首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:研究Varian Edge均整(FF)和非均整(FFF)模式下6 MV和10 MV光子线能谱并对比其差异。方法:利用蒙特卡洛程序软件包EGSnrc/Beamnrc建立Varian Edge 6 MV FF和FFF、10 MV FF和FFF的加速器模型,模拟所对应的相空间文件,而后以相空间作为输入源,利用DOSXYZnrc计算其在水体模中的剂量分布,并与三维水箱的测量数据比对,当模拟值与测量值之间的差异在1%之内时,利用Beamdp分析此时的相空间文件,得到对应的光子线能谱,并比较相互之间的差异。结果:模拟的百分深度剂量曲线和离轴比曲线与测量值之间的差异在1%之内。相对于FF模式,FFF模式的能谱"软化",其中6 MV FFF的平均能量从1.587 MeV下降至1.172 MeV,低能(能量≤1 MeV)光子所占的份额由41.06%上升至60.04%;而10 MV FFF的平均能量从2.796 MeV下降至1.956 MeV,低能光子所占的份额由21.22%上升至44.63%。同一射野内FFF模式的能谱随离轴距离的改变较小,同时每初始粒子所引起的能量注量是FF模式的2~4倍,射野内的能量注量分布变得不均匀,非平坦度F上升;分析不同射野下的能谱发现FFF模式的机头散射较少。结论:本研究结果对理解FFF模式下光子线的物理特性提供了非常好的参考价值。  相似文献   

2.
目的:探讨均整(FF)与非均整(FFF)模式下瓦里安TrueBeam加速器全碳纤维治疗床对模体中心和表面剂量的影响。方法:将30 cm×30 cm×20 cm的固体水模分别放置于治疗床薄、中、厚段上,模体的中心与加速器等中心重合,德国IBA FC65-G电离室测量等中心的剂量;选取6/10 MV光子束FF/FFF模式4档能量,10 cm×10 cm标准射野,等中心照射,以机架转角0°~80°(间隔10°采样)为参考,计算100°~180°范围与对应角度参考剂量的比值得到对应角度的穿透因子;将EBT3胶片分别置于上述模体表面和底部,对应机架角度为0°和180°,分析相应的百分深度剂量。结果:4档光子束能量下治疗床薄、中、厚段位置穿透因子范围分别为0.956 6~1.000 0、0.955 4~1.000 0和0.954 8~1.000 0,薄中段在6 MV-FFF120°时最小,厚段在6 MV-FFF 130°时最小。与0°照射相比,180°照射6 MV-FFF、6 MV、10 MV-FFF和10 MV X射线表面剂量从30.6%、24.1%、18.3%和14.1%分别增加到95.4%、93%、83%和79.6%。结论:治疗床的存在减少肿瘤剂量、增加表面剂量,FFF模式较FF影响更大,在治疗计划系统中加入虚拟床减小了治疗床引起的剂量学影响。  相似文献   

3.
目的:探讨臂架或准直器角度的改变对均整(FF)与非均整(FFF)两种模式的射线剂量的影响。方法:选用Versa HD直线加速器配备的6 MV/10 MV光子束FF/FFF模式4档能量在设定好九点位置的10 cm×10 cm标准射野内进行实验。首先,借助IMF等中心夹具将Mapcheck2固定于治疗机机头,并用Mapcheck2测量相同臂架与准直器角度条件下4种光子束输出的平面剂量值;其次,用Mapcheck2测量在相同臂架角度、不同准直器角度与相同准直器角度、不同臂架角度两种条件下4种光子束的中心轴剂量值;最后,固定准直器为0°,设立两组臂架对穿射野(0°与180°,90°与270°)。拆除Mapcheck2,采用固体水和FC65-G电离室建立一个测量模体来测量4种光子束在两组等中心对穿野的剂量。运用SPSS统计软件对该实验收集到的数据进行对比分析。结果:在相同臂架与准直器角度条件下,4种光子束辐照9个点的平面剂量之间均存在明显统计学差异(P6 MV FF =0.020, P6 MV FFF=0.017, P10 MV FF =0.030, P10 MV FFF=0.016);而不同臂架角度或不同准直器角度条件下,4种能量光子束的中心轴点剂量值均无统计学差异。在0°与180°的对穿野,4种能量光子束的输出剂量存在统计学差异(P6 MV FF =0.001, P6 MV FFF=0.002, P10 MV FF =0.003, P10 MV FFF=0.001),而在90°与270°的对穿野无统计学差异。结论:Versa HD直线加速器拥有优良的机械等中心性能。在实际工作时,臂架和准直器的旋转,均不影响光子束的中心轴剂量的准确输出。在FF模式下,射线能量越高,受治疗床影响越小;FFF模式射线由于射线质软,能量越高,更易受到治疗床的衰减作用,在实际中应引起重视。  相似文献   

