首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal gene therapy potentially offers an effective therapeutic intervention to cure or slow the progression of neurological diseases. However, neuronal cells are difficult to transfect with nonviral vectors, and in vivo their transport across the blood–brain barrier (BBB) is inefficient. We synthesized a series of arginine-rich oligopeptides, grafted with polyethyleneimine (PEI) and modified with a short-chain polyethylene glycol (PEG). We hypothesized that the arginine would enhance cellular uptake and transport of these polyplexes across the BBB, with PEG imparting biocompatibility and “stealth” properties and PEI facilitating DNA condensation and gene transfection. The optimized composition of the polyplexes demonstrated hemocompatibility with red blood cells, causing no lysis or aggregation, and showed significantly better cytocompatibility than PEI in vitro. Polyplexes formulated with luciferase-expressing plasmid DNA could transfect rat primary astrocytes and neurons in vitro. Confocal imaging data showed efficient cellular uptake of DNA and its sustained intracellular retention and nuclear localization with polyplexes. Intravenous administration of the optimized polyplexes in mice led to gene expression in the brain, which upon further immunohistochemical analysis demonstrated gene expression in neurons. In conclusion, we have successfully designed a nonviral vector for in vitro and in vivo neuronal gene delivery.  相似文献   

2.
Gu J  Wang X  Jiang X  Chen Y  Chen L  Fang X  Sha X 《Biomaterials》2012,33(2):644-658
Biomaterials coated polymer/DNA complexes are developed as an efficient non-viral gene delivery system. It is able to circumvent the changes of various biophysical properties of the biomaterials and the corresponding polymer/DNA nanoparticles with covalent linkage. In the present study, we introduced pH-sensitive carboxymethyl poly (l-histidine) (CM-PLH) and poly (β-amino ester) (PbAE) as functional biomaterials to form CM-PLH/PbAE/DNA core-shell ternary complexes system based on electrostatically adsorbed coatings for gene efficient delivery and transfection. The preparation of the complexes was performed self-assembly in 25 mm sodium acetate buffer solution at pH 5.2. The complexes kept stable nano-size, behaving good condensation capacity and low toxicity, even provided a higher transfection efficiency than the binary complexes (PbAE/DNA without CM-PLH) and transfected up to (89.6 ± 4.45) % in HEK293 and (57.1 ± 2.10) % in B16-F10 in vitro. The ternary complexes significantly enhanced their cellular uptake and endosomal escape which were proved by the results that the complexes could evade the endosomal lumen and localize in the nucleus of treated cells visualized under Fluorescence Confocal Microscopy (FCM). The aforementioned results indicated that CM-PLH with pH-sensitive imidazole groups played an important role in enhancing the endosomal escape and transfection efficiency. The in vivo gene transfection confirmed that the ternary complexes with pGL3-promoter as led to effectively deposit at the tumor site by the EPR effect and shown 4 fold higher luciferase expression in B16-F10 tumor than the binary complexes. Consequently, CM-PLH/PbAE/DNA ternary complexes system exhibited significant improvements in transfection efficiency in comparison with non-coated PbAE/DNA both in vitro and in vivo, highlighting their functional prospect. Our approach and the gene delivery system fabrication could potentially be useful for effective gene delivery and therapies to targeted cells.  相似文献   

