric pathogens has been slow and challenging. Mucosal vaccines can elicit protective immunity at the gut mucosa, in part via antigen-specific secretory immunoglobulin A (SIgA). However, despite their advantages over the injectable route, oral vaccines face many hurdles. A key challenge lies in design of delivery strategies that can protect antigens from degradation in the stomach and intestine, incorporate appropriate immune-stimulatory adjuvants and control release at the appropriate gastrointestinal site. A number of systems including micro and nanoparticles, lipid-based strategies and enteric capsules have significant potential either alone or in advanced combined formulations to enhance intestinal immune responses. In this review we will outline the opportunities, challenges and potential delivery solutions to facilitate the development of improved oral vaccines for infectious enteric diseases.  相似文献   

18.
There is an urgent requirement for neonatal vaccines that induce effective and long-lasting immune responses at the mucosal surfaces of the gut and respiratory tract. The delay in their development has been due in part to a lack of understanding of the mucosal and neonatal immune systems. This work reviews recent advances in the understanding of the cells and molecules that mediate immunity, describing the importance of different T helper populations in determining the success of vaccination strategies. These advances have allowed the rational design of novel vaccine adjuvants and delivery systems that can selectively induce immunity at different anatomical sites mediated by distinct T cell populations. Five functional classes of adjuvant are described. These exploit mechanisms which a) create an antigen depot, b) preserve antigen conformation, c) direct antigen to specific immune cells, d) induce mucosal responses and e) induce cytotoxic T cell responses. Comparisons are made between the chemical structures of bacterial toxins and non-toxic derivatives that retain adjuvanticity. The concept of DNA immunization is introduced and the advantages and disadvantages of this novel approach are discussed. The specific problems relating to neonatal immunization are explored with particular reference to the functional immaturity of the neonatal immune system and interference by maternal antibody. Finally, recent work suggesting that there is no intrinsic barrier to designing effective neonatal vaccines deliverable by the mucosal route is discussed.  相似文献   

19.
New generation vaccines, particularly those based on recombinant proteins and DNA, are likely to be less reactogenic than traditional vaccines, but are also less immunogenic. Therefore, there is an urgent need for the development of new and improved vaccine adjuvants. Adjuvants can be broadly separated into two classes, based on their principal mechanisms of action; vaccine delivery systems and 'immunostimulatory adjuvants'. Vaccine delivery systems are generally particulate e.g. emulsions, microparticles, iscoms and liposomes, and mainly function to target associated antigens into antigen presenting cells (APC), including macrophages and dendritic cells. This review will focus on recent developments in vaccine delivery systems. Immunostimulatory adjuvants are predominantly derived from pathogens and often represent pathogen associated molecular patterns (PAMP) e.g. LPS, MPL, CpG DNA, which activate cells of the innate immune system. Once activated, cells of innate immunity drive and focus the acquired immune response. In some studies, delivery systems and immunostimulatory agents have been combined for more effective delivery of the immunostimulatory adjuvant into APC. A rational approach to the development of new and more effective vaccine adjuvants will require much further work to better define the mechanisms of action of existing adjuvants. The discovery of more potent adjuvants may allow the development of vaccines against infectious agents such as HIV which do not naturally elicit protective immunity. New adjuvants and delivery system combinations may also allow vaccines to be delivered mucosally.  相似文献   

20.
Background: Noninvasive mucosal immune responses have been shown to be important in controlling various infections through the mucosal route. Therefore, the appropriate induction of humoral, mucosal and cellular immune response should be elicited after immunization. Objective: The objective of this review is to give an overview of novel strategies and patents for the delivery of vaccines through the mucosal route. Method: Different strategies have been developed and patented to facilitate and enhance the mucosal immunity, including the use of lipid-based delivery systems (i.e., liposomes, virosomes, archaeosomes, chochleated, immune stimulating complexes), entrapment/encapsulation of immunogens into polymeric matrix (poly(lactide-co-glycolide), chitosan, alginates, carbopol, gelatin etc.), admixing of immunogens with mucosal adjuvants (cholera toxin or CT, enterotoxin, lipid A, tetanus toxin or lymphotactin), use of live attenuated bacterial and viral vector encoding antigen of interest and ingestible plant-based mucosal vaccines. Conclusion: Lipid- and polymer-based novel delivery systems have been widely investigated in mucosal vaccine delivery systems. Recent advancement in the molecular technology has also shown great potential of genetic immunization for the delivery of wide range of infectious molecular targets. Effective and selective delivery of vaccines through the mucosal route could provide new therapeutic conduit in the treatment of mucous-associated disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号