首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adeno-associated virus (AAV) type 2 or UV-inactivated AAV (UV-AAV2) infection provokes a DNA damage response that leads to cell cycle arrest at the G2/M border. p53-deficient cells cannot sustain the G2 arrest, enter prolonged impaired mitosis, and die. Here, we studied how non-replicating AAV2 kills p53-deficient osteosarcoma cells. We found that the virus uncouples centriole duplication from the cell cycle, inducing centrosome overamplification that is dependent on Chk1, ATR and CDK kinases, and on G2 arrest. Interference with spindle checkpoint components Mad2 and BubR1 revealed unexpectedly that mitotic catastrophe occurs independently of spindle checkpoint function. We conclude that, in the p53-deficient cells, UV-AAV2 triggers mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles and the consequent formation of multiple spindle poles in mitosis. As AAV2 acts through cellular damage response pathways, the results provide information on the role of Chk1 in mitotic catastrophe after DNA damage signaling in general.  相似文献   

2.
Cytogenetic analyses have revealed that many aneuploid breast cancers have cell-to-cell variations of chromosome copy numbers, suggesting that these neoplasms have instability of chromosome numbers. To directly test for possible chromosomal instability in this disease, we used fluorescent in situ hybridization to monitor copy numbers of multiple chromosomes in cultures of replicating breast cancer-derived cell lines and nonmalignant breast epithelial cells. While most (7 of 9) breast cancer cell lines tested are highly unstable with regard to chromosome copy numbers, others (2 of 9 cell lines) have a moderate level of instability that is higher than the "background" level of normal mammary epithelial cells and MCF-10A cells, but significantly less than that seen in the highly unstable breast cancer cell lines. To evaluate the potential role of a defective mitotic spindle checkpoint as a cause of this chromosomal instability, we used flow cytometry to monitor the response of cells to nocodazole-induced mitotic spindle damage. All cell lines with high levels of chromosomal instability have defective mitotic spindle checkpoints, whereas the cell lines with moderate levels of chromosomal instability (and the stable normal mammary cells and MCF10A cells) arrest in G(2) when challenged with nocodazole. Notably, the extent of mitotic spindle checkpoint deficiency and chromosome numerical instability in these cells is unrelated to the presence or absence of p53 mutations. Our results provide direct evidence for chromosomal instability in breast cancer and show that this instability occurs at variable levels among cells from different cancers, perhaps reflecting different functional classes of chromosomal instability. High levels of chromosomal instability are likely related to defective mitotic checkpoints but not to p53 mutations.  相似文献   

3.
The role of p53 in the response to mitotic spindle damage   总被引:5,自引:0,他引:5  
The p53 tumour suppressor protein has defined roles in G1/S and G2/M cell cycle checkpoints in response to a range of cellular stresses including DNA damage, dominant oncogene expression, hypoxia, metabolic changes and viral infection. In addition to these responses, p53 can also be activated when damage occurs to the mitotic spindle. Initially, spindle damage activates a p53-independent checkpoint which functions at the metaphase-anaphase transition and prevents cells from progressing through mitosis until the completion of spindle formation. Cells eventually escape from this block (a process termed 'mitotic slippage'), and an aberrant mitosis ensues in which sister chromatids fail to segregate properly. After a delay period, p53 responds to this mitotic failure by instituting a G1-like growth arrest, with an intact nucleus containing 4N DNA, but without the cells undergoing division. Cells lacking wild-type p53 are still able to arrest transiently at mitosis, and also fail to undergo division, underscoring that the delay in mitosis is p53-independent. However, these cells are not prevented from re-entering the cell cycle and can reduplicate their DNA unchecked, leading to polyploidy. Additionally, p53-null cells which experience spindle failure often show the appearance of micronuclei arising from poorly segregated chromosomes which have decondensed and been enclosed in a nuclear envelope. The ability of p53 to prevent their formation suggests an additional G2 involvement which prevents nuclear breakdown prior to mitosis. The molecular mechanism by which p53 is able to sense mitotic failure is still unknown, but may be linked to the ability of p53 to regulate duplication of the centrosome, the organelle which nucleates spindle formation.  相似文献   

