首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inflammation is a major characteristic of envenomation by snakes from viperine and crotaline species. Bothrops asper snake venom elicits, among other alterations, a pronounced inflammatory response at the site of injection both in humans and experimental animals. This review describes the current status of our understanding of the inflammatory reaction, including pain, triggered by Bothrops asper venom. The experimental studies on the action of this venom as well as the complex network of chemical mediators involved are summarized. Moreover, aspects of the molecular mechanisms orchestrating this important response to envenomation by Bothrops asper are presented. Considering that isolated toxins are relevant tools for understanding the actions of the whole venom, studies dealing with the mechanisms of inflammatory and nociceptive properties of phospholipases A2, a metalloproteinase and serine-proteases isolated from Bothrops asper venom are also described.  相似文献   

2.
Bothrops marajoensis is found in the savannah of Marajó Island in the State of Pará and regions of Amapá State, Brazil. The aim of the work was to study the renal and cardiovascular effects of the B. marajoensis venom and phospholipase A2 (PLA2). The venom was fractionated by Protein Pack 5PW. N-terminal amino acid sequencing of sPLA2 showed amino acid identity with other lysine K49 sPLA2s of snake venom. B. marajoensis venom (30 μg/mL) decreased the perfusion pressure, renal vascular resistance, urinary flow, glomerular filtration rate and sodium tubular transport. PLA2 did not change the renal parameters. The perfusion pressure of the mesenteric bed did not change after infusion of venom. In isolated heart, the venom decreased the force of contraction and increased PP but did not change coronary flow. In the arterial pressure, the venom and PLA2 decreased mean arterial pressure and cardiac frequency. The presence of atrial flutter and late hyperpolarisation reversed, indicating QRS complex arrhythmia and dysfunction in atrial conduction. In conclusion, B. marajoensis venom and PLA2 induce hypotension and bradycardia while simultaneously blocking electrical conduction in the heart. Moreover, the decrease in glomerular filtration rate, urinary flow and electrolyte transport demonstrates physiological changes to the renal system.  相似文献   

3.
In Venezuela, Bothrops snakes are responsible for more than 80% of all recorded snakebites. This study focuses on the biological and hemostatic characteristics of Bothrops isabelae venom along with its comparative characteristics with two other closely related Bothrops venoms, Bothrops atrox and Bothrops colombiensis. Electrophoretic profiles of crude B. isabelae venom showed protein bands between 14 and 100 kDa with the majority in the range of 14-31 kDa. The molecular exclusion chromatographic profile of this venom contains five fractions (F1-F5). Amidolytic activity evaluation evidenced strong thrombin-like followed by kallikrein-like activities in crude venom and in fractions F1 and F2. The fibrinogenolytic activity of B. isabelae venom at a ratio of 100:1 (fibrinogen/venom) induced a degradation of Aα and Bβ chains at 15 min and 2 h, respectively. At a ratio of 100:10, a total degradation of Aα and Bβ chains at 5 min and of γ chains at 24 h was apparent. This current study evidences one of rarely reported for Bothrops venoms, which resembles the physiologic effect of plasmin. B. isabelae venom as well as F2 and F3 fractions, contain fibrinolytic activity on fibrin plate of 36, 23.5 and 9.45 mm2/μg, respectively using 25 μg of protein. Crude venom and F1 fraction showed gelatinolytic activity. Comparative analysis amongst Venezuelan bothropoid venoms, evidenced that the LD50 of B. isabelae (5.9 mg/kg) was similar to B. atrox-Puerto Ayacucho 1 (6.1 mg/kg) and B. colombiensis-Caucagua (5.8 mg/kg). B. isabelae venom showed minor hemorrhagic activity, whereas B. atrox-Parguasa (Bolivar state) was the most hemorrhagic. In this study, a relative high thrombin-like activity was observed in B. colombiensis venoms (502-568 mUA/min/mg), and a relative high factor Xa-like activity was found in B. atrox venoms (126-294 mUA/min/mg). Fibrinolytic activity evaluated with 10 μg protein, showed that B. isabelae venom contained higher specific activity (50 mm2/μg) than B. colombiensis and B. atrox venoms, which should encourage the isolation of these fibrinolytic molecules to improve the quality of immunotherapy.  相似文献   

