首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although T cell dysfunction and lymphopenia are key features of immunodeficient patients with the Wiskott-Aldrich syndrome and Wiskott-Aldrich syndrome protein (WASP)-deficient mice, T cell development appears relatively normal. We hypothesized that N-WASP, a ubiquitously expressed homologue of WASP, may serve a redundant function with WASP. To examine the unique and redundant activities of WASP and N-WASP, we generated ES cells devoid of WASP and N-WASP [double knockout (DKO)] and used the RAG-2-deficient blastocyst complementation system to generate DKO lymphocytes. Moreover, we mated WASP KO mice with mice containing a conditionally targeted N-WASP allele and used the Cre-loxP system to generate mice lacking WASP and N-WASP in T cells [conditional DKO (cDKO)]. In both systems, N-WASP-deficient cells were indistinguishable from WT cells. In contrast, T cell development in DKO and cDKO mice was markedly altered, as shown by thymic hypocellularity and reduced numbers of peripheral T cells. We found that the combined activity of WASP and N-WASP was important for CD4(-)CD8(-) double-negative (DN)-to-CD4(+)CD8(+) double-positive (DP) cell transition, and this may be partly explained by reduced cycling DN3 cells. In addition, decreased migratory responses of CD4(+)CD8(-) and CD4(-)CD8(+) single-positive (SP) cells and increased percentage of CD69(low)CD24(low) and CD62L(low) SP cells in cDKO cells imply retention of SP cells in the thymus. In summary, this study suggests that, although WASP serves a unique role for peripheral T cell function, T cell development depends on the combined activity of WASP and N-WASP.  相似文献   

2.
Wiskott-Aldrich syndrome protein (WASP) is in a complex with WASP-interacting protein (WIP). WASP levels, but not mRNA levels, were severely diminished in T cells from WIP(-/-) mice and were increased by introduction of WIP in these cells. The WASP binding domain of WIP was shown to protect WASP from degradation by calpain in vitro. Treatment with the proteasome inhibitors MG132 and bortezomib increased WASP levels in T cells from WIP(-/-) mice and in T and B lymphocytes from two WAS patients with missense mutations (R86H and T45M) that disrupt WIP binding. The calpain inhibitor calpeptin increased WASP levels in activated T and B cells from the WASP patients, but not in primary T cells from the patients or from WIP(-/-) mice. Despite its ability to increase WASP levels proteasome inhibition did not correct the impaired IL-2 gene expression and low F-actin content in T cells from the R86H WAS patient. These results demonstrate that WIP stabilizes WASP and suggest that it may also be important for its function.  相似文献   

3.
Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 (WH2) is a small and widespread actin-binding motif. In the WASP family, WH2 plays a role in filament nucleation by Arp2/3 complex. Here we describe the crystal structures of complexes of actin with the WH2 domains of WASP, WASP-family verprolin homologous protein, and WASP-interacting protein. Despite low sequence identity, WH2 shares structural similarity with the N-terminal portion of the actin monomer-sequestering thymosin beta domain (Tbeta). We show that both domains inhibit nucleotide exchange by targeting the cleft between actin subdomains 1 and 3, a common binding site for many unrelated actin-binding proteins. Importantly, WH2 is significantly shorter than Tbeta but binds actin with approximately 10-fold higher affinity. WH2 lacks a C-terminal extension that in Tbeta4 becomes involved in monomer sequestration by interfering with intersubunit contacts in F-actin. Owing to their shorter length, WH2 domains connected in tandem by short linkers can coexist with intersubunit contacts in F-actin and are proposed to function in filament nucleation by lining up actin subunits along a filament strand. The WH2-central region of WASP-family proteins is proposed to function in an analogous way by forming a special class of tandem repeats whose function is to line up actin and Arp2 during Arp2/3 nucleation. The structures also suggest a mechanism for how profilin-binding Pro-rich sequences positioned N-terminal to WH2 could feed actin monomers directly to WH2, thereby playing a role in filament elongation.  相似文献   