4.
BubR1 is a well-defined guardian of the mitotic spindle, initiating mitotic arrest in response to the lack of tension and/or chromosome alignment across the mitotic plate. However, the role of BubR1 in combretastatin-induced cell death remains unknown. In this study, we describe the effects of combretastatin A-4 (CA-4) and a synthetic cis-restricted 3,4-diaryl-2-azetidinone (?-lactam) analogue (CA-432) on the modulation and phosphorylation of BubR1 in human cervical cancer-derived cells. We demonstrate that CA-4 and CA-432 depolymerise the microtubular network of human cervical carcinoma-derived cells. Both compounds induced the disassembly of the microtubules and the loss of microtubule tension led to the early phosphorylation of BubR1 and the late cleavage of BubR1. The phosphorylation of BubR1 correlated with the onset of G2M cell cycle arrest whilst the cleavage of BubR1 coincided with apoptosis induced by the combretastatins. The combretastatin-induced apoptosis and the BubR1 cleavage were caspase-dependent. In vitro enzyme digests demonstrated that combretastatin-activated BubR1 is a substrate for caspase-3. Gene silencing of BubR1 with small interfering RNA severely compromised combretastatin-induced G2M cell cycle arrest with a corresponding increase in the formation of polyploid cells in both cervical and breast cancer-derived cells. In summary, BubR1 is required to maintain the G2M arrest and limit the formation of polyploid cells in response to continued combretastatin exposure. Moreover, substitution of the ethylene bridge with 3,4-diaryl-2-azetidinone did not alter the tubulin depolymerising properties or the subsequent mitotic spindle checkpoint response to CA-4 in human cancer cells.  相似文献   

5.
Yu Y  Munger K 《Virology》2012,432(1):120-126
The mitotic spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during mitosis by censoring kinetochore-microtubule interactions. It is frequently rendered dysfunctional during carcinogenesis causing chromosome missegregation and genomic instability. There are conflicting reports whether the HPV16 E7 oncoprotein drives chromosomal instability by abolishing the SAC. Here we report that degradation of mitotic cyclins is impaired in cells with HPV16 E7 expression. RNAi-mediated depletion of Mad2 or BubR1 indicated the involvement of the SAC, suggesting that HPV16 E7 expression causes sustained SAC engagement. Mutational analyses revealed that HPV16 E7 sequences that are necessary for retinoblastoma tumor suppressor protein binding as well as sequences previously implicated in binding the nuclear and mitotic apparatus (NuMA) protein and in delocalizing dynein from the mitotic spindle contribute to SAC engagement. Importantly, however, HPV16 E7 does not markedly compromise the SAC response to microtubule poisons.  相似文献   

6.
Anti-microtubule agents such as vinorelbine and paclitaxel, which are extensively used in the treatment of lung cancers, activate mitotic spindle checkpoint. Although defects of the mitotic spindle checkpoint are thought to play a role in the genesis of chromosome instability, we previously reported its frequent impairment in human lung cancer cell lines. In this study, we examined a panel of 13 human cancer cell lines comprising 11 lung and 2 other cancers and found a significant difference in the resistance to apoptosis induced by anti-microtubule agents between mitotic spindle checkpoint-impaired and -proficient cancer cell lines. This finding was in marked contrast to a lack of such correlation with a DNA damaging agent, cis-platin. Interestingly, anti-microtubule agent-induced apoptosis in mitotic spindle checkpoint-proficient cell lines, NCI-H460 and A549, was shown to be markedly reduced by staurosporine treatment in association with the shortened mitotic arrest, whereas various inhibitors of caspases seemed to have very modest effects. Taken together, these findings suggest the potential involvement of mitotic spindle checkpoint in the induction of apoptosis by anti-microtubule agents in human lung cancers, warranting further studies on the underlying mechanisms.  相似文献   

