首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Non-healing bone defects present tremendous socioeconomic costs. Although successful in some clinical settings, bone morphogenetic protein (BMP) therapies require supraphysiological dose delivery for bone repair, raising treatment costs and risks of complications. We engineered a protease-degradable poly(ethylene glycol) (PEG) synthetic hydrogel functionalized with a triple helical, α2β1 integrin-specific peptide (GFOGER) as a BMP-2 delivery vehicle. GFOGER-functionalized hydrogels lacking BMP-2 directed human stem cell differentiation and produced significant enhancements in bone repair within a critical-sized bone defect compared to RGD hydrogels or empty defects. GFOGER functionalization was crucial to the BMP-2-dependent healing response. Importantly, these engineered hydrogels outperformed the current clinical carrier in repairing non-healing bone defects at low BMP-2 doses. GFOGER hydrogels provided sustained in vivo release of encapsulated BMP-2, increased osteoprogenitor localization in the defect site, enhanced bone formation and induced defect bridging and mechanically robust healing at low BMP-2 doses which stimulated almost no bone regeneration when delivered from collagen sponges. These findings demonstrate that GFOGER hydrogels promote bone regeneration in challenging defects with low delivered BMP-2 doses and represent an effective delivery vehicle for protein therapeutics with translational potential.  相似文献   

2.
The objective of this study is to investigate the effect of local inflammation suppression on the bone regeneration. Gelatin hydrogels incorporating mixed immunosuppressive triptolide-micelles and bone morphogenic protein-2 (BMP-2) were prepared. The controlled release of both the triptolide and BMP-2 from the hydrogels was observed under in vitro and in vivo conditions. When either J774.1 macrophage-like or MC3T3-E1 osteoblastic cells were cultured in the hydrogels incorporating mixed 2.5, 5 or 10 mg of triptolide-micelles and BMP-2, the expression level of pro- and anti-inflammatory cytokines including interleukin (IL)-6 and IL-10 was down-regulated, but the alkaline phosphatase (ALP) activity was promoted compared with those of hydrogels incorporating BMP-2 without triptolide-micelles. When implanted into a critical-sized bone defect of rats, the hydrogels incorporating mixed 2.5 or 5 mg of triptolide-micelles and BMP-2 showed significantly lower number of neutrophils, lymphocytes, macrophages or dendritic and mast cells infiltrated into the defect, and lower expression level of IL-6, TNF-α, and IL-10 than those incorporating BMP-2 without triptolide-micelles. The reduced local inflammation responses at the defects implanted with the hydrogels incorporating mixed 2.5 or 5 mg of triptolide-micelles and BMP-2 subsequently enhanced the bone regeneration thereat. It is concluded that the proper local modulation of inflammation responses is a promising way to achieve the enhanced bone regeneration.  相似文献   

3.
There is an urgent need to develop biomimetic bone tissue engineering scaffolds for the repair of critical-sized calvarial defect. In this study, we developed a new nanoparticle-embedded electrospun nanofiber scaffold for the controlled dual delivery of BMP-2 and dexamethasone (DEX). The scaffold was achieved by (1) the encapsulation of BMP-2 into bovine serum albumin (BSA) nanoparticles to maintain the bioactivity of BMP-2 and (2) the co-electrospinning of the blending solution composed of the BSA nanoparticles, DEX and the poly(ε-caprolactone)-co-poly(ethylene glycol) (PCE) copolymer. The in vitro studies showed that the bioactivity of DEX and BMP-2 was preserved in the dual-drug-loaded nanofiber scaffold, and a sequential release pattern in which most of the DEX was released in the original eight days and the BMP-2 release lasted up to 35 days was achieved. The in vitro osteogenesis study demonstrated that the drug-loaded groups exhibited a strong ability to induce differentiation toward osteoblasts. In vivo osteogenesis studies also revealed that the degrees of repair of rat calvarial defect achieved with the drug-loaded nanofiber scaffolds were significantly better than those obtained with the blank materials; in particular, the dual-drug-loaded nanofiber scaffold manifested the best repair efficacy due to a synergistic effect of BMP-2 and DEX. Therefore, the dual-drug-loaded nanofiber scaffold is deemed a strong potential candidate for the repair of bone defects in bone tissue engineering.  相似文献   

