首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CONTEXT: Elevated adrenal androgen levels are common in polycystic ovary syndrome (PCOS), but the underlying pathogenetic mechanism is poorly understood. In the rare cortisone reductase deficiency, impaired regeneration of active cortisol from inert cortisone by 11beta-hydroxysteroid dehydrogenase (11beta-HSD1) results in compensatory activation of ACTH secretion and adrenal hyperandrogenism. 11beta-HSD1 deficiency may protect against obesity and its metabolic consequences because of impaired regeneration of cortisol in adipose tissue. OBJECTIVE: Our objective was to investigate a functional polymorphism in HSD11B1 (T-->G in the third intron rs12086634, which associates with lower 11beta-HSD1 activity) in PCOS with and without obesity. Design and Setting: We conducted a case-control study in lean and obese PCOS patients and controls at an academic hospital. PARTICIPANTS: Participants included 102 Caucasian PCOS patients and 98 controls comparable for age, weight, and race. MAIN OUTCOME MEASURES: We assessed genotype distribution and influence of genotypes on clinical, hormonal, and metabolic parameters. RESULTS: The G allele was significantly related to PCOS status (P = 0.041), and this association was mainly attributable to lean (P = 0.025), rather than obese (P = 0.424), PCOS patients. The G allele was associated with lower 0800-0830 h plasma cortisol (P < 0.001) and higher cortisol response to ACTH(1-24) (P < 0.001) in all women with PCOS and with higher dehydroepiandrosterone sulfate levels (P < 0.001), greater suppression of dehydroepiandrosterone sulfate by dexamethasone (P < 0.001), and lower fasting plasma low-density lipoprotein cholesterol (P = 0.002) levels in lean PCOS women. CONCLUSIONS: Genetic variation in 11beta-HSD1 contributes to enhanced cortisol clearance and compensatory adrenal hyperandrogenism in lean patients with PCOS but may be protective against obesity and some features of the metabolic syndrome.  相似文献   

2.
Recent evidence suggests that increased cortisol secretion, altered cortisol metabolism, and/or increased tissue sensitivity to cortisol may link insulin resistance, hypertension, and obesity. Whether these changes are important in type 2 diabetes mellitus (DM) is unknown. We performed an integrated assessment of glucocorticoid secretion, metabolism, and action in 25 unmedicated lean male patients with hyperglycemia (20 with type 2 diabetes and 5 with impaired glucose intolerance by World Health Organization criteria) and 25 healthy men, carefully matched for body mass index, age, and blood pressure. Data are mean +/- SE. Patients with hyperglycemia (DM) had higher HbA(1c) (6.9 +/- 0.2% vs. 6.0 +/- 0.1%, P < 0.0001) and triglycerides. Cortisol secretion was not different, as judged by 0900 h plasma cortisol and 24 h total urinary cortisol metabolites. However, the proportion of cortisol excreted as 5alpha- and 5beta-reduced metabolites was increased in DM patients. Following an oral dose of cortisone 25 mg, generation of plasma cortisol by hepatic 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD 1) was impaired in DM patients (area under the curve, 3617 +/- 281 nM.2 h vs. 4475 +/- 228; P < 0.005). In contrast, in sc gluteal fat biopsies from 17 subjects (5 DM and 12 controls) in vitro 11beta-HSD 1 activity was not different (area under the curve, 128 +/- 56% conversion.30 h DM vs. 119 +/- 21, P = 0.86). Sensitivity to glucocorticoids was increased in DM patients both centrally (0900 h plasma cortisol after overnight 250 micro g oral dexamethasone 172 +/- 16 nM vs. 238 +/- 20 nM, P < 0.01) and peripherally (more intense forearm dermal blanching following overnight topical beclomethasone; 0.56 +/- 0.92 ratio to vehicle vs. 0.82 +/- 0.69, P < 0.05). In summary, in patients with glucose intolerance, cortisol secretion, although normal, is inappropriately high given enhanced central and peripheral sensitivity to glucocorticoids. Normal 11beta-HSD 1 activity in adipose tissue with impaired hepatic conversion of cortisone to cortisol suggests that tissue-specific changes in 11beta-HSD 1 activity in hyperglycemia differ from those in primary obesity but may still be susceptible to pharmacological inhibition of the enzyme to reduce intracellular cortisol concentrations. Thus, altered cortisol action occurs not only in obesity and hypertension but also in glucose intolerance, and could therefore contribute to the link between these multiple cardiovascular risk factors.  相似文献   