4.
The Casearia sylvestris SW (Flacourtiaceae) is utilized in folk medicine (Brazil and all Latin American) to treat several pathologic processes as inflammation, cancer, microbial infection and snake bites. Studies showed that C. sylvestris aqueous extract can inhibit many toxic effects caused by snake venoms (or caused by phospholipase A2 isolated) from different species, mainly of Bothrops genus. Inhibition of enzymatic and myotoxic activities, decrease of edema formation and increase of the survival rate of rats injected with lethal doses of bothropic venoms are some toxic effects inhibited by C. sylvestris. In this study, four ellagic acid derivatives from aqueous extracts of C. sylvestris were isolated, characterized, and tested against effects from both total venom and PLA2 (Asp 49 BthTX-II) from the venom of Bothrops jararacussu. The isolated compounds were as follows: ellagic acid (A), 3′-O-methyl ellagic acid (B), 3,3′-di-O-methyl ellagic acid (C), 3-O-methyl-3′,4′-methylenedioxy ellagic acid (D). The inhibition constant values (Ki) for enzymatic activity, as well the IC50 values found in the edematogenic and myotoxic activities, indicate that the ellagic acid is the best inhibitor of these activities, while compounds C and D are the substances with lowest capacity on inhibiting these same effects. Our results show that the presence of hydroxyls at position 3 or 3′ (compounds A and B) increases the capacity of these derivatives on inhibiting these toxic effects. However, the presence of methoxyl groups at position 3 or 3′ reduced, but did not completely inhibit the capacity of compounds C and D on inhibiting all the toxic effects studied.  相似文献   

5.
In this work, we describe the molecular cloning and pharmacological properties of an acidic phospholipase A2 (PLA2) isolated from Bothrops pauloensis snake venom. This enzyme, denominated BpPLA2-TXI, was purified by four chromatographic steps and represents 2.4% of the total snake venom protein content. BpPLA2-TXI is a monomeric protein with a molecular mass of 13.6 kDa, as demonstrated by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) analysis and its theoretical isoelectric point was 4.98. BpPLA2-TXI was catalytically active and showed some pharmacological effects such as inhibition of platelet aggregation induced by collagen or ADP and also induced edema and myotoxicity. BpPLA2-TXI displayed low cytotoxicity on TG-180 (CCRF S 180 II) and Ovarian Carcinoma (OVCAR-3), whereas no cytotoxicity was found in regard to MEF (Mouse Embryonic Fibroblast) and Sarcoma 180 (TIB-66). The N-terminal sequence of forty-eight amino acid residues was determined by Edman degradation. In addition, the complete primary structure of 122 amino acids was deduced by cDNA from the total RNA of the venom gland using specific primers, and it was significantly similar to other acidic D49 PLA2s. The phylogenetic analyses showed that BpPLA2-TXI forms a group with other acidic D49 PLA2s from the gender Bothrops, which are characterized by a catalytic activity associated with anti-platelet effects.  相似文献   

6.
Some proteins present in snake venom possess enzymatic activities, such as phospholipase A2 and l-amino acid oxidase. In this study, we verify the action of the Bothrops marajoensis venom (BmarTV), PLA2 (BmarPLA2) and LAAO (BmarLAAO) on strains of bacteria, yeast, and Leishmania sp. The BmarTV was isolated by Protein Pack 5PW, and several fractions were obtained. Reverse phase HPLC showed that BmarPLA2 was isolated from the venom, and N-terminal amino acid sequencing of sPLA2 showed high amino acid identity with other lysine K49 sPLA2s isolated from Bothrops snakes. The BmarLAAO was purified to high molecular homogeneity and its N-terminal amino acid sequence demonstrated a high degree of amino acid conservation with others LAAOs. BmarLAAO was able to inhibit the growth of P. aeruginosa, C. albicans and S. aureus in a dose-dependent manner. The inhibitory effect was more significant on S. aureus, with a MIC = 50 μg/mL and MLC = 200 μg/mL. However, the BmarTV and BmarPLA2 did not demonstrate inhibitory capacity. BmarLAAO was able to inhibit the growth of promastigote forms of L. chagasi and L. amazonensis, with an IC50 = 2.55 μg/mL and 2.86 μg/mL for L. amazonensis and L. chagasi, respectively. BmarTV also provided significant inhibition of parasitic growth, with an IC50 of 86.56 μg/mL for L. amazonensis and 79.02 μg/mL for L. chagasi. BmarPLA2 did not promote any inhibition of the growth of these parasites. The BmarLAAO and BmarTV presented low toxicity at the concentrations studied. In conclusion, whole venom as well as the l-amino acid oxidase from Bothrops marajoensis was able to inhibit the growth of several microorganisms, including S. aureus, Candida albicans, Pseudomonas aeruginosa, and Leishmania sp.  相似文献   