7.
To determine sequence variations of the BUB1 and BUB1B genes in pancreatic cancer, the entire coding regions of the BUB1 and BUB1B genes were sequenced in pancreatic cancer cell lines and xenografts. Although only polymorphic alterations were found in the BUB1B gene, the aneuploid pancreatic cell line Hs766T had two novel missense variants (p.[Y259C;H265N]) in the BUB1 gene. These mutations were on the same allele, accompanied by a wild-type BUB1 allele. This change was not found in other samples, the literature, or 110 additional chromosomes from a reference population. Compared to two cell lines having microsatellite instability (MIN), the TP53 wild-type pancreatic cell line Hs766T had a defective mitotic spindle checkpoint, indicative of a cell line with chromosomal instability (CIN). Evidence that this checkpoint pathway can be abrogated by mutations in the BUB1 gene (Cahill et al., 1998) supports the suggestion the missense mutations of the BUB1 gene in the Hs766T cell line may contribute to its observed mitotic checkpoint defect.  相似文献   

8.
Previously, we reported that the spindle assembly checkpoint (SAC), which is coupled in somatic cells, is uncoupled from apoptosis-initiation in mouse and human embryonic stem cells (ESCs). This condition allows ESCs to tolerate and proliferate as polyploidy/aneuploid cells. Proper function of the SAC is vital to prevent polyploidy/aneuploidy during ex vivo hematopoietic stem cell (HSC) expansion. Here we address, for the first time, whether HSCs are more like ESCs or somatic cells with respect to SAC-apoptosis coupling. Using multiparametric permeablized cell flow-cytometric analysis to identify and analyze the mouse sca 1(+)/c-kit(+)/lin(-) (LSK) population, we found the mitotic spindle checkpoint to be functional in primary murine LSK cells, a population enriched in primitive hematopoietic stem/progenitor cells, after prolonged activation of the SAC by microtubule-depolymerizing agents such as nocodazole. HSCs can efficiently initiate apoptosis after activation of the SAC in LSK cells as indicated by increased hypodiploidy and increased levels of activated caspase 3, suggesting that HSCs behave more like somatic cells instead of ESCs with respect to this important cell cycle checkpoint. We conclude that mouse HSCs are not subject to the same kinds of chromosomal instability as are ESCs, knowledge that might aid in optimizing in vitro culture and expansion of human bone marrow or cord blood HSC for clinical applications.  相似文献   

9.
During mitosis, genomic integrity is maintained by the proper coordination of anaphase entry and mitotic exit through mitotic checkpoints. In budding yeast, exit from mitosis is triggered by the activation of the small GTPase Tem1p. Bfa1p in association with Bub2p negatively regulates Tem1p in response to spindle damage, spindle misorientation, and DNA damage, resulting in cell cycle arrest. To delineate the Bfa1p domains that respond to distinct checkpoint signals, we constructed 13 Bfa1 deletion mutants. The C-terminal 184 amino acids of Bfa1p (Bfa1-D8(391-574)) contained the entire capacity of Bfa1p to generate mitotic arrest in response to spindle damage, spindle misorientation, and DNA damage. This domain was also enough to interact with the mitotic exit network proteins Tem1p, Bub2p, and Cdc5p, and to localize to the spindle pole body (SPB). Over-expression of Bfa1-D8(391-574) induced late anaphase arrest as efficient as the full-length Bfa1p in a Bub2p-dependent manner. In contrast, the N-terminal portion of Bfa1p (Bfa1-D16(1-376)) could not localize to SPB and did not block mitotic exit in response to diverse checkpoint signals. Bfa1-D16(1-376) interacted with Tem1p but not with Bub2p and its over-expression partially arrested cells in mitosis in the absence of Bub2p. By random mutagenesis of Bfa1-D8(391-574) with hydroxylamine, we isolated a point mutant of D8, D8(E438K), which interacts with both Tem1p and Bub2p but cannot respond to checkpoint signals. This mutant also showed reduced efficiency in the localization to SPB. Taken together, our study demonstrated that various checkpoint signals are transmitted to the C-terminal domain of Bfa1 (Bfa1-D8(391-574)) and that Bfa1p localization to SPB is necessary but not sufficient to regulate mitotic exit in response to various checkpoint signals.  相似文献   