3.
Glucocorticoids play an important role in the pathogenesis of obesity and insulin resistance. Impaired conversion of cortisone (E) to cortisol (F) by the type 1 isoenzyme of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) in obesity may represent a protective mechanism preventing ongoing weight gain and glucose intolerance. We have studied glucocorticoid metabolism in 33 male subjects with type 2 diabetes mellitus [age, 44.2 +/- 13 yr; body mass index (BMI), 31.1 +/- 7.5 kg/m(2) (mean +/- sd)] and 38 normal controls (age, 41.4 +/- 14 yr; BMI, 38.2 +/- 12.8 kg/m(2)).Circulating F:E ratios were elevated in the diabetic group and correlated with serum cholesterol and homeostasis model assessment-S. There was no difference in 11beta-HSD1 activity between diabetic subjects and controls. In addition, 11beta-HSD1 activity was unaffected by BMI in diabetic subjects. However, in control subjects, increasing BMI was associated with a reduction in the urinary tetrahydrocortisol+5alpha-tetrahydrocortisol:tetrahydrocortisone ratio (P < 0.05) indicative of impaired 11beta-HSD1 activity. The degree of inhibition correlated tightly with visceral fat mass. Changes in 11beta-HSD1 activity could not be explained by circulating levels of adipocytokines.Impaired E to F metabolism in obesity may help preserve insulin sensitivity and prevent diabetes mellitus. Failure to down-regulate 11beta-HSD1 activity in patients with diabetes may potentiate dyslipidemia, insulin resistance, and obesity. Inhibition of 11beta-HSD1 may therefore represent a therapeutic strategy in patients with type 2 diabetes mellitus and obesity.  相似文献   

4.
Androgen excess in women with polycystic ovary syndrome (PCOS) may be ovarian and/or adrenal in origin, and one proposed contributing mechanism is altered cortisol metabolism. Increased peripheral metabolism of cortisol may occur by enhanced inactivation of cortisol by 5alpha-reductase (5alpha-R) or impaired reactivation of cortisol from cortisone by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) resulting in decreased negative feedback suppression of ACTH secretion maintaining normal plasma cortisol concentrations at the expense of androgen excess. We have tested whether any enzyme dysregulation was related to circulating insulin or androgen concentrations in women with PCOS and have sought to clarify their relationship with obesity. First, to avoid obesity-related effects on cortisol metabolism, 18 lean women with PCOS were compared with 19 lean controls who were closely matched for body mass index (BMI). Second, the impact of obesity was studied in a cross-section of 42 PCOS women of a broad range of BMI. We measured 24-h urinary excretion of steroid metabolites by gas chromatography/mass spectrometry and fasting metabolic and hormone profiles. Urinary excretion of androgens [androsterone (P = 0.003), etiocholanolone (P = 0.02), and C19 steroid sulfates (P = 0.009)], cortisone metabolites [tetrahydrocortisone (THE) (P = 0.02), alpha-cortolone (P < 0.001), beta-cortol + beta-cortolone (P < 0.001), cortolones (P < 0.001), and E metabolites (P < 0.001)], and TCM (P = 0.002) were raised in lean PCOS subjects when compared with controls. A significantly higher 5alpha-tetrahydrocortisol (5alpha-THF)/5beta-THF ratio (P = 0.04) and a significantly lower alpha-THF + THF + alpha-cortol/THE + cortolones ratio (P = 0.01) were found in lean PCOS women compared with lean controls, indicating both enhanced 5alpha-R and reduced 11beta-HSD1 activities. A decreased THE/cortolones ratio (P = 0.03) was also found in lean PCOS women compared with lean controls, indicating increased 20 alpha/beta-HSD activity. In the group of 42 PCOS subjects, measures of 5alpha/5beta reduction were positively correlated with the homeostasis model insulin resistance index (HOMA-R): alpha-THF/THF and HOMA-R (r = 0.34; P = 0.03), androsterone/etiocholanolone and HOMA-R (r = 0.32; P = 0.04), and total 5alpha /total 5beta and HOMA-R (r = 0.37; P = 0.02). A positive correlation was also found between measures of 5alpha-R and BMI (r = 0.37; P = 0.02). No correlation was found between measures of 11beta-HSD1 activity and indices of insulin sensitivity or BMI. We have demonstrated that there is an increased production rate of cortisol and androgens as measured in vivo in lean PCOS women. Insulin seems to enhance 5alpha reduction of steroids in PCOS but was not associated with the elevated cortisol production rate. The changes in 5alpha-R, 11beta-HSD1, and 20alpha/beta-HSD enzyme activities observed in PCOS may contribute to the increased production rates of cortisol and androgens, supporting the concept of a widespread dysregulation of steroid metabolism. This dysregulation does not seem to be the primary cause of PCOS because no correlation was found between serum androgen levels or urinary excretion of androgens with measurements of either 5alpha-R or 11beta-HSD1 activities.  相似文献   