7.
Several sesquiterpene lactone were synthesized and their inhibitive activities on phospholipase A2 (PLA2) from Bothrops jararacussu venom were evaluated. Compounds Lac01 and Lac02 were efficient against PLA2 edema-inducing, enzymatic and myotoxic activities and it reduces around 85% of myotoxicity and around 70% of edema-inducing activity. Lac05-Lac08 presented lower efficiency in inhibiting the biological activities studied and reduce the myotoxic and edema-inducing activities around only 15%. The enzymatic activity was significantly reduced. The values of inhibition constants (KI) for Lac01 and Lac02 were approximately 740 μM, and for compounds Lac05-Lac08 the inhibition constants were approximately 7.622-9.240 μM. The enzymatic kinetic studies show that the sesquiterpene lactones inhibit PLA2 in a non-competitive manner. Some aspects of the structure-activity relationships (topologic, molecular and electronic parameters) were obtained using ab initio quantum calculations and analyzed by chemometric methods (HCA and PCA). The quantum chemistry calculations show that compounds with a higher capacity of inhibiting PLA2 (Lac01-Lac04) present lower values of highest occupied molecular orbital (HOMO) energy and molecular volume (VOL) and bigger values of hydrophobicity (LogP). These results indicate some topologic aspects of the binding site of sesquiterpene lactone derivatives and PLA2.  相似文献   

8.
A combination of anti-bothropic and anti-crotalic sera has been reported to be more effective in neutralizing the effects of Bothrops jararacussu venom than anti-bothropic serum alone. The role of proteins from B. jararacussu venom in the horse immune response was evaluated via the analysis of cross-reactivity with homologous and heterologous sera. Many of the proteins in B. jararacussu venom were identified via 2D gel electrophoresis. Western blots revealed that anti-jararacussu showed higher reactivity to l-aminoxidase (LAOs) and snake venom metalloproteinase, (SVMPs) and weaker reactivity towards Snake venom serine proteases (SVSPs), PLA2, C-type lectin and cysteine-rich proteins. Anti-jararaca preferentially recognized LAOs, SVMPs and SVSPs. Both of these sera failed to recognize low-molecular weight proteins. Anti-crotalic serum clearly recognized LAOs, C-type lectin, SVSP, cysteine-rich proteins, SVMP and Asp49-PLA2. The cross-reactivity with anti-PLA2 revealed the immunoreactivity of these antibodies to proteins with molecular masses in a range that is poorly recognized by other studied anti-sera. Our results suggest that the contribution of anti-crotalic serum to the neutralization of B. jararacussu by may be due to its cross-reactivity with proteins such as C-type lectins, SVSPs, Asp49-PLA2. These results also reinforce the importance of neutralizing the highly toxic proteins inclusive those with low immunogenicity in commercial antivenom production to obtain a highly protective serum against snake venoms.  相似文献   

9.
Disintegrins and disintegrins-like proteins are able to inhibit platelet aggregation and integrin-mediated cell adhesion. The aim of this study was to produce one disintegrin-like cloned from Bothrops leucurus venom gland and to characterize it regarding biological activity. The recombinant protein was purified by one step procedure involving anion-exchange chromatography (DEAE-cellulose) and presented a molecular mass of 10.4 kDa. The purified protein was able to inhibit platelet aggregation induced by collagen (IC50 = 0.65 μM) and to inhibit growth of Ehrlich tumor implanted in mice by more than 50% after 7 days administration of 10 μg/day. No effects were observed upon adenosine 5′-diphosphate (ADP)-and arachidonic acid (AA)-induced platelet aggregation. The recombinant protein was recognized by an antibody specific for jararhagin one metalloproteinase isolated from Bothrops jararaca venom, and therefore it was named leucurogin. Anti-angiogenesis effect of leucurogin was evaluated by the sponge implant model. After 7 days administration leucurogin inhibited, in a dose dependent way, the vascularization process in the sponge. Leucurogin represents a new biotechnological tool to understand biological processes where disintegrins-like are involved and may help to characterize integrins that can be involved in development and progression of malignant cells.  相似文献   