3.
Gene therapy using non-viral vectors that are safe and efficient in transfecting target cells is an effective approach to overcome the shortcomings of protein delivery of growth factors. The objective of this study was to develop and test a non-viral gene delivery system for bone regeneration utilizing a collagen scaffold to deliver polyethylenimine (PEI)-plasmid DNA (pDNA) [encoding platelet derived growth factor-B (PDGF-B)] complexes. The PEI-pPDGF-B complexes were fabricated at amine (N) to phosphate (P) ratio of 10 and characterized for size, surface charge, and in vitro cytotoxicity and transfection efficacy in human bone marrow stromal cells (BMSCs). The influence of the complex-loaded collagen scaffold on cellular attachment and recruitment was evaluated in vitro using microscopy techniques. The in vivo regenerative capacity of the gene delivery system was assessed in 5 mm diameter critical-sized calvarial defects in Fisher 344 rats. The complexes were ∼100 nm in size with a positive surface charge. Complexes prepared at an N/P ratio of 10 displayed low cytotoxicity as assessed by a cell viability assay. Confocal microscopy revealed significant proliferation of BMSCs on complex-loaded collagen scaffolds compared to empty scaffolds. In vivo studies showed significantly higher new bone volume/total volume (BV/TV) % in calvarial defects treated with the complex-activated scaffolds following 4 weeks of implantation (14- and 44-fold higher) when compared to empty defects or empty scaffolds, respectively. Together, these findings suggest that non-viral PDGF-B gene-activated scaffolds are effective for bone regeneration and are an attractive gene delivery system with significant potential for clinical translation.  相似文献   

4.
Delivery of DNA to cells remains a key challenge towards development of gene therapy. A better understanding of the properties involved in stability and transfection efficiency of the vector could critically contribute to the improvement of delivery vehicles. In the present work we have chosen two peptides differing only in amphipathicity and explored how presence of cysteine affects DNA uptake and transfection efficiency. We report an unusual observation that addition of cysteine selectively increases transfection efficiency of secondary amphipathic peptide (Mgpe-9) and causes a drop in the primary amphipathic peptide (Mgpe-10). Our results point the effect of cysteine is dictated by the importance of physicochemical properties of the carrier peptide. We also report a DNA delivery agent Mgpe-9 exhibiting high transfection efficiency in multiple cell lines (including hard-to-transfect cell lines) with minimal cytotoxicity which can be further explored for in vivo applications.  相似文献   

5.
Cationic carbon dots were fabricated by pyrolysis of citric acid and bPEI25k under microwave radiation. Various nanoparticles were produced in a 20–30% yield through straightforward modifications of the reaction parameters (stoichiometry of the reactants and energy supply regime). Particular attention was paid to the purification of the reaction products to ensure satisfactory elimination of the residual starting polyamine. Intrinsic properties of the particles (size, surface charge, photoluminescence and quantum yield) were measured and their ability to form stable complexes with nucleic acid was determined. Their potential to deliver plasmid DNA or small interfering RNA to various cell lines was investigated and compared to that of bPEI25k. The pDNA in vitro transfection efficiency of these carbon dots was similar to that of the parent PEI, as was their cytotoxicity. The higher cytotoxicity of bPEI25k/siRNA complexes when compared to that of the CD/siRNA complexes however had marked consequences on the gene silencing efficiency of the two carriers. These results are not fully consistent with those in some earlier reports on similar nanoparticles, revealing that toxicity of the carbon dots strongly depends on their protocol of fabrication. Finally, these carriers were evaluated for in vivo gene delivery through the non-invasive pulmonary route in mice. High transgene expression was obtained in the lung that was similar to that obtained with the golden standard formulation GL67A, but was associated with significantly lower toxicity. Post-functionalization of these carbon dots with PEG or targeting moieties should significantly broaden their scope and practical implications in improving their in vivo transfection efficiency and biocompatibility.  相似文献   