5.
Tissue-specific dysregulation of cortisol metabolism in human obesity   总被引:22,自引:0,他引:22  
Cortisol has been implicated as a pathophysiological mediator in idiopathic obesity, but circulating cortisol concentrations are not consistently elevated. The tissue-specific responses to cortisol may be influenced as much by local prereceptor metabolism as by circulating concentrations. For example, in liver and adipose tissue cortisol is regenerated from inactive cortisone by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). In obese Zucker rats 11beta-HSD1 activity is reduced in liver but enhanced in adipose tissue. This study addressed whether the same tissue-specific disruption of cortisol metabolism occurs in human obesity. 34 men were recruited from the MONICA population study in Northern Sweden to represent a wide range of body composition and insulin insensitivity. Plasma cortisol was measured at 0830h and 1230h, after overnight low-dose dexamethasone suppression, after intravenous corticotropin releasing hormone (CRH), and after oral cortisone administration. Urinary cortisol metabolites were measured in a 24 h sample. A subcutaneous fat biopsy was obtained from 16 participants to measure cortisol metabolism in vitro. Higher body mass index was associated with increased total cortisol metabolite excretion (r = 0.47, p < 0.01), but lower plasma cortisol at 1230 h and after dexamethasone, and no difference in response to CRH. Obese men excreted a greater proportion of glucocorticoid as metabolites of cortisone rather than cortisol (r = 0.43, p < 0.02), and converted less cortisone to cortisol after oral administration (r = 0.49, p < 0.01), suggesting impaired hepatic 11beta-HSD1 activity. By contrast, in vitro 11beta-HSD1 activity in subcutaneous adipose tissue was markedly enhanced in obese men (r = 0.66, p < 0.01). We conclude that in obesity, reactivation of cortisone to cortisol by 11beta-HSD1 in liver is impaired, so that plasma cortisol levels tend to fall, and there may be a compensatory increase in cortisol secretion mediated by a normally functioning hypothalamic-pituitary-adrenal axis. However, changes in 11beta-HSD1 are tissue-specific: strikingly enhanced reactivation of cortisone to cortisol in subcutaneous adipose tissue may exacerbate obesity; and it may be beneficial to inhibit this enzyme in adipose tissue in obese patients.  相似文献   

6.
Cushing's syndrome and the metabolic syndrome share clinical similarities. Reports of alterations in the hypothalamic-pituitary-adrenal (HPA) axis are inconsistent, however, in the metabolic syndrome. Recent data highlight the importance of adipose 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), which regenerates cortisol from cortisone and, when overexpressed in fat, produces central obesity and glucose intolerance. Here we assessed the HPA axis and 11beta-HSD1 activity in women with moderate obesity and insulin resistance. Forty women were divided into tertiles according to body mass index (BMI; median, 22.0, 27.5, and 31.4, respectively). Serum cortisol levels were measured after iv CRH, low dose dexamethasone suppression, and oral cortisone administration. Urinary cortisol metabolites were measured in a 24-h sample. A sc abdominal fat biopsy was obtained in 14 participants for determination of 11beta-HSD type 1 activity in vitro. Higher BMI was associated with higher total cortisol metabolite excretion (r = 0.49; P < 0.01), mainly due to increased 5alpha- and, to a lesser extent, 5beta-tetrahydrocortisol excretion, but no difference in plasma cortisol basally, after dexamethasone, or after CRH, and only a small increase in the ACTH response to CRH. Hepatic 11beta-HSD1 conversion of oral cortisone to cortisol was impaired in obese women (area under the curve, 147,736 +/- 28,528, 115,903 +/- 26,032, and 90,460 +/- 18,590 nmol/liter.min; P < 0.001). However, 11beta-HSD activity in adipose tissue was positively correlated with BMI (r = 0.55; P < 0.05). In obese females increased reactivation of glucocorticoids in fat may contribute to the characteristics of the metabolic syndrome. Increased inactivation of cortisol in liver may be responsible for compensatory activation of the HPA axis. These alterations in cortisol metabolism may be a basis for novel therapeutic strategies to reduce obesity-related complications.  相似文献   

