首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Carbon monoxide (CO) is a cardioprotectant and potential cardiovascular therapeutic agent. Human cardiac fibroblasts (HCFs) are important determinants of myocardial structure and function. Large-conductance Ca2+-activated K+ (BK) channel is a potential therapeutic target for cardiovascular disease. We investigated whether CO modulates BK channels and the signaling pathways in HCFs using whole-cell mode patch-clamp recordings. CO-releasing molecules (CORMs; CORM-2 and CORM-3) significantly increased the amplitudes of BK currents (IBK). The CO-induced stimulating effects on IBK were blocked by pre-treatment with specific nitric oxide synthase (NOS) blockers (L-NG-monomethyl arginine citrate and L-NG-nitroarginine methyl ester). 8-bromo-cyclic GMP increased IBK. KT5823 (inhibits PKG) or ODQ (inhibits soluble guanylate cyclase) blocked the CO-stimulating effect on IBK. Moreover, 8-bromo-cyclic AMP also increased IBK, and pre-treatment with KT5720 (inhibits PKA) or SQ22536 (inhibits adenylate cyclase) blocked the CO effect. Pre-treatment with N-ethylmaleimide (a thiol-alkylating reagent) also blocked the CO effect on IBK, and DL-dithiothreitol (a reducing agent) reversed the CO effect. These data suggest that CO activates IBK through NO via the NOS and through the PKG, PKA, and S-nitrosylation pathways.  相似文献   

3.
Recent studies have demonstrated that nitric oxide (NO) activates transient receptor potential vanilloid subtype 1 (TRPV1) via S-nitrosylation of the channel protein. NO also modulates various cellular functions via activation of the soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathway and the direct modification of proteins. Thus, in the present study, we investigated whether NO could indirectly modulate the activity of TRPV1 via a cGMP/PKG-dependent pathway in cultured rat dorsal root ganglion (DRG) neurons. NO donors, sodium nitroprusside (SNP) and S-nitro-N-acetylpenicillamine (SNAP), decreased capsaicin-evoked currents (Icap). NO scavengers, hemoglobin and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO), prevented the inhibitory effect of SNP on Icap. Membrane-permeable cGMP analogs, 8-bromoguanosine 3'', 5''-cyclic monophosphate (8bromo-cGMP) and 8-(4chlorophenylthio)-guanosine 3'',5''-cyclic monophosphate (8-pCPT-cGMP), and the guanylyl cyclase stimulator YC-1 mimicked the effect of SNP on Icap. The PKG inhibitor KT5823 prevented the inhibition of Icap by SNP. These results suggest that NO can downregulate the function of TRPV1 through activation of the cGMP/PKG pathway in peripheral sensory neurons.  相似文献   

4.
The aim of the present study was to evaluate the role of K+ channels in the vasorelaxant effect of the phosphodiesterase 5 inhibitor, sildenafil, in isolated horse penile resistance arteries mounted in microvascular myographs. In phenylephrine-precontracted arteries, sildenafil elicited potent relaxations which were markedly reduced by raising extracellular K+, by the non-selective blocker of Ca2+-activated K+ channels (KCa), tetraethylammonium and by the blocker of large- and intermediate-conductance KCa channels, charybdotoxin. Sildenafil relaxant responses were also reduced by the selective inhibitor of large conductance KCa (BK(Ca)) channels iberiotoxin, but not by the blocker of small conductance KCa channels apamin. The inhibitor of the cGMP-dependent protein kinase (PKG), Rp-8-Br-PET-cGMPS, reduced the relaxations elicited by sildenafil but combined treatment with iberiotoxin and Rp-8-Br-PET-cGMPS did not further inhibit these relaxations, compared to the effect of either blocker alone. Iberiotoxin also shifted to the right the relaxations elicited by both the NO donor, S-nitrosoacetyl-D,L-penicillamine (SNAP) and the adenylate cyclase activator forskolin; treatment with both iberiotoxin and Rp-8-Br-PET-cGMPS did cause an additional inhibition. The present results demonstrate that the relaxant effect of sildenafil and NO in penile resistance arteries is due in part to activation of BK(Ca) channels through a PKG-dependent mechanism.  相似文献   