4.
Wiskott Aldrich syndrome (WAS) is caused by mutations in the WAS gene that encodes for a protein (WASp) involved in cytoskeleton organization in hematopoietic cells. Several distinctive abnormalities of T, B, and natural killer lymphocytes; dendritic cells; and phagocytes have been found in WASp-deficient patients and mice; however, the in vivo consequence of WASp deficiency within individual blood cell lineages has not been definitively evaluated. By conditional gene deletion we have generated mice with selective deficiency of WASp in the B-cell lineage (B/WcKO mice). We show that this is sufficient to cause a severe reduction of marginal zone B cells and inability to respond to type II T-independent Ags, thereby recapitulating phenotypic features of complete WASp deficiency. In addition, B/WcKO mice showed prominent signs of B-cell dysregulation, as indicated by an increase in serum IgM levels, expansion of germinal center B cells and plasma cells, and elevated autoantibody production. These findings are accompanied by hyperproliferation of WASp-deficient follicular and germinal center B cells in heterozygous B/WcKO mice in vivo and excessive differentiation of WASp-deficient B cells into class-switched plasmablasts in vitro, suggesting that WASp-dependent B cell-intrinsic mechanisms critically contribute to WAS-associated autoimmunity.  相似文献   

5.
PURPOSE OF REVIEW: Mutations of the Wiskott-Aldrich syndrome protein can result in highly variable clinical symptoms that affect the hematopoietic/immunologic system. The responsible gene, WASP, has multiple domains, each with unique functions that were only recently fully recognized. RECENT FINDINGS: Two new comprehensive studies of patients with mutations of the Wiskott-Aldrich syndrome protein unequivocally demonstrated a strong phenotype-genotype correlation; the most predictive variable was the presence or absence of the Wiskott-Aldrich syndrome protein in the lymphoid cells from patients with X-linked thrombocytopenia or Wiskott-Aldrich syndrome, respectively. A third clinical study revealed a high rate (>70%) of autoimmune disorders in patients with classic Wiskott-Aldrich syndrome, possibly caused by immune dysregulation involving both T and B cell defects. In addition, the Wiskott-Aldrich syndrome protein is required for natural killer cell function by participating in the formation of immunologic synapses and facilitating the nuclear translocation of nuclear factor for activated T cell and nuclear factor-kappaB. Finally, the Wiskott-Aldrich syndrome protein was shown to play an important role in lymphoid development and in the maturation and function of myelomonocytic cells. SUMMARY: The progress made in dissecting the functions of the Wiskott-Aldrich syndrome protein has direct implications for our understanding of the distinct clinical phenotypes (Wiskott-Aldrich syndrome/X-linked thrombocytopenia; intermittent thrombocytopenia; congenital neutropenia), for making diagnostic and prognostic decisions, and for the selection of therapeutic strategies--from conservative symptomatic treatment to curative hematopoietic stem cell transplantation, or, in the future, gene therapy.  相似文献   

6.
OBJECTIVE: We studied two adult brothers with severe congenital thrombocytopenia in order to determine the genetic etiology of their inherited disorder. Despite the absence of eczema or immunodeficiency, a mutation of the Wiskott-Aldrich syndrome (WAS) gene was suspected because of the presence of microthrombocytes. MATERIALS AND METHODS: Peripheral blood was obtained for characterization of hematopoietic cells and megakaryocyte progenitors. The coding region of the WAS gene was fully sequenced, and expression of the Wiskott-Aldrich syndrome protein, WASP, was evaluated by immunoblotting. The ability of WASP to physically associate with the WASP-interacting protein, WIP, was tested by yeast and mammalian two-hybrid techniques. RESULTS: In addition to thrombocytopenia, our investigation revealed an increased frequency of peripheral megakaryocyte progenitors (CFU-Mk) and incomplete cytoplasmic maturation by electron microscopy. Sequencing the WAS gene revealed a single base mutation, resulting in substitution of proline for arginine 138 (i.e., Arg138Pro). Immunoblotting demonstrated reduced expression of the mutant WAS protein, and we showed that the Arg138Pro mutation significantly, but incompletely, disrupts WASP-WIP interaction. CONCLUSIONS: In this pedigree, X-linked thrombocytopenia is caused by a rare mutation in the fourth exon of the WAS gene. WASP levels are reduced in lymphocyte cell lines derived from the affected individuals. Furthermore, the mutation significantly but incompletely disrupts WASP-WIP interaction, whereas substitution of alanine or glutamic acid residues at the same position does not. This raises the possibility that protein-protein interaction and WASP stability are related properties.  相似文献   