6.
Lack of safe and effective delivery vehicle is the main obstacle for siRNA mediated cancer therapy. In this study, we synthesized a pH-sensitive polymer of PEG grafted carboxymethyl chitosan (PEG-CMCS) and developed anionic-charged hybrid nanoparticles of PEG-CMCS and calcium phosphate (CaP) for siRNA delivery through a single-step self-assembly method in aqueous condition. The formed nanoparticles with charge of around −8.25 mv and average diameter of 102.1 nm exhibited efficient siRNA encapsulation and enhanced colloidal and serum stability. The test in vitro indicated that the nanoparticles entered into HepG2 cells by endocytosis, and achieved endosomal escape of siRNA effectively due to the pH-responsive disassembly of nanoparticles and dissolution of CaP in the endosome. Reporter gene silencing assay showed that luciferase siRNA delivered by the anionic nanoparticles could achieve gene silencing efficacy comparable to that of conventional Lipofectamine 2000. Additionally, dramatic hTERT knockdown mediated by the anionic nanoparticles transfection induced significant apoptosis of HepG2 cells in vitro. After intravenous injection in tumor-bearing BALB/c nude mice, the nanoparticles specifically accumulated into tumor regions by EPR effect, leading to efficient and specific gene silencing sequentially. Most importantly, the nanoparticles carrying hTERT siRNA inhibited tumor growth significantly via silencing hTERT expression and inducing cells apoptosis in HepG2 tumor xenograft. Moreover, comprehensive safety studies of the nanoparticles confirmed their superior safety both in vitro and in vivo. We concluded that the PEG-CMCS/CaP hybrid anionic nanoparticles possessed potential as a safe and effective siRNA delivery system for anticancer therapy.  相似文献   

7.

Background  

Polyethyleneimine (PEI), which can interact with negatively charged DNA through electrostatic interaction to form nanocomplexes, has been widely attempted to use as a gene delivery system. However, PEI has some defects that are not fit for keeping on gene expression. Therefore, some modifications against PEI properties have been done to improve their application value in gene delivery. In this study, three modified PEI derivatives, including poly(ε-caprolactone)-pluronic-poly(ε-caprolactone) grafted PEI (PCFC-g-PEI), folic acid-PCFC-isophorone diidocyanate-PEI (FA-PEAs) and heparin-PEI (HPEI), were evaluated in terms of their cytotoxicity and transfection efficiency in vitro and in vivo in order to ascertain their potential application in gene therapy.  相似文献   

8.
Marrero B  Heller R 《Biomaterials》2012,33(10):3036-3046
A large-scale in vitro 3D tumor model was generated to evaluate gene delivery procedures in vivo. This 3D tumor model consists of a “tissue-like” spheroid that provides a micro-environment supportive of melanoma proliferation, allowing cells to behave similarly to cells in vivo. This functional spheroid measures approximately 1 cm in diameter and can be used to effectively evaluate plasmid transfection when testing various electroporation (EP) electrode applicators. In this study, we identified EP conditions that efficiently transfect green fluorescent protein (GFP) and interleukin 15 (IL-15) plasmids into tumor cells residing in the 3D construct. We found that plasmids delivered using a 6-plate electrode applying 6 pulses with nominal electric field strength of 500 V/cm and pulse-length of 20 ms produced significant increase of GFP (7.3-fold) and IL-15 (3.0-fold) expression compared to controls. This in vitro 3D model demonstrates the predictability of cellular response toward delivery techniques, limits the numbers of animals employed for transfection studies, and may facilitate future developments of clinical trials for cancer therapies in vivo.  相似文献   

9.
Polyethylenimine (PEI) is widely applied in non-viral gene delivery vectors. PEI with high molecular weight is highly effective in gene transfection but is high cytotoxic. Conversely, PEI with low molecular weight displays lower cytotoxicity but less delivering efficiency. To overcome this issue, a novel copolymer with mannosylated, a cell-penetrating peptide (CPP), grafting into PEI with molecular weight of 1800 (Man-PEI1800-CPP) were prepared in this study to target antigen-presenting cells (APCs) with mannose receptors and enhance transfection efficiency with grafting CPP. The copolymer was characterized by 1H NMR and FTIR. Spherical nanoparticles were formed with diameters of about 80–250 nm by mixing the copolymer and DNA at various charge ratios of copolymer/DNA(N/P). Gel retardation assays indicated that Man-PEI1800-CPP polymers efficiently condensed DNA at low N/P ratios. Cytotoxicity studies showed that Man-PEI1800-CPP/DNA complexes maintained in a high percentage of cell viability compared to the PEI with molecular weight of 25 k (PEI25k). Laser scan confocal microscopy and flow cytometry confirmed that Man-PEI1800-CPP/DNA complexes resulted in higher cell uptake efficiency on DC2.4 cells than on Hela cells line. The transfection efficiency of Man-PEI1800-CPP was significantly higher than that of PEI25k on DC2.4 cells. More importantly, the complexes were mainly distributed in the epidermis and dermis of skin and targeted on splenocytes after percutaneous coating based on microneedles in vivo. These results indicated that Man-PEI1800-CPP was a potential APCs targeted of non-virus vector for gene therapy.  相似文献   