5.
We investigated the role of nitric oxide (NO) in pacemaker activity and signal mechanisms in cultured interstitial cells of Cajal (ICC) of the mouse small intestine using whole cell patch-clamp techniques at 30°C. ICC generated pacemaker potential in the current clamp mode and pacemaker currents at a holding potential of –70 mV. (±)-S-nitroso-N-acetylpenicillamine (SNAP; a NO donor) produced membrane hyperpolarization and inhibited the amplitude and frequency of the pacemaker currents, and increased resting currents in the outward direction. These effects were blocked by the use of glibenclamide (an ATP-sensitive K+ channel blocker), but not by the use of 5-hydroxydecanoic acid (a mitochondrial ATP-sensitive K+ channel blocker). Pretreatment with ODQ (a guanylate cyclase inhibitor) almost blocked the NO-induced effects. The use of cell-permeable 8-bromo-cyclic GMP also mimicked the action of SNAP. However, the use of KT-5823 (a protein kinase G inhibitor) did not block the NO-induced effects. Spontaneous [Ca2+]i oscillations in ICC were inhibited by the treatment of SNAP, as seen in recordings of intracellular Ca2+ ([Ca2+]i). These results suggest that NO inhibits pacemaker activity by the activation of ATP-sensitive K+ channels via a cyclic GMP dependent mechanism in ICC, and the activation of ATP-sensitive K+ channels mediates the inhibition of spontaneous [Ca2+]i oscillations.  相似文献   

6.
BACKGROUND AND PURPOSE: Kaempferol has been shown to possess a vasodilator effect but its mechanism of action remains unclear. In this study, experiments were carried out to study the effect of kaempferol on K+ channels in endothelial cells. EXPERIMENTAL APPROACH: K+ channel activities in human umbilical vein endothelial cells (HUVECs) were studied by conventional whole cell and cell-attached patch-clamp electrophysiology. KEY RESULTS: Kaempferol stimulated an outward-rectifying current in HUVECs in a dose-dependent manner with an EC50 value of 2.5+/-0.02 microM. This kaempferol-induced current was abolished by large conductance Ca2+ -activated K+ (BKCa) channel blockers, such as iberiotoxin (IbTX) and charybdotoxin (ChTX), whereas the small conductance Ca2+ -activated K+ (SKCa) channel blocker, apamin, and the voltage-dependent K+ (KV) channel blocker, 4-aminopyridine, had no effect. Cell-attached patches demonstrated that kaempferol increased the open probability of BkCa channels in HUVECs. Clamping intracellular Ca2+ did not prevent kaempferol-induced increases in outward current. In addition, the kaempferol-induced current was diminished by the adenylyl cyclase inhibitor SQ22536, the cAMP antagonist Rp-8-Br-cAMP and the PKA inhibitor KT5720, but was not affected by the guanylyl cyclase inhibitor ODQ, the cGMP antagonist Rp-8-Br-cGMP and the PKG inhibitor KT5823. The activation of BKCa channels by kaempferol caused membrane hyperpolarization of HUVECs. CONCLUSION AND IMPLICATIONS: These results demonstrate that kaempferol activates the opening of BKCa channels in HUVECs via a cAMP/PKA-dependent pathway, resulting in membrane hyperpolarization. This mechanism may partly account for the vasodilator effects of kaempferol.  相似文献   