10.
Damage to the mitotic spindle and centrosome dysfunction can lead to cancer. To prevent this, cells trigger a succession of checkpoint responses, where an initial mitotic delay is followed by slippage without cytokinesis, spawning tetraploid G1 cells that undergo a p53-dependent G1/S arrest. We describe the importance of Lats2 (Large Tumor Suppressor 2) in this checkpoint response. Lats2 binds Mdm2, inhibits its E3 ligase activity, and activates p53. Nocodazole, a microtubule poison that provokes centrosome/mitotic apparatus dysfunction, induces Lats2 translocation from centrosomes to the nucleus and p53 accumulation. In turn, p53 rapidly and selectively up-regulates Lats2 expression in G2/M cells, thereby defining a positive feedback loop. Abrogation of Lats2 promotes accumulation of polyploid cells upon exposure to nocodazole, which can be prevented by direct activation of p53. The Lats2-Mdm2-p53 axis thus constitutes a novel checkpoint pathway critical for the maintenance of proper chromosome number.  相似文献   

11.
We previously reported that sirtuin 2 (SIRT2), a mammalian member of the NAD+-dependent protein deacetylases, participates in mitotic regulation, specifically, in efficient mitotic cell death caused by the spindle checkpoint. Here, we describe a novel function of SIRT2 that is different from mitotic regulation. SIRT2 down-regulation using siRNA caused apoptosis in cancer cell lines such as HeLa cells, but not in normal cells. The apoptosis was caused by p53 accumulation, which is mediated by p38 MAPK activation-dependent degradation of p300 and the subsequent MDM2 degradation. Sirtuin inhibitors are emerging as antitumor drugs, and this function has been ascribed to the inhibition of SIRT1, the most well-characterized sirtuin that deacetylases p53 to promote cell survival and also binds to other proteins in response to genotoxic stress. This study suggests that SIRT2 can be a novel molecular target for cancer therapy and provides a molecular basis for the efficacy of SIRT2 for future cancer therapy.  相似文献   

12.
The tubulin-binding agent combretastatin A-4-phosphate (CA-4-P), rapidly disrupts the vascular network of tumors leading to secondary tumor cell death. In vitro, CA-4-P destabilizes microtubules and causes endothelial cell death. In this study we analyze the mechanisms by which CA-4-P induces the death of proliferating endothelial cells. We demonstrate that at >/=7.5 nmol/L, CA-4-P damages mitotic spindles, arrests cells at metaphase, and leads to the death of mitotic cells with characteristic G(2)/M DNA content. Mitotic arrest was associated with elevated levels of cyclin B1 protein and p34(cdc2) activity. Inhibition of p34(cdc2) activity by purvalanol A caused mitotic-arrested cells to rapidly exit mitosis, suggesting that sustained p34(cdc2) activity was responsible for metaphase arrest. Pharmacological prevention of entry into mitosis protected cells from undergoing cell death, further establishing the link between mitosis and cell death induction by CA-4-P. CA-4-P-mediated cell death shared characteristics of apoptosis but was independent of caspase activation suggesting the involvement of a non-caspase pathway(s). These data suggest that induction of apoptosis in endothelial cells by CA-4-P is associated with prolonged mitotic arrest. Therefore, by activating cell death pathways, CA-4-P, in addition to being an effective anti-vascular agent, may also interfere with regrowth of blood vessels in the tumor.  相似文献   