4.
目的:比较分析两台医科达直线加速器匹配后的束流特性,为临床上实现治疗计划在两台加速器上互换执行提供依据和参考。方法:利用IBA公司Blue Phantom2水箱采集两台加速器X射线束及电子束等相关数据并对其进行比较分析。结果:两台加速器6 MV各射野%dd(10)X偏差在±0.1%之内,10 MV %dd(10)X偏差在±0.3%之内。其相对应射野条件下两档能量束流平坦度与对称性差异均在±1.5%之内,半影的最大绝对偏差为0.5 mm。两档X射线能量60°楔形野的%dd(10)X最大差异为0.8%。电子线Rp、R50、E0方面,两台加速器中各档电子线的差异皆在±1.2%之内,dmax最大绝对偏差为0.9 mm。各能量射野输出因子之间虽有偏差,但差异均较为微小。结论:两台加速器的束流特性显示出良好的数据匹配度,将为治疗计划在两台加速器上实现互换执行提供临床依据。  相似文献   

5.
目的:研究Varian Edge加速器不同工作状态下射野外辐射剂量水平以及铅防护用品的防护效果。方法:利用实验测量的方法,研究加速器在不同工作能量、不同线束均整状态、使用不同防护用品,测量距射野边缘不同距离及不同深度下辐射剂量水平的变化情况。结果:射野外辐射剂量随距射野边缘距离增加(5~40 cm)近似呈指数规律下降,距射野边缘20 cm范围内低能量射束(6 MV、6 MV FFF)的辐射剂量低于高能射束(10 MV、10 MV FFF)的辐射剂量,且随测量深度增加(1~2 cm)而降低。非均整模式下射野外剂量测量结果低于均整模式射束。在相同能量条件下,铅防护用品的防护效果与线束的均整状态无关。对高能射束的防护效果要优于低能射束且随深度增加防护效果迅速下降。深度为1 cm,射束能量10 MV FFF,距射野边缘5~30 cm条件下,防护效果最强,射野外辐射剂量水平降低50%以上。测量深度为2 cm,射束能量为6 MV FFF,距离射野边缘5~30 cm的条件下,防护效果最差,仅能降低10%以下。结论:在实现临床目标的前提下,治疗过程中若无铅防护用品进行保护,推荐采用低能非均整模式进行计划设计;若使用铅防护用品进行保护,可以采用高能非均整模式射束,此时铅防护用品效果最佳,射野外浅层器官所受剂量最低,可有效降低二次肿瘤发生几率。  相似文献   

6.
目的:容积旋转调强放疗(VMAT)是治疗宫颈癌的有效方法之一,通过比较宫颈癌非均整与均整模式下VMAT计划的剂量学特性,分析宫颈癌非均整模式下VMAT计划的临床可行性。方法:选取2016年1月~2017年3月期间的宫颈癌患者10例,分别对同一患者的CT图像及临床靶区,用相同的处方剂量50.4 Gy在Ray Station计划系统平台设计均为两个全弧的6 MV-X射线非均整模式(6FFF)和均整模式(6X)的VMAT计划,比较6FFF计划与6X计划的剂量学特性、剂量验证通过率、机器跳数和出束时间。结果:6X与6FFF两种VMAT计划所得PTV的最大剂量D2%,平均剂量D_(mean),最小剂量D_(98%),靶区覆盖率,靶区适形指数均相差不大(P0.05);在危及器官保护上,6FFF计划中膀胱的V_(45)、平均剂量D_(mean)和小肠的V_(45)均低于6X计划;6FFF计划受到相应剂量照射的正常组织体积均小于6X计划;两种计划的剂量验证通过率均能满足治疗要求,其中6FFF计划验证通过率均值为(98.52±0.66)%,6X VMAT计划剂量验证通过率比6FFF计划略高;二者的机器跳数相比,6FFF计划平均机器跳数增加至6X计划的1.34倍(P=0.000),平均出束时间减少为6X计划出束时间的95.5%(P=0.012)。结论:6X计划和6FFF计划均能满足临床剂量学要求。在危及器官保护和正常组织低剂量照射方面,6FFF计划更具优势,有利于降低二次癌症的发生率,6FFF计划剂量验证通过率满足临床要求,二者在机器跳数和出束时间上,虽然6FFF的机器跳数增加,但出束时间反而下降,因此采用非均整模式并不会降低治疗效率。如何评估非均整模式下宫颈癌VMAT计划的临床效果,需进一步研究讨论。  相似文献   