7.
The potent quorum sensing inhibitor (5Z)‐4‐bromo‐5‐(bromomethylene)‐2(5H)‐[2‐14C]furanone has been prepared in five steps in 7.7% overall yield starting from bromo[1‐14C]acetic acid. Condensation of ethyl bromo[1‐14C]acetate with ethyl acetoacetate followed by decarboxylation was accelerated by microwave heating to afford [1‐14C]levulinic acid. Subsequently, bromination and oxidation gave the targeted furan‐2‐one with a radiochemical purity of > 97% and a specific activity of 57 mCi/mmol. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Dopamine dilates the coronary, renal and other vascular beds; however, the signaling pathway underlying this effect is unclear. In this study the signal-transduction process mediating dopamine-induced relaxation of porcine coronary arteries was investigated in isolated vessels and single arterial myocytes. Dopamine-induced relaxation of arteries was mediated through the DA- receptor and involved K+ efflux, and subsequent patch-clamp studies demonstrated that either dopamine or fenoldopam, a selective DA-1 agonist, increased the opening probability of the large-conductance, calcium- and voltage-activated K+ (BKCa) channel in coronary myocytes. Moreover, blockade of this channel by iberiotoxin prevented dopamine-induced coronary relaxation. Dopamine stimulation of BKCa channels was completely prevented by a DA-1-receptor antagonist, but was unaffected by propranolol. Furthermore, inhibiting adenylyl cyclase activity prevented stimulation of BKCa channel activity, whereas chlorophenylthio (CPT)-cyclic adenosine monophosphate (AMP), a membrane-permeable analog of cyclic AMP, mimicked the effects of dopamine. Interestingly, inhibiting the cyclic AMP-dependent protein kinase (PKA) did not affect the response to dopamine, whereas dopamine-induced channel activity was completely blocked by inhibiting the activity of the cyclic guanosine monophosphate (GMP)-dependent protein kinase (PKG). These findings demonstrate that activation of DA-1 receptors causes stimulation of BKCa channel activity by a mechanism involving cyclic AMP-dependent stimulation of PKG, but not PKA, and further suggest that this cross-reactivity mediates dopamine-induced coronary vasodilation.  相似文献   

9.
Our previous results showed that inhibition of protein tyrosine phosphatases (PTP) by orthovanadate is an appropriate strategy to mimic nerve growth factor (NGF) effects in neurons, including enhanced phosphorylation of TrkA, stimulation of downstream survival signaling pathways, and protection against apoptotic stress. In this study, we wanted to trigger such NGF-like survival signaling in primary hippocampal neurons with the more specific PTP inhibitors ethyl-3,4-dephostatin (DPN), 4-O-methyl-ethyl-3,4-dephostatin (Me-DPN), and methoxime-3,4-dephostatin. It was striking that only the nitric oxide (NO)-releasing dephostatin analogs DPN and Me-DPN, but not the nitrosamine-free methoxime derivative (which did not release NO), enhanced TrkA phosphorylation and protected the neurons against staurosporine (STS)-induced apoptosis. The established NO donor S-nitroso-N-acetylpenicillamine (SNAP) also enhanced TrkA phosphorylation and prevented apoptosis similarly to DPN and Me-DPN. Analysis of the major signaling pathways downstream of TrkA revealed that both SNAP and DPN enhanced phosphorylation of Akt and the mitogen-activated kinases (MAPK) Erk1/2. Blocking of these signaling pathways by the PI3-K inhibitor wortmannin or the MAPK kinase inhibitor U0126 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophynyltio)butadiene] equally abolished the neuroprotective effect of the NO donors. It was striking that inhibition of the soluble guanylyl cyclase (sGC) by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or protein kinase G (PKG) inhibition by (9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo-[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester (KT5823) also blocked the neuroprotective effect of the NO donors, and ODQ clearly attenuated SNAP-induced phosphorylation of TrkA, Akt, and MAPK. In conclusion, NO release by the dephostatin derivatives and subsequent stimulation of sGC and PKG is essential for their neuroprotective effects. In primary neurons, such NO-activated survival signaling involves NGF-like effects, including enhanced phosphorylation of TrkA and activation of PI3-K/Akt and MAPK pathways.  相似文献   