13.
The proportions of aneuploid/polyploid versus euploid cellsformed after treatment with spindle poisons like nocodazoleare of course dependent on the relative survival of cells withnumerical chromosome aberrations. This work aimed at studyingthe survival of polyploid cells formed after treatment witha nocodazole concentration sufficient to significantly decreasetubulin polymerization (0.1 µg/ml). First, normal primarylymphocytes were analysed and the following complementary chromosomalparameters were quantified: mitotic index, frequency of abnormalmitoses, polyploid metaphases and apoptotic cells. The resultsclearly indicate a positive correlation between abnormal mitoticfigures, apoptosis and the induction of polyploidy. They thereforeled to a single cell approach in which both apoptosis and polyploidyinduction could be scored in the same cell. For this purpose,actively proliferating cells are required and two human leukaemiccell lines were used, KS (p53-positive) and K562 (p53-negative),which have a near-triploid karyotype. Cells were separated intoan apoptotic and a viable fraction by means of annexin-V stainingand flow cytometry. In KS, treatment with nocodazole induceda similar fraction of hexaploid cells in both the viable andapoptotic fraction, but no dodecaploid cells were ever observed.In contrast, a population of dodecaploid cells (essentiallyviable) was clearly observed in the K562 cell line. The resultsin KS, as compared with K562, confirm that wild-type p53 canprevent further cycling of polyploid cells by blocking rereplication.The most probable explanation for these data is that not onlythe mitotic spindle but also interphase microtubules are sensitiveto nocodazole treatment. Our data thus strongly suggest thatbesides the G1/S checkpoint under the control of p53, the G2/Mtransition may be sensitive to depolymerization of microtubules,possibly under the control of Cdc2, Bcl-2, Raf-1 and/or Rho. 1 To whom correspondence should be addressed. Tel: +32 2 629 3423; Fax: +32 2 629 27 59; Email: mkirschv{at}vub.ac.be  相似文献   

14.
Many p53 mutant proteins possess a dominant-negative activity that is under the control of several factors, namely p53 mutations and the cell type. The goals of our study were to determine the following: (1) the dominant-negative effect of different p53 mutations in response to mitotic spindle inhibitors, and (2) if this dominant-negative activity is dependent on the nature of the stimulus. We therefore examined the cellular response of the near-diploid LoVo colon carcinoma cell line possessing two wild-type TP53 alleles and three other clones transfected with different TP53 mutants (p53-273H, p53-175H, and p53-143A) to treatments with different mitotic spindle inhibitors. Flow cytometric studies and analysis of retinoblastoma protein (pRb) dephosphorylation and 5-bromo-2'-deoxyuridine incorporation by immunocytochemistry revealed a tetraploid G1 arrest of the wild-type LoVo clone and the p53-273H mutant clone after exposure to mitotic spindle inhibitors, preventing tetraploid cells from entering into an additional S phase. On the other hand, the p53-175H and p53-143A mutant clones re-enter S phase with no apparent arrest. Therefore, our results confirm that p53 mutant dominant-negative activity and the tetraploid G1 arrest in response to mitotic spindle inhibitor treatment depend on the type of p53 mutation, involve p21 induction, and require pRb dephosphorylation. Moreover, when we compare our results with those obtained by other investigators after ionizing radiation exposure using the same cell lines, we identify the nature of the stimulus as a new factor that determines the dominant-negative effect of p53 mutants.  相似文献   

15.
Spindle checkpoint regulates Cdc20p stability in Saccharomyces cerevisiae   总被引:6,自引:0,他引:6  
Pan J  Chen RH 《Genes & development》2004,18(12):1439-1451
The spindle checkpoint arrests cells at the metaphase-to-anaphase transition until all chromosomes have properly attached to the mitotic spindle. Checkpoint proteins Mad2p and Mad3p/BubR1p bind and inhibit Cdc20p, an activator for the anaphase-promoting complex (APC). We find that upon spindle checkpoint activation by microtubule inhibitors benomyl or nocodazole, wild-type Saccharomyces cerevisiae contains less Cdc20p than spindle checkpoint mutants do, whereas their CDC20 mRNA levels are similar. The difference in Cdc20p levels correlates with their difference in the half-lives of Cdc20p, indicating that the spindle checkpoint destabilizes Cdc20p. This process requires the association between Cdc20p and Mad2p, and functional APC, but is independent of the known destruction boxes in Cdc20p and the other APC activator Cdh1p. Importantly, destabilization of Cdc20p is important for the spindle checkpoint, because a modest overexpression of Cdc20p causes benomyl sensitivity and premature Pds1p degradation in cells treated with nocodazole. Our study suggests that the spindle checkpoint reduces Cdc20p to below a certain threshold level to ensure a complete inhibition of Cdc20p before anaphase.  相似文献   