4.
Bone regeneration is a coordinated cascade of events regulated by several cytokines and growth factors. Angiogenic growth factors are predominantly expressed during the early phases for re-establishment of the vascularity, whereas osteogenic growth factors are continuously expressed during bone formation and remodeling. Since vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs) are key regulators of angiogenesis and osteogenesis during bone regeneration, the aim of this study was to investigate if their sequential release could enhance BMP-2-induced bone formation. A composite consisting of poly(lactic-co-glycolic acid) microspheres loaded with BMP-2 embedded in a poly(propylene) scaffold surrounded by a gelatin hydrogel loaded with VEGF was used for the sequential release of the growth factors. Empty composites or composites loaded with VEGF and/or BMP-2 were implanted ectopically and orthotopically in Sprague–Dawley rats (n = 9). Following implantation, the local release profiles were determined by measuring the activity of 125I-labeled growth factors using scintillation probes. After 8 weeks blood vessel and bone formation were analyzed using microangiography, μCT and histology. The scaffolds exhibited a large initial burst release of VEGF within the first 3 days and a sustained release of BMP-2 over the full 56-day implantation period. Although VEGF did not induce bone formation, it did increase the formation of the supportive vascular network (p = 0.03) in ectopic implants. In combination with local sustained BMP-2 release, VEGF significantly enhanced ectopic bone formation compared to BMP-2 alone (p = 0.008). In the orthotopic defects, no effect of VEGF on vascularisation was found, nor was bone formation higher by the combination of growth factors, compared to BMP-2 alone. This study demonstrates that a sequential angiogenic and osteogenic growth factor release may be beneficial for the enhancement of bone regeneration.  相似文献   

5.
While recombinant human bone morphogenetic protein (rhBMP)-2-based bone therapy presents potential osteoinductivity, it also leads concern due to transient osteoclast activation during early healing periods, ultimately limiting its clinical use. Therefore, we investigated in vivo and in vitro rhBMP-2 signaling which mediates early bone resorbing effect, depending on the dose, and attempted to inhibit this resorption phenomenon using NFAT inhibitor as a target molecule. High-dose of rhBMP-2 (20 μg/defect) enhanced osteoclast activation and the expression of bone resorption markers, compared to low dose (5 μg/defect) at one week after surgery in collagen sponge-delivered rat calvarial defect models. Interestingly, this trend was also observed in the expression of bone formation markers. In particular, rhBMP-2 upregulated RANKL expression, while it downregulated osteoprotegerin (OPG) expression, resulting in a dose-dependent increase in the ratio of RANKL to OPG. NFAT inhibitor (150 μm) treatment in vivo suppressed the high-dose effect of rhBMP-2 on both resorption and formation. In vitro results of rhBMP-2 signaling and NFAT inhibitor effects in rat mesenchymal stem cells showed similar trends as in vivo results. Microcomputer tomography-based evaluation at 4 weeks showed that combined treatment of NFAT inhibitor with 20 μg rhBMP-2 in vivo increased bone volume (BV) more than 20 μg rhBMP-2 alone, which showed little difference in BV compared to 5 μg of rhBMP-2. These results demonstrated that rhBMP-2 implantation concurrently signalized into enhanced osteoclastogenesis and osteoblastogenesis in vivo, dose-dependently. Ratio of RANKL/OPG might be an index for early bone resorbing activity of implanted rhBMP-2. A local cocktail treatment of NFAT inhibitor and high-dose rhBMP-2 might be an alternative to overcome early bone resorbing effects, thereby accelerating bone formation.  相似文献   