10.
Cyclic guanosine 3′,5′-monophosphate (cGMP) inhibited the generation of pacemaker activity in interstitial cells of Cajal (ICCs) from the small intestine. However, cGMP role on pacemaker activity in colonic ICCs has not been reported yet. Thus, we investigated the role of cGMP in pacemaker activity regulation by colonic ICCs. We performed a whole-cell patch-clamp and Ca2+ imaging in cultured ICCs from mouse colon. 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) increased the pacemaker potential frequency, whereas zaprinast (an inhibitor of phosphodiesterase) and cell-permeable 8-bromo-cGMP decreased the pacemaker potential frequency. KT-5823 (an inhibitor of protein kinase G [PKG]) did not affect the pacemaker potential. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide [NO] synthase) increased the pacemaker potential frequency, whereas (±)-S-nitroso-N-acetylpenicillamine (SNAP, a NO donor) decreased the pacemaker potential frequency. Glibenclamide (an ATP-sensitive K+ channel blocker) did not block the effects of cell-permeable 8-bromo-cGMP and SNAP. Recordings of spontaneous intracellular Ca2+ ([Ca2+]i) oscillations revealed that ODQ and L-NAME increased [Ca2+]i oscillations. In contrast, zaprinast, 8-bromo cGMP, and SNAP decreased the [Ca2+]i oscillations. Basal cGMP levels regulate the resting pacemaker potential frequency by the alteration on Ca2+ release via a PKG-independent pathway. Additionally, the endogenous release of NO seems to be responsible maintaining basal cGMP levels in colonic ICCs.  相似文献   

11.
12.
[14C]‐N‐(6‐Chloro‐7‐methoxy‐9H‐pyrido [3,4‐b]indol‐8‐yl)‐2‐methyl‐3‐pyridinecarboxamide (5B ), an IKK inhibitor, was synthesized from [14C]‐barium carbonate in two steps in an overall radiochemical yield of 41%. The intermediate, [carboxyl‐14C]‐2‐methylnicotinic acid, was prepared by the lithiation and carbonation of 3‐bromo‐2‐methylpyridine. [13C4,D3]‐N‐(6‐chloro‐7‐methoxy‐9H‐pyrido [3,4‐b]indol‐8‐yl)‐2‐methyl‐3‐pyridinecarboxamide (5C ) was synthesized from [1,2,3,4‐13C4]‐ethyl acetoacetate and [D4]‐methanol in six steps in an overall yield of 2%. [13C4]‐2‐methylnicotic acid, was prepared by condensation of [13C4]‐ethyl 3‐aminocrotonate and acrolein, followed by hydrolysis with lithium hydroxide. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
In order to investigate the large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel and determine the effects of nitric oxide (NO) on the channel in human skin fibroblasts, we performed electrophysiological patch clamp recordings on 5th-passage cells of human genital skin cultures. The whole-cell outward K(+) current was increased with depolarization, and proved to be sensitive to NS1619 (a selective BK(Ca) channel activator) and iberiotoxin (a specific BK(Ca )channel inhibitor). The single-channel currents showed 226 pS of mean conductance in symmetrical K(+). Sodium nitroprusside (SNP; an NO donor) significantly increased the K(+) current amplitude in the whole-cell mode, and open probability of the channel (NPo) in the cell-attached mode, but not in the inside-out mode. S-nitroso-N-acetylpenicillamine (an NO donor) and 8-Br-cGMP (a membrane-permeant cGMP analogue) also increased the BK(Ca )channel activity. The stimulatory effect of SNP on BK(Ca) channels was inhibited by pretreatment with 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (a soluble guanylyl cyclase inhibitor), or KT5823 [a specific protein kinase G (PKG) inhibitor]. Cytoplasmic PKG also increased the channel activity in inside-out patches. In conclusion, the present data indicate that BK(Ca) channels constitute a significant fraction of K(+) current in human skin fibroblasts, and that NO increases NPo of BK(Ca) channels, which are mediated via the cGMP/PKG pathway, without direct effects on the channel.  相似文献   