7.
CONTEXT: There is little information regarding the regulation of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) enzymes in skeletal muscle in the setting of type 2 diabetes. OBJECTIVE: Our objective was to investigate whether there is differential mRNA expression and enzyme activity of 11beta-HSD1 and 11beta-HSD2 in the skeletal muscle of diabetic subjects compared with controls at baseline and in response to dexamethasone. DESIGN: Participants underwent muscle biopsy of vastus lateralis at baseline and after dexamethasone. SETTING: The study took place at a university teaching hospital. PARTICIPANTS: Twelve subjects with type 2 diabetes and 12 age- and sex-matched controls participated. INTERVENTION: Subjects were given oral dexamethasone, 4 mg/d for 4 d. MAIN OUTCOME MEASURES: We assessed 11beta-HSD1, 11beta-HSD2, and H6PDH mRNA levels by quantitative RT-PCR and enzyme activity by percent conversion of [(3)H]cortisone and [(3)H]cortisol, respectively. RESULTS: At baseline, mRNA levels were similar in diabetic and control subjects for 11beta-HSD1, 11beta-HSD2, and H6PDH. 11beta-HSD1 activity was reduced in diabetic subjects (percent conversion of [(3)H]cortisone to [(3)H]cortisol was 11.4 +/- 2.5% vs. 18.5 +/- 2.2%; P = 0.041), and 11beta-HSD2 enzyme activity was higher in diabetic subjects (percent conversion of [(3)H]cortisone to [(3)H]cortisol was 17.2 +/- 2.6% vs. 9.2 +/- 1.3%; P = 0.012). After dexamethasone, 11beta-HSD1 mRNA increased in both groups (P < 0.001), whereas 11beta-HSD2 mRNA decreased (P = 0.002). 11beta-HSD1 activity increased in diabetic subjects (P = 0.021) but not in controls, whereas 11beta-HSD2 activity did not change in either group. At baseline, there was a significant negative correlation between 11beta-HSD1 and 11beta-HSD2 enzyme activity (r = -0.463; P = 0.026). CONCLUSIONS: The activities of skeletal muscle 11beta-HSD1 and 11beta-HSD2 are altered in diabetes, which together may reduce intracellular cortisol generation, potentially conferring metabolic protection.  相似文献   

8.
Glucocorticoid excess increases fat mass, preferentially within omental depots; yet circulating cortisol concentrations are normal in most patients with metabolic syndrome (MS). At a pre-receptor level, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activates cortisol from cortisone locally within adipose tissue, and inhibition of 11beta-HSD1 in liver and adipose tissue has been proposed as a novel therapy to treat MS by reducing hepatic glucose output and adiposity. Using a transformed human subcutaneous preadipocyte cell line (Chub-S7) and human primary preadipocytes, we have defined the role of glucocorticoids and 11beta-HSD1 in regulating adipose tissue differentiation. Human cells were differentiated with 1.0 microM cortisol (F), or cortisone (E) with or without 100 nM of a highly selective 11beta-HSD1 inhibitor PF-877423. 11beta-HSD1 mRNA expression increased across adipocyte differentiation (P<0.001, n=4), which was paralleled by an increase in 11beta-HSD1 oxo-reductase activity (from nil on day 0 to 5.9+/-1.9 pmol/mg per h on day 16, P<0.01, n=7). Cortisone enhanced adipocyte differentiation; fatty acid-binding protein 4 expression increased 312-fold (P<0.001) and glycerol-3-phosphate dehydrogenase 47-fold (P<0.001) versus controls. This was abolished by co-incubation with PF-877423. In addition, cellular lipid content decreased significantly. These findings were confirmed in the primary cultures of human subcutaneous preadipocytes. The increase in 11beta-HSD1 mRNA expression and activity is essential for the induction of human adipogenesis. Blocking adipogenesis with a novel and specific 11beta-HSD1 inhibitor may represent a novel approach to treat obesity in patients with MS.  相似文献   