6.
Although rhBMP-2 has excellent ability to accelerate the repair of normal bone defects, limitations of its application exist in the high cost and potential side effects. This study aimed to develop a composite photopolymerisable hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles (PH/rhBMP-2/NPs) as the bone substitute to realize segmental bone defect repair at a low growth factor dose. Firstly rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles (rhBMP-2/NPs) were prepared and characterized by DLS and TEM. Composite materials, PH/rhBMP-2/NPs were developed and investigated by SEM-EDS as well as a series of physical characterizations. Using hMSCs as an in vitro cell model, composite photopolymerisable hydrogels incorporating NPs (PH/NPs) showed good cell viability, cell adhesion and time dependent cell ingrowth. In vitro release kinetics of rhBMP-2 showed a significantly lower initial burst release from the composite system compared with the growth factor-loaded particles alone or encapsulated directly within the hydrogel, followed by a slow release over time. The bioactivity of released rhBMP-2 was validated by alkaline phosphatase (ALP) activity as well as a mineralization assay. In in vivo studies, the PH/rhBMP-2/NPs induced ectopic bone formation in the mouse thigh. In addition, we further investigated the in vivo effects of rhBMP-2-loaded scaffolds in a rabbit radius critical defect by three dimensional micro-computed tomographic (μCT) imaging, histological analysis, and biomechanical measurements. Animals implanted with the composite hydrogel containing rhBMP-2-loaded nanoparticles underwent gradual resorption with more pronounced replacement by new bone and induced reunion of the bone marrow cavity at 12 weeks, compared with animals implanted with hydrogel encapsulated growth factors alone. These data provided strong evidence that the composite PH/rhBMP-2/NPs are a promising substitute for bone tissue engineering.  相似文献   

7.
Successful bone tissue engineering generally requires an osteoconductive scaffold that consists of extracellular matrix (ECM) to mimic the natural environment. In this study, we developed a PLGA/PLA-based mesh scaffold coated with cell-derived extracellular matrix (CDM) for the delivery of bone morphogenic protein (BMP-2), and assessed the capacity of this system to provide an osteogenic microenvironment. Decellularized ECM from human lung fibroblasts (hFDM) was coated onto the surface of the polymer mesh scaffolds, upon which heparin was then conjugated onto hFDM via EDC chemistry. BMP-2 was subsequently immobilized onto the mesh scaffolds via heparin, and released at a controlled rate. Human placenta-derived mesenchymal stem cells (hPMSCs) were cultured in such scaffolds and subjected to osteogenic differentiation for 28 days in vitro. The results showed that alkaline phosphatase (ALP) activity, mineralization, and osteogenic marker expression were significantly improved with hPMSCs cultured in the hFDM-coated mesh scaffolds compared to the control and fibronectin-coated ones. In addition, a mouse ectopic and rat calvarial bone defect model was used to examine the feasibility of current platform to induce osteogenesis as well as bone regeneration. All hFDM-coated mesh groups exhibited a significant increase of newly formed bone and in particular, hFDM-coated mesh scaffold loaded with a high dose of BMP-2 exhibited a nearly complete bone defect healing as confirmed via micro-CT and histological observation. This work proposes a great potency of using hFDM (biophysical) coupled with BMP-2 (biochemical) as a promising osteogenic microenvironment for bone tissue engineering applications.  相似文献   

8.
Local statins implant has been shown to promote bone healing, the underlying mechanisms are unclear. The purpose of this study was to test the effect of local simvastatin implant on bone defect healing; to evaluate the mobilization, migration, and homing of bone marrow-derived mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs) induced by simvastatin. We found that local simvastatin implant increased bone formation by 51.8% (week 6) and 64.8% (week 12) compared with polyglycolic acid controls (P < 0.01), as verified by X-ray, CT, and histology. Simvastatin increased migration capacity of BMSCs and EPCs in vitro (P < 0.05). Local simvastatin implant increased mobilization of EPCs to the peripheral blood by 127% revealed by FACS analysis (P < 0.01), and increased osteogenic BMSCs to the peripheral blood dramatically revealed by Alizarin Red-S staining for mineralized nodules formation. Pre-transplanted GFP-transfected BMSCs as a tracing cell and bioluminescence imaging revealed that local simvastatin implant recruited GFP-labeled BMSC. Also, local simvastatin implant induced the HIF-1α and BMP-2 expression. In conclusion, local simvastatin implantation promotes bone defect healing, where the underlying mechanism appears to involve the higher expression of HIF-1α and BMP-2, thus recruit autogenous osteogenic and angiogenetic stem cells to the bone defect area implanted with simvastatin.  相似文献   