10.
An acidic protein with phospholipase A2 activity was purified to homogeneity from the venom of the Northeast Argentinian viperid Bothrops alternatus by two chromatographic steps: a conventional gel filtration on Sephadex G-75 and reversed phase on C18 HPLC column.A molecular mass of 14185.48 Da was determined by mass spectrometry, displaying a homodimer conformation. The kinetic assay demonstrated a catalytically active phospholipase A2 in correspondence with Asp49 PLA2 group. The enzyme designated Ba SpII RP4 contains an amino acid composition of 121 residues and a calculated theoretical pI value of 4.88. Amino acid sequence alignments with other Bothrops PLA2 revealed a high degree of homology sequence (90-56%). Ba SpII RP4 did not show myotoxic activity upon muscular fibers at doses up to 100 μg i.m. route injection or lethal response when it was i.p. injected at the hightest dose of 200 μg. This toxin generates slight biological activities like paw edema inflammation and a delay in the clotting time, although Ba SpII RP4 exhibited catalytic activity. The primary amino acid sequence, determined a quadruple-time of flight (Q-TOF) hybrid mass spectrometer Q-TOF Ultima from Micromass (Manchester, UK) equipped with a nano Zspray source operating in a positive ion mode and tandem mass spectrum, an ESI/MS mass spectrum (TOF MS mode) “de novo amino acid sequencing”, also provides more database about the small group of the non-myotoxic PLA2s isolated up to the present.  相似文献   

11.
Camelid IgG has been reported to be less immunogenic, less able to activate the complement cascade and more thermostable than IgG from other mammals, and has the ability to bind antigens that are unreactive with other mammalian IgGs. We are investigating whether these attributes of camelid IgG translate into antivenom with immunological and venom-neutralising efficacy advantages over conventional equine and ovine antivenoms. The objective of this study was to determine the preclinical venom-neutralising effectiveness of IgG from camels immunised with venoms, individually or in combination, of the saw-scaled viper, Echis ocellatus, the puff adder, Bitis arietans and the spitting cobra, Naja nigricollis - the most medically-important snake species in West Africa. Neutralisation of the pathological effects of venoms from E. ocellatus, B. arietans and N. nigricollis by IgG from the venom-immunised camels, or commercial antivenom, was compared using assays of venom lethality (ED50), haemorrhage (MHD) and coagulopathy (MCD). The E. ocellatus venom ED50, MHD and MCD results of the E. ocellatus monospecific camel IgG antivenom were broadly equivalent to comparable ovine (EchiTAbG®, MicroPharm Ltd, Wales) and equine (SAIMR Echis, South African Vaccine Producer, South Africa) antivenoms, although the equine antivenom required half the amount of IgG. The B. arietans monospecific camel IgG neutralised the lethal effects of B. arietans venom at one fourth the concentration of the SAIMR polyspecific antivenom (a monospecific B. arietans antivenom is not available). The N. nigricollis camel IgG antivenom was ineffective (at the maximum permitted dose, 100 μl) against the lethal effects of N. nigricollis venom. All the equine polyspecific antivenoms required more than 100 μl to be effective against this venom. The polyspecific camel IgG antivenom, prepared from five camels, was effective against the venom-induced effects of E. ocellatus but not against that of B. arietans and N. nigricollis venoms. No direct correlation was evident between either camel IgG relative avidity or titre and the effectiveness of venom neutralisation in preclinical assays.  相似文献   

12.
The antimicrobial and antiparasite activity of phospholipase A2 (PLA2) from snakes and bees has been extensively explored. We studied the antiplasmodial effect of the whole venom of the snake Bothrops asper and of two fractions purified by ion-exchange chromatography: one containing catalytically-active phospholipases A2 (PLA2) (fraction V) and another containing a PLA2 homologue devoid of enzymatic activity (fraction VI). The antiplasmodial effect was assessed on in vitro cultures of Plasmodium falciparum. The whole venom of B. asper, as well as its fractions V and VI, were active against the parasite at 0.13 ± 0.01 µg/mL, 1.42 ± 0.56 µg/mL and 22.89 ± 1.22 µg/mL, respectively. Differences in the cytotoxic activity on peripheral blood mononuclear cells between the whole venom and fractions V and VI were observed, fraction V showing higher toxicity than total venom and fraction VI. Regarding toxicity in mice, the whole venom showed the highest lethal effect in comparison to fractions V and VI. These results suggest that B. asper PLA2 and its homologue have antiplasmodial potential.  相似文献   