9.
The adrenal participation in the pathogenesis of polycystic ovary syndrome is still under debate. In order to reappraise androgen and glucocorticoid secretion in this disease, we measured serum androstenedione, dehydroepiandrosterone-sulphate, total and free testosterone, sex hormone-binding globulin, LH, FSH, PRL, cortisol, corticosteroid-binding globulin, and urinary free cortisol in 45 women with polycystic ovary syndrome and 27 controls, subdivided in obese and normal-weight subjects. Androstenedione, total and free testosterone were significantly increased, whereas sex hormone-binding globulin tended to be reduced in patients with polycystic ovary syndrome compared with controls, reaching a significant difference between obese patients and matched controls. Free testosterone and sex hormone-binding globulin were significantly increased and reduced, respectively, in obese compared with normal-weight patients. Urinary free cortisol and serum corticosteroid-binding globulin were significantly increased (p less than 0.001) and decreased (p less than 0.005), respectively. Urinary free cortisol exceeded the upper limit of the normal range in 50% of our patients. No appreciable differences were found in PRL and cortisol levels. Besides confirming a hyperandrogenic state, our findings point to an overactivity of the hypothalamic-pituitary-adrenal axis with subsequent diminution of corticosteroid-binding globulin in polycystic ovary syndrome. They also indicate that urinary free cortisol is not a reliable index in differentiating polycystic ovary syndrome from Cushing's disease.  相似文献   

10.
Patients with cortisol excess, Cushing's syndrome, develop a classical phenotype characterized by central obesity, hypertension, and increased cardiovascular mortality. Whilst this observation points to the importance of glucocorticoids, circulating cortisol excess is rare and does not explain the pathogenesis of many common conditions. At a tissue specific level, the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) locally regenerates active cortisol from inactive cortisone amplifying glucocorticoid receptor activation in the context of normal circulating cortisol levels. Increased 11beta-HSD1 activity and expression have been implicated in the pathogenesis of many common conditions including, obesity, insulin resistance, the metabolic syndrome, polycystic ovarian syndrome, osteoporosis and glaucoma. Furthermore, selective 11beta-HSD1 inhibition has been proposed as a novel therapeutic strategy in many of these conditions. Here we review the role of 11beta-HSD1 in human disease and discuss the impact of selective 11beta-HSD1 inhibition.  相似文献   

11.
CONTEXT: In animals, peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma agonists down-regulate 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) mRNA and activity in liver and adipose tissue, respectively, and PPARgamma agonists reduce ACTH secretion from corticotrope cells. OBJECTIVE: Our objective was to test whether PPAR agonists alter cortisol secretion and peripheral regeneration by 11beta-HSD1 in humans and whether reduced cortisol action contributes to metabolic effects of PPARgamma agonists. DESIGN AND SETTING: Three randomized placebo-controlled crossover studies were conducted at a clinical research facility. PATIENTS AND PARTICIPANTS: Healthy men and patients with type 2 diabetes participated. INTERVENTIONS, OUTCOME MEASURES, AND RESULTS: In nine healthy men, 7 d of PPARalpha agonist (fenofibrate) or PPARgamma agonist (rosiglitazone) had no effect on cortisol secretion, hepatic cortisol generation after oral cortisone administration, or tracer kinetics during 9,11,12,12-[(2)H](4)-cortisol infusion, although rosiglitazone marginally reduced cortisol generation in sc adipose tissue measured by in vivo microdialysis. In 12 healthy men, 4-5 wk of rosiglitazone increased insulin sensitivity during insulin infusion but did not change 11beta-HSD1 mRNA or activity in sc adipose tissue, and insulin sensitization was unaffected by glucocorticoid blockade with a combination of metyrapone and RU38486. In 12 men with type 2 diabetes 12 wk of rosiglitazone reduced arteriovenous cortisone extraction across abdominal sc adipose tissue and reduced 11beta-HSD1 mRNA in sc adipose tissue but increased plasma cortisol concentrations. CONCLUSIONS: Neither PPARalpha nor PPARgamma agonists down-regulate 11beta-HSD1 or cortisol secretion acutely in humans. The early insulin-sensitizing effect of rosiglitazone is not dependent on reducing intracellular glucocorticoid concentrations. Reduced adipose 11beta-HSD1 expression and increased plasma cortisol during longer therapy with rosiglitazone probably reflect indirect effects, e.g. mediated by changes in body fat.  相似文献   