9.
Bone morphogenetic protein-2/absorbable collagen sponge (BMP-2/ACS) implants have been approved for clinical use to induce bone regeneration. We previously showed that exaggerated inflammation characterized by elevated level of inflammatory cytokines including TNF-α, IL-1β, and IL-6 has been shown to inhibit BMP-2/ACS-induced bone regeneration. Furthermore, unlike the negative effects of TNF-α and IL-1β, IL-6 seemed not to affect BMP-2-induced osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs). We hypothesized that there may be a regulatory loop between IL-6 and BMP-2 singling to affect BMP-2/ACS-induced bone regeneration. Here, we established a BMP-2/ACS-induced ectopic bone formation model in rats and fund that IL-6 injection significantly increased BMP-2/ACS-induced bone mass. Consistent with this animal model, an in vitro study demonstrated that synergy between IL-6 and soluble IL-6 receptor (IL-6/sIL-6R) promotes BMP-2-induced osteoblastic differentiation of human BMSCs through amplification of BMP/Smad signaling. Strikingly, IL-6 injection did not activate osteoclast-mediated bone resorption in the ectopic bone formation model, and IL-6/sIL-6R treatment did not affect receptor activator of NF-κB ligand (RANKL)-induced osteoclastic differentiation of human peripheral blood mononuclear cells (PBMCs) in vitro. Furthermore, IL-6/sIL-6R treatment did not affect expression of BMP receptors, but enhanced the cell surface translocation of BMP receptor IA (BMPRIA) and inhibited the degradation of BMPRIA. Collectively, these findings indicate that synergy between IL-6 and sIL-6R promotes the cell surface translocation of BMPRIA and maintains the stability of BMPRIA expression, leading to enhanced BMP-2/ACS-induced bone regeneration.  相似文献   

10.
In this work we have evaluated the capacity of bone morphogenetic protein-2 (BMP-2) and fibrin-binding platelet-derived growth factor-BB (PDGF-BB) to support cell growth and induce bone regeneration using two different imaging technologies to improve the understanding of structural and organizational processes participating in tissue repair. Human mesenchymal stem cells from adipose tissue (hAMSCs) expressing two luciferase genes, one under the control of the cytomegalovirus (CMV) promoter and the other under the control of a tissue-specific promoter (osteocalcin or platelet endothelial cell adhesion molecule), were seeded in fibrin matrices containing BMP-2 and fibrin-binding PDGF-BB, and further implanted intramuscularly or in a mouse calvarial defect. Then, cell growth and bone regeneration were monitored by bioluminescence imaging (BLI) to analyze the evolution of target gene expression, indicative of cell differentiation towards the osteoblastic and endothelial lineages. Non-invasive imaging was supplemented with micro-computed tomography (μCT) to evaluate bone regeneration and high-resolution μCT of vascular casts. Results from BLI showed hAMSC growth during the first week in all cases, followed by a rapid decrease in cell number; as well as an increment of osteocalcin but not PECAM-1 expression 3 weeks after implantation. Results from μCT show that the delivery of BMP-2 and PDGF-BB by fibrin induced the formation of more bone and improves vascularization, resulting in more abundant and thicker vessels, in comparison with controls. Although the inclusion of hAMSCs in the fibrin matrices made no significant difference in any of these parameters, there was a significant increment in the connectivity of the vascular network in defects treated with hAMSCs.  相似文献   

11.
Mechanical properties of the extracellular matrix (ECM) play an essential role in cell fate determination. To study the role of mechanical properties of ECM in stem cell-mediated bone regeneration, we used a 3D in vivo ossicle model that recapitulates endochondral bone formation. Three-dimensional gelatin scaffolds with distinct stiffness were developed using 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) mediated zero-length crosslinking. The mechanical strength of the scaffolds was significantly increased by EDC treatment, while the microstructure of the scaffold was preserved. Cell behavior on the scaffolds with different mechanical properties was evaluated in vitro and in vivo. EDC-treated scaffolds promoted early chondrogenic differentiation, while it promoted both chondrogenic and osteogenic differentiation at later time points. Both micro-computed tomography and histologic data demonstrated that EDC-treatment significantly increased trabecular bone formation by transplanted cells transduced with AdBMP. Moreover, significantly increased chondrogenesis was observed in the EDC-treated scaffolds. Based on both in vitro and in vivo data, we conclude that the high mechanical strength of 3D scaffolds promoted stem cell mediated bone regeneration by promoting endochondral ossification. These data suggest a new method for harnessing stem cells for bone regeneration in vivo by tailoring the mechanical properties of 3D scaffolds.  相似文献   