13.
Among the proteins and peptides already characterized in Bothrops moojeni venom, two novel phospholipases A2 (PLA2) have been purified and fully sequenced by ESI-MS/MS techniques. Both of them belong to the enzymatically non-active Lys49 variants of PLA2. They consist of 122 amino acids and share a characteristic sequence in their C-terminal region composed of clusters of basic amino acids known to interact with heparin. Thus, as already established, heparin can be used as an antidote to antagonize some myotoxic PLA2s from venoms of Bothrops genus. The two PLA2 variants were shown to interact in vitro with unfractionated heparin (UFH) and low molecular weight heparin (LMWH), neutralizing their anticoagulant properties. Although the influences of PLA2s from snake venoms on the blood coagulation system are known, their use to antagonize the anticoagulant effect of heparin in vitro or in vivo has never been proposed. These finding recommend diagnostic and therapeutic applications, which are currently investigated.  相似文献   

14.
The efficacy and safety of two polyvalent horse-derived antivenoms in Bothrops asper envenomings were tested in a randomized, double-blind, clinical trial performed in Colombia. Both antivenoms were manufactured from the same pool of hyperimmune plasma. Antivenom A was made of F(ab′)2 fragments, generated by pepsin digestion and caprylic acid precipitation, whereas antivenom B consisted of whole IgG molecules produced by caprylic acid precipitation followed by ion-exchange chromatography. Besides the different nature of the active substance, antivenom B had higher protein concentration, slightly higher turbidity and aggregate content. No significant differences were observed in the efficacy of antivenoms. Both halted local and systemic bleeding (P = 0.40) within 6-12 h of treatment in 100% of the cases, and restored blood coagulation (P = 0.87) within 6-24 h in 84.7% of patients, and within 48 h in all of them, in agreement with restoration of plasma fibrinogen concentration. Venom concentrations in serum dropped significantly (P < 0.001), to very low levels, 1 h after antivenom infusion. Nevertheless, eight patients (11.1%), four for each antivenom, presented recurrence of venom antigenaemia at different times, from 6 to 96 h, with clinical significance (recurrent coagulopathy) only in one group B patient (2.9%). Serum creatine kinase (CK) activity was increased, as a consequence of local myonecrosis. There was no significant difference (P = 0.51) in the incidence of early adverse reactions to antivenom administration (28.9% for patients of group A and 20.6% for patients of group B), most of the reactions being mild, mainly cutaneous. The most frequent complications were cellulitis (16.7%), abscess formation (5.6%), acute renal failure (8.3%), and compartmental syndrome (5.6%). In conclusion, IgG and F(ab′)2 antivenoms, prepared by caprylic acid fractionation, presented similar efficacy and safety profiles for the treatment of B. asper envenomings in Colombia.  相似文献   

15.
In this work, we examined the neuromuscular activity of Bothriopsis bilineata smargadina (forest viper) venom in vertebrate isolated nerve-muscle preparations. In chick biventer cervicis preparations the venom caused concentration-dependent (0.1-30 μg/ml) neuromuscular blockade that was not reversed by washing, with 50% blockade occurring in 15-90 min. Muscle contractures to exogenous acetylcholine and KCl were unaffected by venom, but there was a slight increase in creatine kinase release after 120 min (from 80 ± 15 to 206 ± 25 U/ml, n = 6, p < 0.05). In mouse phrenic nerve-diaphragm preparations, the venom (1, 10 and 30 μg/ml) produced marked facilitation (∼120% increase above basal) at the highest concentration followed by neuromuscular blockade; the effects at lower concentrations were considerably less marked. Venom increased the quantal content values after 15 and 30 min followed by significant inhibition at ≥90 min. However, venom did not alter the muscle membrane resting potential or the response to exogenous carbachol. In both preparations, incubation at 22 °C instead of 37 °C delayed the onset of blockade, as did inhibition of venom PLA2 activity. In curarized mouse preparations, the venom produced only muscle facilitation. These results indicate that B. b. smargadina venom causes neuromuscular blockade in vitro by a presynaptic mechanism involving PLA2.  相似文献   