12.
Adrenocorticosteroid activity in Lyon hypertensive (LH) and low blood pressure (LL) rat strains differ in several respects. Abnormal activity of 11beta-hydroxysteroid dehydrogenase enzymes (11beta-HSD1 and 11beta-HSD2), which interconvert corticosterone and inactive 11-dehydrocorticosterone, might contribute to the LH phenotype by regulating corticosteroid hormone access to receptors. 11beta-HSD2 (expressed in kidney but not liver) prevents endogenous glucocorticoids from binding to mineralocorticoid receptors. 11beta-HSD1 (expressed in liver and kidney) favors active glucocorticoid formation from 11-dehydrocorticosterone. 11beta-HSD properties in LH and LL have been compared by several approaches: (1) 11betaHSD activities have been measured in vitro as corticosterone dehydrogenation and in vivo as interconversion of injected cortisol and cortisone; (2) the effects of cortisol and cortisone on urine electrolytes and volume have been measured; and (3) 11beta-HSD mRNA expression has been measured by in situ hybridization. 11beta-HSD2 enzyme activities in LH and LL rats were similar and urinary cortisone:cortisol ratios were not different after cortisol injection. Cortisol caused a natriuresis and kaliuresis in both strains, with a slightly reduced response in LH rats. Renal 11beta-HSD2 mRNA expression was slightly lower in LH rats. 11beta-HSD1 was less active in LH than LL rats: enzyme activities were lower in tissue extracts; urinary cortisone:cortisol was lower in LL rats after cortisone injections; cortisone increased urine volume in LL but not LH rats; and mRNA levels tended to be lower in LH tissues. We conclude that 11beta-HSD1 is impaired in LH rats. The LH phenotype of heavier adrenals, raised corticosterone, and reduced thymus weight is similar to that described for 11beta-HSD1 knockout mice.  相似文献   

13.
As exemplified in patients with Cushing's syndrome, glucocorticoids play an important role in regulating adipose tissue distribution and function, but circulating cortisol concentrations are normal in most patients with obesity. However, human omental adipose stromal cells (ASCs) can generate glucocorticoid locally through the expression of the enzyme 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) type 1 (11 beta-HSD1), which, in intact cells, has been considered to be an oxoreductase, converting inactive cortisone (E) to cortisol (F). Locally produced F can induce ASC differentiation, but the relationship between 11 beta-HSD1 expression and adipocyte differentiation is unknown. Primary cultures of paired omental (om) and sc ASC and adipocytes were prepared from 17 patients undergoing elective abdominal surgery and cultured for up to 14 d. Expression and activity of 11 beta-HSD isozymes were analyzed together with early (lipoprotein lipase) and terminal (glycerol 3 phosphate dehydrogenase) markers of adipocyte differentiation. On d 1 of culture, 11 beta-HSD1 activity in intact om ASCs exceeded oxoreductase activity in every patient (78.9 +/- 24.9 vs. 15.8 +/- 3.7 [mean +/- SE] pmol/mg per hour, P < 0.001), and in sc ASCs, relative activities were similar (40.6 +/- 12.2 vs. 36.9 +/- 8.8). Conversely, in freshly isolated om adipocytes, reductase activity exceeded dehydrogenase activity (23.6 +/- 1.5 vs. 6.2 +/- 0.8 pmol/mg per hour, P < 0.01). Following 14 d of culture in serum-free conditions with addition of 10 nM insulin (Ctr) or insulin with 100 nM F (+F), lipoprotein lipase/18S RNA levels increased in both the Ctr- and +F-treated ASCs, but glycerol 3 phosphate dehydrogenase increased only in the +F cultures. In both cases, however, 11 beta-HSD1 oxoreductase activity exceeded dehydrogenase activity (Ctr: 53.3 +/- 9.0 vs. 32.4 +/- 10.5, P < 0.05; +F: 65.6 +/- 15.6 vs. 37.1 +/- 11.5 pmol/mg per hour, P < 0.05), despite no significant changes in 11 beta-HSD1 mRNA levels. In sc ASCs, dehydrogenase activity was similar to reductase activity in both Ctr- and +F-treated cells. Type 2 11 beta-HSD expression was undetectable in each case. These data show that in intact, undifferentiated om ASCs, 11 beta-HSD1 acts primarily as a dehydrogenase, but in mature adipocytes oxoreductase activity predominates. Because glucocorticoids inhibit cell proliferation, we postulate that 11 beta-HSD1 activity in uncommitted ASCs may facilitate proliferation rather than differentiation. Once early differentiation is initiated, a "switch" to 11 beta-HSD1 oxoreductase activity generates F, thus promoting adipogenesis. Site-specific regulation of the set-point of 11 beta-HSD1 activity may be an important mechanism underpinning visceral obesity.  相似文献   