10.
Safety and high efficacy of vectors are essential requirements for gene therapy. To address these challenges, poly(carboxy betaine methacrylate ethyl ester)-poly(carboxy betaine methacrylate) (PCBMAEE-PCBMA) diblock copolymers were synthesized to form core–shell vector for gene delivery. The hydrophobic PCBMAEE segment, a polyzwitterionic precursor, can condense plasmid DNA (pDNA) into a hydrophobic core, which improves pDNA protection from nuclease attack and maintains the condensed structure against dilution. Moreover, the hydrolysis of PCBMAEE in uptaken gene vectors can enhance the pDNA release and reduce the cytotoxicity caused by the cationic polymer accumulation in the host cells. The PCBMA segment, zwitterionic fouling resistant material, is utilized to stabilize the gene vector in the complex medium and reduce the interference from serum proteins without impeding the endocytosis of DNA vector like PEG protection layer. Results showed that the complex formed by PCBMAEE50-PCBMA14 with luciferase or pEGFP gene exhibit higher transfection efficacy of pDNA than that formed by PEI 25 kDa or Lipofectamine® 2000 in tested cell lines (COS-7, HepG-2, HeLa, and HUVEC), especially, in difficult-to-transfect ones, such as HeLa and HUVEC. The luciferase expression level infected by the vectors of PCBMAEE50-PCBMA14/pGL-4 at N/P = 20/1 is 27 times of the branched PEI 25 kDa in COS-7 cells and 16 times of Lipofectamine® 2000 in HUVEC. Furthermore, the complex formed by PCBMAEE50-PCBMA14 also show advantages in transfection rate, dosage effectiveness and preservation of transfecting activity in serum contained growth medium. The luciferase expression of the vectors of PCBMAEE50-PCBMA14/pGL-4 at N/P = 20/1 is 230 times higher than that of PEI complex at low vector dosage (the 5% standard dosage). And the transfection rate is 25 times higher than that of PEI complex in 10% serum contained growth medium. In short, all these results indicated that the polymeric gene vector, consisted of convertible hydrophobic polyzwitterionic precursor and fixed polyzwitterionic fouling resistant segment, is a promising candidate for high and stable gene transfection in complex growth medium.  相似文献   

11.
To enhance the liver-specific delivery, HBVpreS/2-48myr (HBVP), a synthetic HBVpreS-derived lipopeptide endowed with compelling liver tropism, was conjugated to PEGylated liposomes (HBVP-Lip) for hepatic cell-specific delivery. Compared with the non-targeted liposomes, a significantly higher amount of HBVP-Lip were taken up by the primary mice hepatocytes through a receptor-mediated endocytosis mechanism. The endocytosis inhibition assay demonstrated that the endocytosis of HBVP-Lip was mediated mainly by caveolin and clathrin. After systemic administration in mice, HBVP-Lip could be specifically internalized into hepatocytes efficaciously. Furthermore, the hepatoprotective effects of HBVP-Lip loaded with silybin (SLB) on carbon tetrachloride induced acute liver damage were remarkably stronger than the SLB solution and SLB loaded non-targeted liposomes. Preliminary safety results suggested that no acute systemic toxicity or immunotoxicity was observed after intravenous administration with HBVP-Lip. These results indicated that the HBVP-Lip could deliver the payloads to the hepatocytes with high specificity in vitro and in vivo, and raise new possibilities for liver-specific drug delivery systems, gene delivery systems, and bio-imaging systems.  相似文献   