16.
A basic phospholipase A2 (LmrTX) isoform was isolated from Lachesis muta rhombeata snake venom and partially characterized. The venom was fractionated by molecular exclusion chromatography in ammonium bicarbonate buffer followed by reverse-phase HPLC on a C-5 Discovery® Bio Wide column. From liquid chromatography-electrospray ionization/mass spectrometry, the molecular mass of LmrTX was measured as 14.277.50 Da. The amino acid sequence showed a high degree of homology between PLA2 LmrTX from L. muta rhombeata and other PLA2 from snake venoms, like CB1 and CB2 from Crotalus durissus terrificus; LmTX-I and LmTX-II from Lachesis muta muta. LmrTX had PLA2 activity in the presence of a synthetic substrate and alkylation of histidine residues significantly inhibited (P < 0.05) the enzymatic activity of LmrTX and its anticoagulant and antithrombotic activity. In this study, we examined the ability of the LmrTX in altering thrombus formation in living mouse, using a photochemically induced arterial thrombosis model. The control animals that did not receive protein injection showed a normal occlusion time, which was around 57 ± 7.8 min. LmrTX, the PLA2 from L. muta rhombeata venom, caused a change in the occlusion time to 99 ± 10 min with doses of 7.5 μg/mice. Additionally, LmrTX showed the anticoagulant activity in vitro and ex vivo and prolonging the time aggregation in wash platelet induced by ADP and Thrombin.  相似文献   

17.
18.
Antivenoms are preparations of immunoglobulins purified from the plasma of animals immunized with snake venoms. Depending on the number of venoms used during the immunization, antivenoms can be monospecific (if venom from a single species is used) or polyspecific (if venoms from several species are used). In turn, polyspecific antivenoms can be prepared by purifying antibodies from the plasma of animals immunized with a mixture of venoms, or by mixing antibodies purified from the plasma of animals immunized separately with single venom. The suitability of these strategies to produce polyspecific antibothropic-crotalic antivenoms was assessed using as models the venoms of Bothrops asper, Crotalus simus and Crotalus durissus ruruima. It was demonstrated that, when used as co-immunogen, C. simus and C. durissus ruruima venoms exert a deleterious effect on the antibody response towards different components of B. asper venom and in the neutralization of hemorrhagic and coagulant effect of this venom when compared with a monospecific B. asper antivenom. Polyspecific antivenoms produced by purifying immunoglobulins from the plasma of animals immunized with venom mixtures showed higher antibody titers and neutralizing capacity than those produced by mixing antibodies purified from the plasma of animals immunized separately with single venom. Thus, despite the deleterious effect of Crotalus sp venoms on the immune response against B. asper venom, the use of venom mixtures is more effective than the immunization with separate venoms for the preparation of polyspecific bothropic-crotalic antivenoms.  相似文献   

19.
In this study, the production of prostaglandin E2 (PGE2) and up-regulation in cyclooxygenase (COX) pathway induced by a phospholipase A2 (PLA2), myotoxin-III (MT-III), purified from Bothrops asper snake venom, in isolated neutrophils were investigated. The arachidonic acid (AA) production and the participation of intracellular PLA2s (cytosolic PLA2 and Ca2+-independent PLA2) in these events were also evaluated. MT-III induced COX-2, but not COX-1 gene and protein expression in neutrophils and increased PGE2 levels. Pretreatment of neutrophils with COX-2 and COX-1 inhibitors reduced PGE2 production induced by MT-III. Arachidonyl trifluoromethyl ketone (AACOCF3), an intracellular PLA2 inhibitor, but not bromoenol lactone (BEL), an iPLA2 inhibitor, suppressed the MT-III-induced AA and PGE2 release. In conclusion, MT-III directly stimulates neutrophils inducing COX-2 mRNA and protein expression followed by production of PGE2. COX-2 isoform is preeminent over COX-1 for production of PGE2 stimulated by MT-III. PGE2 and AA release by MT-III probably is related to cPLA2 activation.  相似文献   

20.
Bothropstoxin-I (BthTx-I), a Lys49-PLA2 from Bothrops jararacussu venom, permeabilizes membranes by a non-hydrolytic Ca2+-independent mechanism. The BthTx-I showed activity against liposomes including 10% and 50% negatively charged lipids at pH 7.0, but not at pH 5.0. Nevertheless, ultracentrifugation and FRET demonstrated that at pH 5.0 the BthTx-I is bound to 50% negatively charged membranes. ANS binding identified a non-native monomeric conformation at pH 5.0, suggesting that tertiary structure alterations result in activity loss of the BthTx-I at low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号