7.
8.
Somatic mosaicism because of in vivo reversion has been recently reported in a small number of patients affected with Wiskott-Aldrich syndrome (WAS). Flow cytometry analysis of WAS protein (WASP) expression has shown that these patients carried revertant cells only among T lymphocytes. Here, we have used high-resolution capillary electrophoresis to analyze genomic DNA from highly purified cells of one of these patients and detected revertant sequences also within the B-cell fraction. The demonstration of revertant cells among both T and B lymphocytes in this patient is consistent with the reversion event having occurred in a common lymphoid progenitor. However, although WASP-expressing T cells showed selective advantage and were readily detectable in the periphery of the mosaic patient, revertant B lymphocytes remained below the detection threshold of flow cytometry. These findings suggest that, contrary to T cells, differentiation and survival of B lymphocytes is minimally dependent on WASP.  相似文献   

9.
Short microvilli cover the surfaces of circulating mammalian lymphocytes. The surfaces of monocytes and neutrophils are very different, containing ruffles as their predominant structure. In this study, we present the first quantitative characterization of lymphocyte microvilli. From analysis of scanning electron micrographs, we find that median microvillar length and surface density range from 0.3 to 0.4 microm and 2 to 4 microvilli/microm(2), respectively, on lymphocytes from a variety of sources. As with similar structures from other cells, lymphocyte microvilli contain parallel bundles of actin filaments. Lymphocyte microvilli rapidly disassemble when exposed to the actin-sequestering molecule, Latrunculin A. This disassembly parallels cellular actin filament depolymerization and is complete within 2 minutes, suggesting that lymphocyte microvilli undergo continuous assembly and disassembly. In contrast to previous reports suggesting lymphocyte microvillar density to be reduced on lymphocytes from Wiskott-Aldrich syndrome (WAS) patient, we find no such deficiency in either mouse or human WAS protein (WASp)-deficient lymphocytes. These results suggest that WASp is either not involved in or is redundant in the rapid dynamics of lymphocyte microvilli.  相似文献   

10.
To more precisely identify the B-cell phenotype in Wiskott-Aldrich syndrome (WAS), we used 3 distinct murine in vivo models to define the cell intrinsic requirements for WAS protein (WASp) in central versus peripheral B-cell development. Whereas WASp is dispensable for early bone marrow B-cell development, WASp deficiency results in a marked reduction in each of the major mature peripheral B-cell subsets, exerting the greatest impact on marginal zone and B1a B cells. Using in vivo bromodeoxyuridine labeling and in vitro functional assays, we show that these deficits reflect altered peripheral homeostasis, partially resulting from an impairment in integrin function, rather than a developmental defect. Consistent with these observations, we also show that: (1) WASp expression levels increase with cell maturity, peaking in those subsets exhibiting the greatest sensitivity to WASp deficiency; (2) WASp(+) murine B cells exhibit a marked selective advantage beginning at the late transitional B-cell stage; and (3) a similar in vivo selective advantage is manifest by mature WASp(+) human B cells. Together, our data provide a better understanding of the clinical phenotype of WAS and suggest that gene therapy might be a useful approach to rescue altered B-cell homeostasis in this disease.  相似文献   