7.
目的:用蒙特卡罗方法计算Varian Trilogy加速器无均整器条件下6MVX射线能谱。分析均整器对能谱的影响。方法:先用BEAMnrc分别模拟计算Varian Trilogy加速器6MV射线在具备均整器和无均整器条件下,方野边长分别为4cm、6cm、8cm、10cm、20cm和40cm时的相空间文件。以相空间文件为输入用BEAMDP分析光子能谱。结果:无均整器条件下光子注量增大,在光子能谱峰值附近最明显.射野边长为4cm时去掉均整器后光子注量增加的最多为6.284倍,随着射野增大增加倍数减小,射野边长为40cm时最小为2.398倍.无均整器条件下光子谱峰值能量降低,光子谱整体左移,平均能量明显减小。结论:去除均整器后,加速器的输出光子能谱发生较大变化。随之剂量特性发生改变,临床上可能产生一定的获益或未知情况,尚需要进一步的研究支持。  相似文献   

8.
目的:分析对比医用直线加速器中心轴光子绝对剂量输出的长期稳定性特点。方法:选取3台Varian加速器,以最新IAEA TRS-398报告中推荐的水中直接剂量法监测15个月内的剂量输出,用SPSS和Sigma Plot软件进行统计分析。结果:在390条数据中,超过±2%允差有7次(1.79%)。偏差主要分布在-0.2%~1.2%,最大+2.55%。同一加速器均整模式下不同能量输出稳定性差异显著(P0.05),但无临床意义(1 c Gy量级)。不同加速器的均整模式输出稳定性显著依赖于机龄(P0.05),与机型无关,而非均整模式(FFF)间差异不显著。结论:包括较新的True Beam FFF模式在内的Varian加速器中心轴绝对剂量输出的长期稳定性良好,错误率为1%~2%。放疗中心可以晨检仪和标准水箱测量相结合的方法,监测并及时纠正该偏差。  相似文献   

9.
目的:探讨不同能量下,Varian21EX直线加速器中物理楔形因子和动态楔形因子受照射野大小和深度的影响。方法:在固体水膜体中利用0.6 cc电离室对6 MV和15 MV射线束下不同角度物理楔形板和动态楔形板分别测量加和不加楔形滤片时的剂量率来计算楔形因子。通过测量不同角度的物理楔形板和动态楔形板在固定照射野(10 cm×10 cm)的不同深度下的楔形因子来研究楔形因子随深度的变化规律。同时,对于楔形因子随射野大小的变化规律,还测量了不同角度的物理楔形板和动态楔形板在固定深度(d=10 cm)下的不同射野大小的楔形因子。为了更好地分析物理楔形因子与动态楔形因子的差异,引入了相对楔形因子NWF。结果:深度对于物理楔形板的楔形因子较为明显,深度增加时楔形因子增大,且随着楔形角的增大变化更明显。对于150、300、450、600的物理楔形板,当深度由最大深度增加到20 cm时对于6 MV能量楔形因子分别增加了1.86%、3.79%、4.99%、7.95%;对于15 MV能量1.29%、1.35%、1.49%、2.03%。而动态楔形因子随深度变化不明显,最大变化不到1%。射野大小对于物理楔形因子也有一定的影响,楔形因子随射野增加而增加,但是增加幅度不大;而对于动态楔形板,在6 MV和15 MV射线束下楔形因子受射野的增大都有明显的减小。对于100、150、200、250、300、450、600的动态楔形板,从参考射野(10 cm×10 cm)到最大射野,楔形因子分别减少了7.91%、11.04%、14.08%、16.96%、19.7%、28.03%、35.89%对于6 MV和5.72%、8.17%、10.41%、12.85%、15.08%、21.82%、30.59%对于15 MV能量。结论:对于物理楔形板,深度和射野大小都对物理楔形因子有影响,所以临床剂量计算时必须考虑深度和射野大小对物理楔形因子的影响并对它进行修正。对于动态楔形板,深度对动态楔形因子影响较小,在临床剂量计算时可以忽略;而射野大小对动态楔形因子影响比较明显,在临床剂量计算时只须考虑相对射野楔形因子。  相似文献   