14.
The organophosphate insecticide mevinphos (Mev) acts on the rostral ventrolateral medulla (RVLM), where sympathetic vasomotor tone originates, to elicit phasic cardiovascular responses via nitric oxide (NO) generated by NO synthase (NOS) I and II. We evaluated the contribution of soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) cascade and peroxynitrite in this process. PKG expression in ventrolateral medulla of Sprague-Dawley rats manifested an increase during the sympathoexcitatory phase (Phase I) of cardiovascular responses induced by microinjection of Mev bilaterally into the RVLM that was antagonized by co-administration of 7-nitroindazole or Nomega-propyl-L-arginine, two selective NOS I inhibitors or 1-H-[1,2,4]oxadiaolo[4,3-a]quinoxalin-1-one (ODQ), a selective sGC antagonist. Co-microinjection of ODQ or two PKG inhibitors, KT5823 or Rp-8-Br-cGMPS, also blunted the Mev-elicited sympathoexcitatory effects. However, the increase in nitrotyrosine, a marker for peroxynitrite, and the sympathoinhibitory circulatory actions during Phase II Mev intoxication were antagonized by co-administration of S-methylisothiourea, a selective NOS II inhibitor, Mn(III)-tetrakis-(4-benzoic acid) porphyrin, a superoxide dismutase mimetic, 5,10,15,20-tetrakis-N-methyl-4'-pyridyl)-porphyrinato iron (III), a peroxynitrite decomposition catalyst, or L-cysteine, a peroxynitrite scavenger. We conclude that sGC/cGMP/PKG cascade and peroxynitrite formation may participate in Mev-induced phasic cardiovascular responses as signals downstream to NO generated respectively by NOS I and II in the RVLM.  相似文献   

15.
1. The modulation of the guanosine 3':5'-cyclic monophosphate (cyclic GMP)- and adenosine 3':5'-cyclic monophosphate (cyclic AMP)-dependent protein kinase activities by the diastereomers of 8-bromo-beta phenyl-1, N2-ethenoguanosine 3':5'-cyclic monophosphorothioate, ((Rp)- and (Sp)-8-bromo-PET-cyclic GMPS) was investigated by use of purified protein kinases. In addition, the effects of (Rp)-8-bromo-PET-cyclic GMPS on protein phosphorylation in intact human platelets and on [3H]-noradrenaline release and neurogenic vasoconstriction in electrical field stimulated rat tail arteries were also studied. 2. Kinetic analysis with purified cyclic GMP-dependent protein kinase (PKG) type I alpha and I beta, which are expressed in the rat tail artery, revealed that (Rp)-8-bromo-PET-cyclic GMPS is a competitive inhibitor with an apparent Ki of 0.03 microM. The activation of purified cyclic AMP-dependent protein kinase (PKA) type II was antagonized with an apparent Ki of 10 microM. 3. In human platelets, (Rp)-8-bromo-PET-cyclic GMPS (0.1 mM) antagonized the activation of the PKG by the selective activator 8-(4-chlorophenylthio)-guanosine 3':5'-cyclic monophosphate (8-pCPT-cyclic GMP; 0.2 mM) without affecting the activation of PKA by (Sp)-5, 6-dichloro-1-beta-D-ribofurano-sylbenzimidazole- 3':5'-cyclic monophosphorothioate ((Sp)-5,6-DCl-cyclic BiMPS; 0.1 mM). 4. (Rp)-8-bromo-PET-cyclic GMPS was not hydrolysed by the cyclic GMP specific phosphodiesterase (PDE) type V from bovine aorta but potently inhibited this PDE. 5. The corresponding sulphur free cyclic nucleotide of the two studied phosphorothioate derivatives, 8-bromo-beta-phenyl-1, N2-ethenoguanosine-3':5'-cyclic monophosphate (8-bromo-PET-cyclic GMP), had no effect on electrically-induced [3H]-noradrenaline release but concentration-dependently decreased the stimulation-induced vasoconstriction. (Rp)-8-bromo-PET-cyclic GMPS (3 microM) shifted the vasoconstriction response to the right without affecting stimulation evoked tritium overflow. 6. The NO donor, 3-morpholinosydnonimine (SIN-1) relaxed rat tail arteries precontracted with phenylephrine (1 microM). The SIN-1 concentration-relaxation curve was shifted in a parallel manner to the right by (Rp)-8-bromo-PET-cyclic GMPS, suggesting that the relaxation was mediated by a cyclic GMP/PKG-dependent mechanism. 7. The [3H]-noradrenaline release-enhancing effect and stimulation-induced decrease in vasoconstriction of forskolin were unaffected by (Rp)-8-bromo-PET-cyclic GMPS. Moreover, the forskolin concentration-relaxation curve was not changed in the presence of the PKG inhibitor, suggesting a high selectivity in intact cells for PKG- over PKA-mediated effects. 8. The results obtained indicate that (Rp)-8-bromo-PET-cyclic GMPS presently is the most potent and selective inhibitor of PKG and is helpful in distinguishing between cyclic GMP and cyclic AMP messenger pathways activation. Therefore, this phosphorothioate stereomer may be a useful tool for studying the role of cyclic GMP in vitro.  相似文献   