11.
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia, immunodeficiency, and eczema. X-linked thrombocytopenia (XLT) is a mild form of WAS with isolated thrombocytopenia. Both phenotypes are caused by mutation of the Wiskott-Aldrich syndrome protein (WASP) gene. In this study, we identified mutations of the WASP gene in 10 Japanese patients from 9 unrelated families with WAS/XLT. All XLT patients (n = 3) and one WAS patient had a missense mutation at the PH domain of WASP. Two WAS patients had nonsense mutations. One WAS patient had exon 8 skipping caused by one nucleotide deletion at the acceptor site of intron 7. Three WAS patients had genomic deletions; one of the three had a large genomic deletion involving exons 3 to 7. Codons 45 and 86 seem to be the hot spots of the WASP mutation, because missense mutations in these codons have been reported previously in several WAS/XLT patients in addition to the patients in this report, and patients with the same mutation show a similar clinical phenotype. All other mutations are novel, indicating that the mutations of WASP are heterogeneous. EB virus-transformed cell lines from XLT patients expressed nearly normal amounts of WASP, whereas those from typical WAS patients expressed almost undetectable amounts of WASP. We conclude that the analysis of gene mutation and protein expression of WASP are useful together in assessing the severity of WAS.  相似文献   

12.
13.
Oda A  Ochs HD  Lasky LA  Spencer S  Ozaki K  Fujihara M  Handa M  Ikebuchi K  Ikeda H 《Blood》2001,97(9):2633-2639
Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia are caused by mutations of the WAS protein (WASP) gene. WASP may be involved in the regulation of podosome, an actin-rich dynamic cell adhesion structure formed by various types of cells. The molecular links between WASP and podosomes or other cell adhesion structures are unknown. Platelets express an SH2-SH3 adapter molecule, CrkL, that can directly associate with paxillin, which is localized in podosomes. The hypothesis that CrkL binds to WASP was, therefore, tested. Results from coprecipitation experiments using anti-CrkL and GST-fusion proteins suggest that CrkL binds to WASP through its SH3 domain and that the binding was not affected by WASP tyrosine phosphorylation. The binding of GST-fusion SH3 domain of PSTPIP1 in vitro was also not affected by WASP tyrosine phosphorylation, suggesting that the binding of the SH3 domains to WASP is not inhibited by tyrosine phosphorylation of WASP. Anti-CrkL also coprecipitates a 72-kd protein, which was identified as syk tyrosine kinase, critical for collagen induced-platelet activation. CrkL immunoprecipitates contain kinase-active syk, as evidenced by an in vitro kinase assay. Coprecipitation experiments using GST-fusion CrkL proteins suggest that both SH2 and SH3 domains of CrkL are involved in the binding of CrkL to syk. WASP, CrkL, syk, and paxillin-like Hic-5 incorporated to platelet cytoskeleton after platelet aggregation. Thus, CrkL is a novel molecular adapter for WASP and syk and may potentially transfer these molecules to the cytoskeleton through association with cytoskeletal proteins such as Hic-5.  相似文献   

14.
Lorenzi R  Brickell PM  Katz DR  Kinnon C  Thrasher AJ 《Blood》2000,95(9):2943-2946
Interactions between the Wiskott-Aldrich (WAS) protein (WASp), small GTPases, and the cytoskeletal organizing complex Arp2/3 appear to be critical for the transduction of signals from the cell membrane to the actin cytoskeleton in hematopoietic cells. This study shows that Fcgamma-receptor (FcgammaR)-mediated phagocytosis is impaired in WASp-deficient peripheral blood monocytes, and that in macrophages, formation of the actin cup and local recruitment of tyrosine phosphorylated proteins is markedly attenuated. Results also show that, in normal macrophages, WASp itself is actively recruited to the cup, suggesting that assembly of this specialized cytoskeletal structure is dependent on its expression. (Blood. 2000;95:2943-2946)  相似文献   