12.
Recent studies have demonstrated the ability of murine anti-BMP-2 monoclonal antibodies (mAb) immobilized on an absorbable collagen sponge (ACS) to mediate de novo bone formation, a process termed antibody-mediated osseous regeneration (AMOR). The objectives of this study were to assess the efficacy of a newly generated chimeric anti-BMP-2 mAb in mediating AMOR, as well as to evaluate the suitability of different biomaterials as scaffolds to participate in AMOR. Chimeric anti-BMP-2 mAb was immobilized on 4 biomaterials, namely, titanium microbeads (Ti), alginate hydrogel, macroporous biphasic calcium phosphate (MBCP) and ACS, followed by surgical implantation into rat critical-size calvarial defects. Animals were sacrificed after 8 weeks and the degree of bone fill was assessed using micro-CT and histomorphometry. Results demonstrated local persistence of chimeric anti-BMP-2 mAb up to 8 weeks, as well as significant de novo bone regeneration in sites implanted with chimeric anti-BMP-2 antibody immobilized on each of the 4 scaffolds. Ti and MBCP showed the highest volume of bone regeneration, presumably due to their resistance to compression. Alginate and ACS also mediated de novo bone formation, though significant volumetric shrinkage was noted. In vitro assays demonstrated cross-reactivity of chimeric anti-BMP-2 mAb with BMP-4 and BMP-7. Immune complex of anti-BMP-2 mAb with BMP-2 induced osteogenic differentiation of C2C12 cells in vitro, involving expression of RUNX2 and phosphorylation of Smad1. The present data demonstrated the ability of chimeric anti-BMP-2 mAb to functionalize different biomaterial with varying characteristics to mediate osteogenesis.  相似文献   

13.
Absorbable collagen sponges (ACS) are used clinically as carriers of recombinant human bone morphogenetic protein 2 (rhBMP-2) to promote bone regeneration. ACS exhibit ectopic bone growth due to delivery of supraphysiological levels of rhBMP-2, which is particularly problematic in craniofacial bone injuries for both functional and esthetic reasons. We hypothesized that hydrogels from the reduced form of keratin proteins (kerateine) would serve as a suitable alternative to ACS carriers of rhBMP-2. The rationale for this hypothesis is that keratin biomaterials degrade slowly in vivo, have modifiable material properties, and have demonstrated capacity to deliver therapeutic agents. We investigated kerateine hydrogels and freeze-dried scaffolds as rhBMP-2 carriers in a critically-sized rat mandibular defect model. ACS, kerateine hydrogels, and kerateine scaffolds loaded with rhBMP-2 achieved bridging in animals by 8 weeks as indicated by micro-computed tomography. Kerateine scaffolds achieved statistically increased bone mineral density compared to ACS and kerateine hydrogels, with levels reaching those of native bone. Importantly, both kerateine hydrogels and kerateine scaffolds had significantly less ectopic bone growth than ACS sponges at both 8 and 16 weeks post-operatively. These studies demonstrate the suitability of keratins as rhBMP-2 carriers due to equal regenerative capacity with reduced ectopic growth compared to ACS.  相似文献   

14.
Repair of large calvarial bony defect remains a challenge for orthopedic surgeons. Since microRNAs (miRNAs) modulate the osteogenesis of osteoprogenitor cells, we aimed to engineer human adipose-derived stem cells (hASCs), a promising cell source for bone engineering, with miRNA-expressing baculovirus vectors. We constructed 4 baculoviruses each expressing 1 human miRNA (miR-26a, miR-29b, miR-148b, miR-196a) and verified that the miRNA-expressing baculovirus vectors augmented hASCs osteogenesis. Among these 4 miRNAs, miR-148b and miR-196a exerted more potent osteoinductive effects than miR-26a and miR-29b. Furthermore, we unveiled that co-transduction of hASCs with miR-148b-expressing and bone morphogenetic protein 2 (BMP-2)-expressing baculovirus vectors enhanced and prolonged BMP-2 expression, and synergistically promoted the in vitro osteogenic differentiation of hASCs. Implantation of the hASCs co-expressing BMP-2/miR-148b into critical-size (4 mm in diameter) calvarial bone defects in nude mice accelerated and potentiated the bone healing and remodeling, filling ≈94% of defect area and ≈89% of defect volume with native calvaria-like flat bone in 12 weeks, as judged from micro computed tomography, histology and immunohistochemical staining. Altogether, this study confirmed the feasibility of combining miRNA and growth factor expression for synergistic stimulation of in vitro osteogenesis and in vivo calvarial bone healing.  相似文献   