12.
Multiwalled carbon nanotubes (MWCNTs) are cut short and grafted with polyethylenimine (PEI) for further covalent conjugation to fluorescein isothiocyanate (FITC) and prostate stem cell antigen (PSCA) monoclonal antibody (mAb). The in vitro and in vivo toxicity data reveal that the as-prepared CNT-PEI(FITC)-mAb has good biocompatibility. Combined flow cytometry and confocal luminescence imaging experiments confirm that the CNT-PEI(FITC)-mAb can specifically target the cancer cells which overexpress PSCA. The results of in vitro and in vivo ultrasound (US) imaging indicate that CNT-PEI(FITC)-mAb has great potential to be used as a targeted US contrast agent. The in vivo anti-cancer efficacy testing using PC-3 tumor-bearing mice as animal models demonstrates that CNT-PEI(FITC)-mAb can targetedly deliver drug to the tumors and suppress tumor growth. Findings from this study suggest that the CNT-PEI(FITC)-mAb could be used as a multifunctional platform for simultaneous US imaging and drug delivery applications.  相似文献   

13.
Liu M  Li ZH  Xu FJ  Lai LH  Wang QQ  Tang GP  Yang WT 《Biomaterials》2012,33(7):2240-2250
The epidermal growth factor receptor (EGFR) is over-expressed in a wide variety of epithelial-derived cancer cells. In this study, EGFR-targeted gene carriers were designed to complex the therapeutic acetylcholinesterase gene (AChE gene), which suppresses cell proliferation via inactivating mitogen-activated protein kinase and PI3K/Akt pathways in cells, for treatment of EGFR-positive liver cancers. Different amounts of target ligand YC21 (an oligopeptide composed of 21 amino acid units) were coupled with the PEI600-CD (PC) vectors composed of β-cyclodextrin (β-CD) and low-molecular-weight polyethylenimine (PEI, Mw 600) to form the EGFR-targeted gene vectors (termed as YPCs). The YPC vectors possessed the highly efficient gene delivery ability to the EGFR-positive liver cancer cells. YPCs could effectively promote AChE gene expression. The YPC/AChE complexes produced excellent gene transfection abilities in EGFR-positive liver cancer cells in vitro and in vivo.  相似文献   

14.
Chemokine receptor CXCR4 and its sole ligand SDF-1 are key players in regulating cancer cell invasion and metastasis. Plerixafor (AMD3100) is a small-molecule CXCR4 antagonist that prevents binding of SDF-1 to CXCR4 and has potential in prevention of cancer metastasis. This study investigates the influence of biodegradability of a recently reported polymeric Plerixafor (PAMD) on CXCR4 antagonism, antimetastatic activity, and transfection efficacy of PAMD polyplexes with plasmid DNA. We show that PAMD exhibits CXCR4 antagonism and inhibition of cancer cell invasion in vitro regardless of its biodegradability. Biodegradable PAMD showed considerably enhanced transfection efficiency and decreased cytotoxicity when compared with the non-degradable PAMD. Despite similar CXCR4 antagonism in vitro, only biodegradable PAMD displayed antimetastatic activity in experimental lung metastasis model in vivo.  相似文献   