15.
The Wiskott-Aldrich syndrome protein (WASp) is mutated in the severe immunodeficiency disease Wiskott-Aldrich syndrome (WAS). The function of B cells and the physiologic alterations in WAS remain unclear. We show that B cells from WAS patients exhibited decreased motility and had reduced capacity to migrate, adhere homotypically, and form long protrusions after in vitro culture. WASp-deficient murine B cells also migrated less well to chemokines. Upon antigen challenge, WASp-deficient mice mounted a reduced and delayed humoral immune response to both T-cell-dependent and -independent antigens. This was at least in part due to deficient migration and homing of B cells. In addition, the germinal center reaction was reduced in WASp-deficient mice. Thus, WASp is crucial for optimal B-cell responses and plays a pivotal role in the primary humoral immune response.  相似文献   

16.
Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD). SpirCD represents the minimal functional core of Spire that can nucleate actin filaments. Packing in the crystals of the actin complexes with SpirCD, SpirBCD, SpirABCD, and SpirDDD shows the presence of two types of assemblies, “side-to-side” and “straight-longitudinal,” which can serve as actin filament nuclei. The principal feature of these structures is their loose, open conformations, in which the sides of actins that normally constitute the inner interface core of a filament are flipped inside out. These Spire structures are distant from those seen in the filamentous nuclei of Arp2/3, formins, and in the F-actin filament.  相似文献   

17.
18.
19.
Patients with the immunodeficiency disorder Wiskott-Aldrich syndrome (WAS) have lymphocytes with aberrant microvilli, and their T cells, macrophages, and dendritic cells are impaired in cytoskeletal-dependent processes. WAS is caused by a defective or a missing WAS protein (WASP). Signal mediators interleukin-4 (IL-4) and CD40 are important for actin-dependent morphology changes in B cells. A possible function of WASP and its interacting partners, Cdc42 and Rac1, was investigated for these changes. It was found that active Cdc42 and Rac1 induced filopodia and lamellipodia, respectively, in activated B cells. Evidence is given that IL-4 has a specific role in the regulated cycling of Cdc42 because IL-4 partially and transiently depleted active Cdc42 from detergent extract of activated B cells. WASP-deficient B lymphocytes were impaired in IL-4-- and CD40-dependent induction of polarized and spread cells. Microvilli were expressed on WASP-deficient B cells, but they appeared shorter and less dense in cell contacts than in wild-type cells. In conclusion, evidence is provided for the involvement of Cdc42, Rac1, and WASP in the cytoskeletal regulation of B lymphocytes. Aberrations in WASP-deficient B lymphocytes, described here, provide further evidence that WAS is a cytoskeletal disease of hematopoietic cells. (Blood. 2001;98:1086-1094)  相似文献   

20.
Development of hematopoietic cells depends on a dynamic actin cytoskeleton. Here we demonstrate that expression of the cytoskeletal regulator WASP, mutated in the Wiskott-Aldrich syndrome, provides selective advantage for the development of naturally occurring regulatory T cells, natural killer T cells, CD4(+) and CD8(+) T lymphocytes, marginal zone (MZ) B cells, MZ macrophages, and platelets. To define the relative contribution of MZ B cells and MZ macrophages for MZ development, we generated wild-type and WASP-deficient bone marrow chimeric mice, with full restoration of the MZ. However, even in the presence of MZ macrophages, only 10% of MZ B cells were of WASP-deficient origin. We show that WASP-deficient MZ B cells hyperproliferate in vivo and fail to respond to sphingosine-1-phosphate, a crucial chemoattractant for MZ B-cell positioning. Abnormalities of the MZ compartment in WASP(-/-) mice lead to aberrant uptake of Staphylococcus aureus and to a reduced immune response to TNP-Ficoll. Moreover, WASP-deficient mice have increased levels of "natural" IgM antibodies. Our findings reveal that WASP regulates both development and function of hematopoietic cells. We demonstrate that WASP deficiency leads to an aberrant MZ that may affect responses to blood-borne pathogens and peripheral B-cell tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号