16.
To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the whole-cell mode patch-clamp technique. Application of CO delivered by carbon monoxide-releasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3-induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3’s effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.  相似文献   

17.
The study of corticotropin‐releasing hormone is of significant interest in mental health. We have developed a radiobromination procedure for the preparation of [76Br]BMK‐I‐152, a high‐affinity corticotropin‐releasing hormone type 1 receptor antagonist. The radiobromination procedure resulted in the formation of two radiobrominated products from the same trialkyltin precursor. Utilizing the results of several reaction conditions and the chromatographic and mass spectral data obtained from Waters Acquity and Q‐TOF, we determined that both 3‐bromo and 4‐bromo isomers could be obtained. The authentic sample of the 3‐bromo isomer was prepared to confirm the identity of a previously unknown radioactive side product; affinity assays revealed that the 4‐bromo isomer had ~70 times higher affinity than that of the 3‐bromo compound. By manipulation of reaction conditions, the individual products could be selected. Under no‐carrier‐added conditions at room temperature in aqueous acetonitrile, the major radioactive product (>80%) was identified as the 3‐[76Br]bromo‐4‐tributylstannyl analogue of BMK‐I‐152. The 4‐[76Br]bromo isomer accounted for less than 1% of the total activity. The 3‐[76Br]bromo BMK‐I‐152 could be obtained by treating this intermediate with trifluoroacetic acid to effect removal of the trialkyltin. If the radiobromination was conducted after first evaporating the water from the aqueous ammonium hydroxide solution of [76Br]bromide, the desired 4‐[76Br]bromo isomer was obtained with a 58% radiochemical yield. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
1. The effects of membrane permeable analogues of guanosine 3':5'-cyclic monophosphate (cyclic GMP), and of the NO donor, 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1) were investigated on [3H]-noradrenaline release and neurogenic vasoconstriction in electrical field stimulated rat tail arteries. 2. Two 8-substituted analogues of cyclic GMP (8-bromoguanosine 3':5'-cyclic monophosphate; 8-bromo-cyclic GMP and 8-(4-chlorophenylthio)-guanosine 3':5'-cyclic monophosphate; 8-pCPT-cyclic GMP) concentration-dependently enhanced stimulation-induced [3H]-noradrenaline release. These prejunctional effects were antagonized by the cyclic AMP-dependent protein kinase (PKA) inhibitor N-[2-((3-(4-bromophenyl)-2-propenyl)-amino)-ethyl]-5 isoquinolinesulphonamide dihydrochloride (H-89; 100 nM) but not by the cyclic GMP-dependent protein kinase (PKG) inhibitors, Rp-8-bromoguanosine 3':5'-cyclic monophosphorothioate (Rp-8-bromo-cyclic GMPS; 10 microM) or Rp-8-(4-chlorophenylthio)-guanosine 3':5'-cyclic monophosphorothioate (Rp-8-pCPT-cyclic GMPS; 10 microM). 3. beta-Phenyl-1,N2-ethenoguanosine 3':5'-cyclic monophosphate (PET-cyclic GMP) had no effect on stimulation-induced [3H]-noradrenaline release but concentration-dependently decreased the stimulation-induced vasoconstriction. 4. The two 8-substituted cyclic GMP derivatives, PET-cyclic GMP and SIN-1, both decreased stimulation-induced vasoconstriction. In addition, SIN-1 relaxed rat tail arteries precontracted with phenylephrine (1 microM). The SIN-1 concentration-relaxation curve was shifted in parallel manner to the right by Rp-8-bromo-cyclic GMPS (10 microM) and Rp-8-pCPT-cyclic GMPS (10 microM) with no change in the maximum effect, showing that the relaxation was mediated by a cyclic GMP/PKG-dependent mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The presence of circulating plasma 17β‐oestradiol (E2) is beneficial in women against abnormal vascular tone development, such as coronary arterial vasospasms. Several vascular diseases have demonstrated that increased expression of the sarcoplasmic reticulum Ca2+‐ATPase pump (SERCA2b) serves to limit the excessive accumulation of intracellular Ca2+. Therefore, the hypothesis of the present study was that E2 would increase SERCA2b expression in the coronary vasculature. Coronary arteries were dissected from hearts obtained from mature female pigs. Artery segments were cultured for 24 h in E2 (1 pmol/L or 1 nmol/L) and homogenized for western blot analysis. At 1 nmol/L, E2 induced an approximate 50% increase in immunoreactivity for SERCA2b. In addition, E2 increased the protein expression of the known SERCA regulatory proteins, protein kinase A (PKA) and protein kinase G (PKG). The E2‐induced increase in SERCA2b was attenuated when the culture medium was supplemented with the oestrogen receptor (ER) α/β antagonist ICI 182,780 and the PKG antagonist KT5823 (10 μmol/L, 24 h for both). The PKA antagonist (KT5720; 10 μmol/L, 24 h) had no effect on SERCA2b expression. Removal of the endothelium (using a wooden toothpick) from artery segments prior to culture decreased the E2‐mediated increase in SERCA2b and PKG expression by 45% and 47%, respectively. Overall, the findings suggest that one of the potential cardiovascular benefits of E2 in women is upregulation of SERCA2b, via activation of the classic ERα and ERβ pathway.  相似文献   