14.
OBJECTIVE: To evaluate the expression of 11beta-hydrxysteroid dehydrogenase type 1 (11beta-HSD1) in omental adipose tissue of patients with Cushing's syndrome and simple obesity, compared with normal weight controls. DESIGN AND METHODS: We have performed a case-control study and studied omental adipose tissue from a total of 24 subjects (eight obese subjects, ten patients with Cushing's syndrome due to adrenal adenoma, and six normal weight controls). Body mass index, blood pressure, plasma glucose, plasma insulin, plasma cortisol, urinary free cortisol and post dexamethasone plasma cortisol were measured with standard methods. 11beta-HSD1 mRNA and protein expression were evaluated in real-time PCR and western blot analysis respectively. RESULTS: 11beta-HSD1 mRNA was 13-fold higher in obese subjects compared with controls (P=0.001). No differences were found between Cushing's patients and controls. Western blot analysis supported the mRNA expression results. CONCLUSIONS: Our data show the involvement of 11beta-HSD1 enzyme invisceral obesity, which is more evident in severely obese patients than in Cushing's syndrome patients. The lack of increase of 11beta-HSD1 expression in Cushing's syndrome could suggest downregulation of the enzyme as a result of long-term overstimulation.  相似文献   

15.
OBJECTIVE: The incidence of childhood obesity and type 2 diabetes has reached epidemic proportions. Glucocorticoid excess causes central obesity and diabetes mellitus as seen in Cushing's syndrome. The 11beta-hydroxysteroid dehydrogenase type 1 enzyme (11beta-HSD1) regenerates active cortisol from inactive cortisone. Altered 11beta-HSD1 may cause tissue-specific Cushing's syndrome with central obesity and impaired glucose homeostasis. DESIGN, PATIENTS, AND METHODS: Clinical and laboratory characteristics, and anthropometric measurements were determined in 15 male and 6 female obese pubertal children (aged 12-18 years, Tanner stages 2-5). In addition, analyses of 24-h excretion rates of glucocorticoids were also performed in 21 age-, sex-, and pubertal stage-matched non-obese children using gas chromatographic-mass spectrometric (GC-MS) analysis. RESULTS: 11beta-HSD1 activity (urinary tetrahydrocortisol (THF) + 5alpha-THF/tetrahydrocortisone (THE) ratio) was lower in obese when compared with non-obese boys. In addition, obese children had a higher total cortisol metabolite excretion than non-obese children. 11beta-HSD1 activity was significantly related to age in lean and obese children. Standard deviation score (SDS)-body mass index did not correlate with 11beta-HSD1 activity, or with total cortisol metabolite excretion within each group. In obese children, 11beta-HSD1 activity and total cortisol metabolite excretion showed no correlation to waist-to-hip ratio, fat mass (percentage of body mass), or the homeostasis model assessment of insulin resistance index. CONCLUSIONS: In conclusion, our findings strongly suggest that 11beta-HSD1 activity increases with age, and is reduced in obese boys. In addition, obese children have a higher total cortisol metabolites excretion suggesting a stimulated hypothalamus-pituitary-adrenal axis.  相似文献   

16.
11beta-Hydroxysteroid dehydrogenases (11beta-HSD) interconvert cortisol, the physiological glucocorticoid, and its inactive metabolite cortisone in humans. The diminished dehydrogenase activity (cortisol to cortisone) has been demonstrated in patients with essential hypertension and in resistance vessels of genetically hypertensive rats. 11beta-Hydroxysteroid dehydrogenase type 2 (11beta-HSD2) catalyzes only 11beta-dehydrogenation. However, a functional relationship between diminished vascular 11beta-HSD2 activity and elevated blood pressure has been unclear. In this study we showed the expression and enzyme activity of 11beta-HSD2 and 11beta-HSD type 1 (which is mainly oxoreductase, converting cortisone to cortisol) in human vascular smooth muscle cells. Glucocorticoids and mineralocorticoids increase vascular tone by upregulating the receptors of pressor hormones such as angiotensin II. We found that physiological concentrations of cortisol-induced increase in angiotensin II binding were significantly enhanced by the inhibition of 11beta-HSD2 activity with an antisense DNA complementary to 11beta-HSD2 mRNA, and the enhancement was partially but significantly abolished by a selective aldosterone receptor antagonist. This may indicate that impaired 11beta-HSD2 activity in vascular wall results in increased vascular tone by the contribution of cortisol, which acts as a mineralocorticoid. In congenital 11beta-HSD deficiency and after administration of 11beta-HSD inhibitors, suppression of 11beta-HSD2 activity in the kidney has been believed to cause renal mineralocorticoid excess, resulting in sodium retention and hypertension. In the present study we provide evidence for a mechanism that could link impaired vascular 11beta-HSD2 activity, increased vascular tone, and elevated blood pressure without invoking renal sodium retention.  相似文献   