15.
The most important property of a bone cement or a bone substitute in load bearing orthopaedic implants is good integration with host bone with reduced bone resorption and increased bone regeneration at the implant interface. Long term implantation of metal-based joint replacements often results in corrosion and particle release, initiating chronic inflammation leading onto osteoporosis of host bone. An alternative solution is the coating of metal implants with hydroxyapatite (HA) or bioglass or the use of bulk bioglass or HA-based composites. In the above perspective, the present study reports the in vivo biocompatibility and bone healing of the strontium (Sr)-stabilized bulk glass ceramics with the nominal composition of 4.5SiO2–3Al2O3–1.5P2O5–3SrO–2SrF2 during short term implantation of up to 12 weeks in rabbit animal model. The progression of healing and bone regeneration was qualitatively and quantitatively assessed using fluorescence microscopy, histological analysis and micro-computed tomography. The overall assessment of the present study establishes that the investigated glass ceramic is biocompatible in vivo with regards to local effects after short term implantation in rabbit animal model. Excellent healing was observed, which is comparable to that seen in response to a commercially available implant of HA-based bioglass alone.  相似文献   

16.
Steroid-associated osteonecrosis (SAON) may lead to joint collapse and subsequent joint replacement. Poly lactic-co-glycolic acid/tricalcium phosphate (P/T) scaffold providing sustained release of icaritin (a metabolite of Epimedium-derived flavonoids) was investigated as a bone defect filler after surgical core-decompression (CD) to prevent femoral head collapse in a bipedal SAON animal model using emu (a large flightless bird). The underlying mechanism on SAON was evaluated using a well-established quadrupedal rabbit model. Fifteen emus were established with SAON, and CD was performed along the femoral neck for the efficacy study. In this CD bone defect, a P/T scaffold with icaritin (P/T/I group) or without icaritin (P/T group) was implanted while no scaffold implantation was used as a control. For the mechanistic study in rabbits, the effects of icaritin and composite scaffolds on bone mesenchymal stem cells (BMSCs) recruitment, osteogenesis, and anti-adipogenesis were evaluated. Our efficacy study showed that P/T/I group had the significantly lowest incidence of femoral head collapse, better preserved cartilage and mechanical properties supported by more new bone formation within the bone tunnel. For the mechanistic study, our in vitro tests suggested that icaritin enhanced the expression of osteogenesis related genes COL1α, osteocalcin, RUNX2, and BMP-2 while inhibited adipogenesis related genes C/EBP-ß, PPAR-γ, and aP2 of rabbit BMSCs. Both P/T and P/T/I scaffolds were demonstrated to recruit BMSCs both in vitro and in vivo but a higher expression of migration related gene VCAM1 was only found in P/T/I group in vitro. In conclusion, both efficacy and mechanistic studies show the potential of a bioactive composite porous P/T scaffold incorporating icaritin to enhance bone defect repair after surgical CD and prevent femoral head collapse in a bipedal SAON emu model.  相似文献   

17.
The purpose of this study was to investigate the cooperative effects of simvastatin (SIM) and stromal cell-derived factor-1α (SDF-1α) on the osteogenic and migration capabilities of mesenchymal stem cells (MSCs), and construct a cell-free bone tissue engineering system comprising SIM, SDF-1α and scaffold. We found that 0.2 μm SIM significantly increased alkaline phosphatase activity (P < 0.05) of mouse bone marrow MSCs with no inhibition of cell proliferation, and enhanced the chemotactic capability of SDF-1α (P < 0.05). Next, we constructed a novel cell-free bone tissue engineering system using PLGA loaded with SIM and SDF-1α, and applied it in critical-sized calvarial defects in mice. New bone formation in the defect was evaluated by micro-CT, HE staining and immunohistochemistry. The results showed that PLGA loaded with SIM and SDF-1α promoted bone regeneration significantly more than controls. We investigated possible mechanisms, and showed that SDF-1α combined with SIM increased MSC migration and homing in vivo, promoted angiogenesis and enhanced the expression of BMP-2 in newly-formed bone tissue. In conclusion, SIM enhanced the chemotactic capability of SDF-1α and the cell-free bone tissue engineering system composed of SIM, SDF-1α and scaffold promoted bone regeneration in mouse critical-sized calvarial defects.  相似文献   