10.
目的:对比分析6 MV光子束均整与非均整模式在空气和标准水模中特定深度处的能谱分布。 方法:利用BEAMnrc程序建立美国Varian公司TrueBeam加速器均整和非均整模式的机头模型,分别计算(40×40) cm2照射野下空气和标准水模中SSD=110 cm深度处的相空间文件,并利用BEAMDP程序对射野内不同区域的能谱分布进行对比分析。 结果:空气中(40×40) cm2射野内SSD=110 cm深度处,均整模式能谱分布低能部分随着统计区域增大而增大,与非均整模式分布规律相反;在标准水模体中Depth=10 cm深度处,有无反散的情况下两种模式的能谱分布相差较大,主要在小于0.511 MeV的区域;射野内不同位置的能谱分布均整模式在离轴方向低能部分逐渐减少,而非均整模式分布情况相反;相对于电子和正电子来说,相同射野内光子对能谱分布影响较大。 结论:该研究为医用直线加速器临床剂量学数据的测量和校正提供依据。  相似文献   

11.
目的:研究利用广义平均数学公式计算等效方野的可能性。方法:选择两台不同厂家的电子直线加速器,分别实际测量6 MV开放野的81个射野输出因子。利用广义平均数学公式s=(βx+(1-β)y~α)~(1/α)计算等效方野,并通过射野输出因子的普适函数公式评价其射野等效计算的准确性。结果:广义平均数学公式对两台加速器射野等效后,射野输出因子的计算精度均小于1%,优于传统经验公式的2%~5%。结论:广义平均数学公式具有通用性,且射野等效精度优于传统经验公式,但需针对特定的应用条件进行数据拟合,以确定最佳的变量值。  相似文献   

12.
目的:评价我中心新购美国Sun Nuclear公司生产二维半导体阵列Mapcheck的剂量学特点。方法:使用美国瓦里安公司23EX直线加速器高能光子束照射Mapcheck研究其重复性,线性以及验证其本身阵列校准方法的准确性;同时在研究其重复性,脉冲率依赖性及输出因子时使用德国PTW30013电离室测量数据并比较。结果:实施Mapcheck专用阵列校准方法后在0o和180o测量结果差异介于-0.5%至0.7%之间。矩阵重复性最大标准差是±0.16%,中心轴半导体探头(C点)12次测量标准差为0.065%。中心探头随剂量率变化最大范围是0.78%。同指形电离室结果比较,小于4cm×4cm射野时,Mapcheck低估了输出因子最大达1.1%,大于15cm×15cm射野时,Mapcheck开始高估输出因子最大达0.9%。结论:Mapcheck的各项剂量学检测结果符合出厂指标,适合应用于临床作常规射野剂量学质量保证及调强剂量学验证。  相似文献   

13.
目的:分析射野入射方向及加速器治疗床对MatriXX电离室矩阵角度修正因子的影响。方法:获取MatriXX和MultiCube模体所组成的测量装置的CT影像,并将其导入计划系统,以MatriXX有效测量平面中心为计划中心,设置一能量为8 MV X射线、机器跳数为200 MU、20 cm×20 cm的对称方野,在机架角度为0°~180°范围内以5°为间隔定义射野入射方向,分别计算各入射方向的射野在计划中心点的剂量,并与在相同条件下存在加速器治疗床和无加速器治疗床两种情况下的实际剂量测量结果做比值,得出有无加速器治疗床两种情况的MatriXX电离室矩阵的角度修正因子。应用SPSS13.0软件对这两组现场测量计算得到的MatriXX电离室矩阵角度修正因子值及厂家的给定值之间进行t检验比较。结果:实测得到的有无加速器治疗床的两组MatriXX电离室矩阵角度修正因子值比较的t检结果为P<0.005,治疗床的存在对修正因子有显著的影响;实测的8 MV无治疗床的修正因子与厂家给定的6 MV的修正因子进行比较的t检验结果为P<0.005,实测修正因子与厂家给定值之间存在差异。结论:现场测量MatriXX电离室矩阵的角度修正因...  相似文献   

14.
目的:分析医用直线加速器输出剂量稳定性及其影响因素。方法:采用SPSS15.0统计分析软件,统计2009年每日治疗病人前监测6 MV、15 MVX射线,和9 MeV、12 MeV电子线输出剂量数据,分析医用直线加速器不同能量输出剂量的稳定性及其影响因素,提出加速器输出剂量质量保证的相关措施。结果:4档能量中的3档能量(9 MeV,12 MeV,15MV)输出剂量K-S检测双尾渐进概率P值分别为0.428、0.933、0.355均大于显著性水平0.05,符合正态分布。由于加速器微波源输出不稳定,6 MV输出剂量1月到3月,从98.4%连续不断漂移上升到102.5%。6 MV K-S检测双尾渐进概率P值是0.012小于显著性水平0.05,不符合正态分布。结论:直线加速器输出剂量的稳定性是肿瘤放射治疗治疗质量保证的重要方面。每日治疗肿瘤病人前监测和直线加速器输出剂量,分析直线加速器输出剂量的稳定性,有助于降低加速器系统误差,提高患者治疗剂量的精度。  相似文献   