17.
18.
Cushing syndrome (CS) and metabolic syndrome (MetS) share many clinical features such as obesity, dyslipidemia, hypertension and impaired glucose tolerance. Although CS is clinically well defined, there are considerable difficulties to differentiate the metabolic syndrome from subclinical CS. For the latter a prevalence of up to 9% has been described in patients with adrenal incidentaloma and subclinical CS is commonly associated with the metabolic syndrome. However, it is unclear whether unilateral adrenalectomy is beneficial in these patients. Based on the idea of increased local generation of cortisol from cortisone, inhibitors of 11β-HSD type 1 are currently under development, aimed at inhibiting local conversion of cortisone to cortisol. Hyperandrogenemia, as in a polycystic ovary syndrome, is frequently associated with the MetS. Accordingly, impaired glucose tolerance, infertility, risk of gestational diabetes in cases of conception, and increased lifetime risk for type 2 diabetes are often observed in these patients. Impaired glucose homeostasis has been repeatedly described also in patients with hyperaldosteronism, although more recent studies question the impact of hyperaldosteronism on glucose metabolism. Well documented is the important role of adrenomedullary epinephrine on hypoglycemia counterregulation and glucose metabolism. Promising new therapeutic approaches may arise from the investigation of the role of adrenal hormones in glucose metabolism.  相似文献   

19.
Increases in plasma cortisol and glucocorticoid pharmacotherapy cause myriad adverse effects from obesity and diabetes to impairments in memory. The common metabolic syndrome phenotypically resembles the rare disorder Cushing's syndrome, but plasma cortisol levels are usually normal. 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyses the regeneration of active glucocorticoids (cortisol and corticosterone) from inert 11-keto forms in specific tissues, notably liver, adipose and brain. Recent work shows that obese humans and rodents have increased 11beta-HSD1 activity selectively in adipose tissue. By locally amplifying glucocorticoid action, this increase in activity might explain the Cushing's syndrome/metabolic syndrome paradox. Indeed, mice deficient in 11beta-HSD1 resist both the metabolic syndrome that develops with dietary obesity and glucocorticoid-associated cognitive impairments that develop with ageing. The ongoing development of selective 11beta-HSD1 inhibitors affords the opportunity to explore a new approach to some major common disorders.  相似文献   

20.
OBJECTIVE: The role of glucocorticoids production in adipose tissue in the development of metabolic disorders in humans has not been fully characterized. We investigated whether in obese subjects, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) expression in subcutaneous (SAT) and visceral (VAT) adipose tissue is associated with the occurrence of metabolic disorders and the expression of adiponectin and tumor necrosis factor alpha (TNFalpha) and two glucocorticoid-regulated adipokines able to influence the metabolic control. DESIGN AND SUBJECTS: Sixty-two obese patients were enrolled in the study. SAT and VAT samples were obtained from 13 patients undergoing bariatric surgery (body mass index (BMI) 39.1+/-5.3 kg/m(2)). SAT samples were obtained from 49 patients who underwent periumbilical biopsy (BMI 36.9+/-5.1 kg/m(2)). MEASUREMENTS: Oral glucose tolerance tests in subjects without known diabetes. Circulating glucose, lipid, insulin, adiponectin, TNFalpha and urinary-free cortisol levels. Real-time PCR to quantify mRNA levels of 11beta-HSD1, hexose-6-phosphate dehydrogenase (H6PDH), adiponectin and TNFalpha. Western blot analysis to evaluate 11beta-HSD1 protein expression. RESULTS: In the majority of the obese subjects, VAT expresses more 11beta-HSD1 than SAT. VAT 11beta-HSD1 expression was not associated with metabolic disorders. SAT 11beta-HSD1 mRNA levels were higher in subjects with than in those without metabolic syndrome (P<0.05) and in patients with type 2 diabetes compared to patients with impaired or normal glucose tolerance (P<0.0001). SAT 11beta-HSD1 expression was independently related to fasting glucose (P<0.0001) and urinary-free cortisol levels (P<0.01), and increased expression of 11beta-HSD1 was associated with increased adiponectin and TNFalpha expression and decreased serum adiponectin levels (all P's <0.05). CONCLUSIONS: In obese subjects, increased 11beta-HSD1 expression in SAT, but not in VAT, is associated with the worsening of metabolic conditions. We hypothesize that higher glucocorticoid production in adipose tissue would favor the development of metabolic disorders through a decrease in adiponectin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号