20.
Migration and proliferation of vascular smooth muscle cells (SMC) in response to platelet-derived growth factor (PDGF) and other mitogens play an important role in restenosis after coronary angioplasty. Elevation of both cAMP and cGMP has been shown to inhibit SMC mitogenesis. The aim of this study was to examine the antimitogenic actions of organic nitrates and sildenafil and to clarify the role of cyclic nucleotide-dependent protein kinases (PKA, PKG) in this action. Organic nitrates [glycerol trinitrate (GTN), isosorbide 5'-mononitrate (ISMN), pentaerythrityl-tetranitrate (PETN)] and the PDE5 inhibitor sildenafil reduced PDGF-induced DNA synthesis, measured by ((3)H]thymidine incorporation. GTN, ISMN, and PETN acted synergistically with sildenafil (1 microM) on inhibition of PDGF-induced DNA synthesis, increase of intracellular cyclic nucleotides, and vasodilator-stimulated phosphoprotein phosphorylation. The highly selective PKA inhibitor PKI abolished these actions of sildenafil and organic nitrates, whereas the PKG inhibitors KT5823 and (Rp)-8-pCPT-cGMPS had no effect. In addition, selective activation of PKG without inhibition of PDE3 by the cGMP analog 8-pCPT-cGMP (100 microM) had no antimitogenic effect. The data suggest that 1) organic nitrates and sildenafil exert antimitogenic actions by activation of PKA via inhibition of PDE3, but not by activation of PKG and 2) that antimitogenic effects of organic nitrates are potentiated by sildenafil at therapeutic plasma levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号