15.
A novel functional diblock polymer P(PEGMA-b-MAH) is prepared and incorporated to improve the gene delivery efficiency of poly(ethyleneimine) PEI via non-covalent assembly strategy. First, P(PEGMA-b-MAH) is prepared from l-methacrylamidohistidine methyl ester (MAH) by reversible addition fragmentation chain transfer polymerization, with poly[poly(ethylene glycol) methyl ether methacrylate] (P(PEGMA)) as the macroinitiator. Then P(PEGMA-b-MAH) is assembled with plasmid DNA (pDNA) and PEI (Mw = 10 kDa) to form PEI/P(PEGMA-b-MAH)/pDNA ternary complexes. The agarose gel retardation assay shows that the presence of P(PEGMA-b-MAH) does not interfere with DNA condensation by the PEI. Dynamic light scattering tests show that PEI/P(PEGMA-b-MAH)/pDNA ternary complexes have excellent serum stability. In vitro transfection indicates that, compared to the P(PEGMA-b-MAH) free PEI-25k/pDNA binary complexes, PEI-10k/P(PEGMA-b-MAH)/pDNA ternary complexes have lower cytotoxicity and higher gene transfection efficiency, especially under serum conditions. The ternary complexes proposed here can inspire a new strategy for the development of gene and drug delivery vectors.  相似文献   

16.
Steric stabilization of cationic liposome–DNA (CL–DNA) complexes is required for in vivo applications such as gene therapy. PEGylation (PEG: poly(ethylene glycol)) of CL–DNA complexes by addition of PEG2000-lipids yields sterically stabilized nanoparticles but strongly reduces their gene delivery efficacy. PEGylation-induced weakening of the electrostatic binding of CL–DNA nanoparticles to cells (leading to reduced uptake) has been considered as a possible cause, but experimental results have been ambiguous. Using quantitative live-cell imaging in vitro, we have investigated cell attachment and uptake of PEGylated CL–DNA nanoparticles with and without a custom synthesized RGD-peptide grafted to the distal ends of PEG2000-lipids. The RGD-tagged nanoparticles exhibit strongly increased cellular attachment as well as uptake compared to nanoparticles without grafted peptide. Transfection efficiency of RGD-tagged PEGylated CL–DNA NPs increases by about an order of magnitude between NPs with low and high membrane charge density (σM; the average charge per unit area of the membrane; controlled by the molar ratio of cationic to neutral lipid), even though imaging data show that uptake of RGD-tagged particles is only slightly enhanced by high σM. This suggests that endosomal escape and, as a result, transfection efficiency of RGD-tagged NPs is facilitated by high σM. We present a model describing the interactions between PEGylated CL–DNA nanoparticles and the anionic cell membrane which shows how the PEG grafting density and membrane charge density affect adhesion of nanoparticles to the cell surface.  相似文献   

17.
Nanoporous silicon particles (pSi), with a pore size in the range of 20–60 nm, were modified with polyethyleneimine (PEI) to yield pSi–PEI particles, which were subsequently complexed with siRNA. Thus, pSi–PEI/siRNA particles were fabricated, with the PEI/siRNA nanocomplexes mainly anchored inside the nanopore of the pSi particles. These hybrid particles were used as carriers to deliver siRNA to human breast cancer cells. Due to the gradual degradation of the pSi matrix under physiological conditions, the PEI/siRNA nanocomplexes were released from the pore interior in a sustained manner. Physicochemical characterization revealed that the released PEI/siRNA nanocomplexes exhibited well-defined spherical shape and narrow particle size distribution between 15 and 30 nm. Gene knockdown against the ataxia telangiectasia mutated (ATM) cancer gene showed dramatic gene silencing efficacy. Moreover, comprehensive biocompatibility studies were performed for the pSi–PEI/siRNA particles both in vitro and in vivo and demonstrated that the pSi–PEI particles exhibited significantly enhanced biocompatibility. As a consequence, PEI-modified porous silicon particles may have substantial potential as safe and effective siRNA delivery systems.  相似文献   