18.
The search for alternative therapies to improve bone regeneration continues to be a major challenge for the medical community. Here we report on the enhanced mineralization, osteogenesis, and in vivo bone regeneration properties of a bioactive elastin-like recombinamer (ELR) membrane. Three bioactive ELRs exhibiting epitopes designed to promote mesenchymal stem cell adhesion (RGDS), mineralization (DDDEEKFLRRIGRFG), and both cell adhesion and mineralization were synthesized using standard recombinant protein techniques. The ELR materials were then used to fabricate membranes comprising either a smooth surface (Smooth) or channel microtopographies (Channels). Mineralization and osteoblastic differentiation of primary rat mesenchymal stem cells (rMSCs) were analyzed in both static and dynamic (uniaxial strain of 8% at 1 Hz frequency) conditions. Smooth mineralization membranes in static condition exhibited the highest quantity of calcium phosphate (Ca/P of 1.78) deposition with and without the presence of cells, the highest Young's modulus, and the highest production of alkaline phosphatase on day 10 in the presence of cells growing in non-osteogenic differentiation medium. These membranes were tested in a 5 mm-diameter critical-size rat calvarial defect model and analyzed for bone formation on day 36 after implantation. Animals treated with the mineralization membranes exhibited the highest bone volume within the defect as measured by micro-computed tomography and histology with no significant increase in inflammation. This study demonstrates the possibility of using bioactive ELR membranes for bone regeneration applications.  相似文献   

19.
With biomimetic biomaterials, like calcium phosphate cements (CPCs), non-invasive assessment of tissue regeneration is challenging. This study describes a theranostic agent (TA) to simultaneously enhance both imaging and osteogenic properties of such a bone substitute material. For this purpose, mesoporous silica beads were produced containing an iron oxide core to enhance bone magnetic resonance (MR) contrast. The same beads were functionalized with silane linkers to immobilize the osteoinductive protein BMP-2, and finally received a calcium phosphate coating, before being embedded in the CPC. Both in vitro and in vivo tests were performed. In vitro testing showed that the TA beads did not interfere with essential material properties like cement setting. Furthermore, bioactive BMP-2 could be efficiently released from the carrier-beads. In vivo testing in a femoral condyle defect rat model showed long-term MR contrast enhancement, as well as improved osteogenic capacity. Moreover, the TA was released during CPC degradation and was not incorporated into the newly formed bone. In conclusion, the described TA was shown to be suitable for longitudinal material degradation and bone healing studies.  相似文献   

20.
The facts that biomaterials affect the behavior of single type of cells have been widely accepted. However, the effects of biomaterials on cell–cell interactions have rarely been reported. Bone tissue engineering involves osteoblastic cells (OCs), endothelial cells (ECs) and the interactions between OCs and ECs. It has been reported that silicate biomaterials can stimulate osteogenic differentiation of OCs and vascularization of ECs. However, the effects of silicate biomaterials on the interactions between ECs and OCs during vascularization and osteogenesis have not been reported, which are critical for bone tissue regeneration in vivo. Therefore, this study aimed to investigate the effects of calcium silicate (CS) bioceramics on interactions between human umbilical vein endothelial cells (HUVECs) and human bone marrow stromal cells (HBMSCs) and on stimulation of vascularization and osteogenesis in vivo through combining co-cultures with CS containing scaffolds. Specifically, the effects of CS on the angiogenic growth factor VEGF, osteogenic growth factor BMP-2 and the cross-talks between VEGF and BMP-2 in the co-culture system were elucidated. Results showed that CS stimulated co-cultured HBMSCs (co-HBMSCs) to express VEGF and the VEGF activated its receptor KDR on co-cultured HUVECs (co-HUVECs), which was also up-regulated by CS. Then, BMP-2 and nitric oxide expression from the co-HUVECs were stimulated by CS and the former stimulated osteogenic differentiation of co-HBMSCs while the latter stimulated vascularization of co-HVUECs. Finally, the poly(lactic-co-glycolic acid)/CS composite scaffolds with the co-cultured HBMSCs and HUVECs significantly enhanced vascularization and osteogenic differentiation in vitro and in vivo, which indicates that it is a promising way to enhance bone regeneration by combining scaffolds containing silicate bioceramics and co-cultures of ECs and OCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号