16.
17.
In most tumor cells a chromosomal instability leads to an abnormal chromosome number (aneuploidy). The mitotic checkpoint is essential for ensuring accurate chromosome segregation by allowing mitotic delay in response to a spindle defect. This checkpoint delays the onset of anaphase until all the chromosomes are correctly aligned on the mitotic spindle. When unattached kinetochores are present, the metaphase/anaphase transition is not allowed and the time available for chromosome-microtubule capture increases. Genes required for this delay were first identified in Saccharomyces cerevisiae (the MAD, BUB and MPS1 genes) and subsequently, homologs have been identified in higher eucaryotes showing that the spindle checkpoint pathway is highly conserved. The checkpoint functions by preventing an ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC) from ubiquitinylating proteins whose destruction is required for anaphase onset.  相似文献   

18.
Mitotic phosphorylation of the spindle checkpoint component BubR1 is highly conserved throughout evolution. Here, we demonstrate that BubR1 is phosphorylated on the Cdk1 site T620, which triggers the recruitment of Plk1 and phosphorylation of BubR1 by Plk1 both in vitro and in vivo. Phosphorylation does not appear to be required for spindle checkpoint function but instead is important for the stability of kinetochore-microtubule (KT-MT) interactions, timely mitotic progression, and chromosome alignment onto the metaphase plate. By quantitative mass spectrometry, we identify S676 as a Plk1-specific phosphorylation site on BubR1. Furthermore, using a phospho-specific antibody, we show that this site is phosphorylated during prometaphase, but dephosphorylated at metaphase upon establishment of tension between sister chromatids. These findings describe the first in vivo verified phosphorylation site for human BubR1, identify Plk1 as the kinase responsible for causing the characteristic mitotic BubR1 upshift, and attribute a KT-specific function to the hyperphosphorylated form of BubR1 in the stabilization of KT-MT interactions.  相似文献   

19.
20.
Background: A defective mitotic checkpoint has been proposed to contribute to chromosomal instability (CIN). We have previously shown that expression changes of the mitotic arrest deficiency (MAD) gene family plays a role in renal cell cancer (RCC) characterized by numerical chromosomal changes, namely papillary and chromophobe carcinomas, but nothing is known about the expression of mitotic checkpoint genes in the clear cell histotype (ccRCC).Methods: We analyzed the mRNA expression levels of the major mitotic checkpoint genes of the budding uninhibited by benzimidazole family (BUB1, BUBR1, BUB3) and of the MAD gene family (MAD1, MAD2L1, MAD2L2) by real-time quantitative PCR in 39 ccRCC and in 36 normal kidney tissue samples. We have additionally analyzed these tumors by comparative genomic hybridization (CGH) in order to evaluate the relationship between mitotic checkpoint defects and the pattern of chromosome changes in this subset of RCC.Results: BUB1, BUBR1, MAD1 and MAD2L1 showed significant expression differences in tumor tissue compared to controls (BUB1, BUBR1 and MAD2L1 were overexpressed, whereas MAD1 was underexpressed). Overexpression of BUB1 and BUBR1 was significantly correlated with the number of genomic copy number changes (p<0.001 for both genes) and with Furhman grade of the tumors (p=0.006 and p=0.005, respectively).Conclusions: We conclude that BUB1 and BUBR1 overexpression plays a role in cytogenetic and morphologic progression of ccRCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号