18.
Formulations of cationic liposomes and polymers readily self-assemble by electrostatic interactions with siRNA to form cationic nanoparticles which achieve efficient transfection and silencing in vitro. However, the utility of cationic formulations in vivo is limited due to rapid clearance from the circulation, due to their association with serum proteins, as well as systemic and cellular toxicity. These problems may be overcome with anionic formulations but they provide challenges of self-assembly and transfection efficiency. We have developed anionic, siRNA nanocomplexes utilizing anionic PEGylated liposomes and cationic targeting peptides that overcome these problems. Biophysical measurements indicated that at optimal ratios of components, anionic PEGylated nanocomplexes formed spherical particles and that, unlike cationic nanocomplexes, were resistant to aggregation in the presence of serum, and achieved significant gene silencing although their non-PEGylated anionic counterparts were less efficient. We have evaluated the utility of anionic nanoparticles for the treatment of neuronal diseases by administration to rat brains of siRNA to BACE1, a key enzyme involved in the formation of amyloid plaques. Silencing of BACE1 was achieved in vivo following a single injection of anionic nanoparticles by convection enhanced delivery and specificity of RNA interference verified by 5′ RACE-PCR and Western blot analysis of protein.  相似文献   

19.
Non-viral gene delivery holds great promise for promoting tissue regeneration, and offers a potentially safer alternative than viral vectors. Great progress has been made to develop biodegradable polymeric vectors for non-viral gene delivery in 2D culture, which generally involves isolating and modifying cells in vitro, followed by subsequent transplantation in vivo. Scaffold-mediated gene delivery may eliminate the need for the multiple-step process in vitro, and allows sustained release of nucleic acids in situ. Hydrogels are widely used tissue engineering scaffolds given their tissue-like water content, injectability and tunable biochemical and biophysical properties. However, previous attempts on developing hydrogel-mediated non-viral gene delivery have generally resulted in low levels of transgene expression inside 3D hydrogels, and increasing hydrogel stiffness further decreased such transfection efficiency. Here we report the development of biodegradable polymeric vectors that led to efficient gene delivery inside poly(ethylene glycol) (PEG)-based hydrogels with tunable matrix stiffness. Photocrosslinkable gelatin was maintained constant in the hydrogel network to allow cell adhesion. We identified a lead biodegradable polymeric vector, E6, which resulted in increased polyplex stability, DNA protection and achieved sustained high levels of transgene expression inside 3D PEG-DMA hydrogels for at least 12 days. Furthermore, we demonstrated that E6-based polyplexes allowed efficient gene delivery inside hydrogels with tunable stiffness ranging from 2 to 175 kPa, with the peak transfection efficiency observed in hydrogels with intermediate stiffness (28 kPa). The reported hydrogel-mediated gene delivery platform using biodegradable polyplexes may serve as a local depot for sustained transgene expression in situ to enhance tissue engineering across broad tissue types.  相似文献   

20.
The success of gene therapy relies on a safe and effective gene delivery system. In this communication, we describe the use of folate grafted PEI600–CyD (H1) as an effective polyplex-forming plasmid delivery agent with low toxicity. The structures of the polymer and polyplex were characterized, and the in vitro transfection efficiency, cytotoxicity, and in vivo transfection of H1 were examined. We found that folate molecules were successfully grafted to PEI600–CyD. At N/P ratios between 5 and 30, the resulting H1/DNA polyplexes had diameters less than 120 nm and zeta potentials less than 10 mV. In various tumor cell lines examined (U138, U87, B16, and Lovo), the in vitro transfection efficiency of H1 was more than 50%, which could be improved by the presence of fetal bovine serum or albumin. The cytotoxicity of H1 was significantly less than high molecular weight PEI-25 kDa. Importantly, in vivo optical imaging showed that the efficiency of H1-mediated transfection (50 μg luciferase plasmid (pLuc), N/P ratio = 20/1) was comparable to that of adenovirus-mediated luciferase transduction (1 × 109 pfu) in melanoma-bearing mice, and it did not induce any toxicity in the tumor tissue. These results clearly show that H1 is a safe and effective polyplex-forming agent for both in vitro and in vivo transfection of plasmid DNA and its application warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号