15.
目的:利用蒙特卡罗方法研究医用直线加速器产生的6 MV-X射线在有均整器和无均整器状态下,光子能谱和空间分布的差异。方法:使用Geant4蒙特卡罗模拟程序计算医用加速器射野大小分别为5 cm×5 cm、10 cm×10 cm、15 cm×15 cm和20 cm×20 cm的6 MV-X射线在具备均整器和移除均整器条件下,初始光子的能谱和空间分布。结果:均整器移除后光子能谱光子注量变大,且随着射野的增大,射野内光子通量比值都明显减小,而且平均能量明显降低。此外,均整器的移除改变光子的相对分布,射野外光子数在整个相空间平面内光子中所占份额明显减少,而且与射野大小有关,5cm×5 cm时减少6.00%,10 cm×10 cm时减少4.42%,15 cm×15 cm时减少3.48%,20 cm×20 cm时减少2.28%,这表明移除均整器对于尺寸较小的射野意义重大。结论:均整器的移除可以优化射野的能谱分布,特别是对于调强放射治疗无均整器模式成为更有益模式。但是,由于均整器移除后导致的高剂量率在提高治疗增益的同时也带来了治疗风险,因此需要更进一步的研究和论证。  相似文献   

16.
医科达Precise直线加速器高能电子束的射野输出剂量特性   总被引:3,自引:0,他引:3  
目的:研究不同大小射野挡铅对高能电子束射野输出剂量的影响,并讨论不同源皮距的变化规律.方法:在医科达直线加速器上对标称能量4MeV~18MeV共六档高能电子束不同源皮距时测量各限光筒附加射野挡铅的输出因子.结果:因自动跟随限光筒的X线准直器的设置对各能量各限光筒不同,各标准限光筒野输出因子与射野变化无确定规律;它随能量增加而减小,小野6 cm×6 cm却相反.各限光筒加挡铅射野的输出在小野时变化较大,射野直径与能量射程的差别大小影响输出因子的变化快慢.对不同限光筒形成的相同挡铅射野因子对低能大限光筒值更大,高能相反.延长源皮距仍基本遵循以上3个结论,且延长源皮距更高能量较小射野的输出下降更迅速.  相似文献   

17.
【摘 要】 目的:探究参数化梯度方法(PGM)测量电子射野影像系统(EPID)光子束射野大小的可行性。 方法:PGM通过一个修改的双曲正切函数拟合Profile半影区。瓦里安EDGE机载aS1200采集6 MV和10 MV FF及FFF射束EPID数据,TrueBeam机载aS1000采集6 MV FF射束EPID数据。γ分析1 mm/1%标准量化PGM拟合Profile半影区与EPID测量半影区一致性。比较半高宽方法与PGM测量的FF射束射野大小,比较最大斜率方法与PGM测量的FFF射束射野大小;比较PGM在不同射束能量、不同EPID探测器类型和引入铅门位置误差后测量射野边界的稳定性和扩展性。 结果:半影区PGM拟合与EPID实测数据Pearson相关系数大于0.999,γ值小于0.2。FF射束,半高宽方法测定射野均大于PGM,且随着射野增大而增大,Profile本影去除后,两种方法测量差值显著减小;FFF射束,最大斜率方法与PGM测定射野大小差值在0.1 mm以内。PGM能够稳定测量不同能量、不同模态、不同EPID探测器类型射野边界,能够准确识别铅门1 mm位置变动。 结论:PGM可作为一种鲁棒通用的方法适用于EPID光子束射野质量保障。  相似文献   

18.
目的:研究用测量的X线照射野百分深度剂量和体模散射输出因子计算组织最大剂量比的可行性。方法:用PTwmp3三维水箱分别测量Precise加速器的6MV和10MVX线的百分深度剂量、组织最大剂量比以及照射野输出因子。利用NE2570剂量仪和自制的圆柱形有机玻璃体模测量加速器准直系统散射输出因子。用VisualBasic6.0编程计算组织最大剂量比,并将组织最大剂量比的计算值和测量值进行比较。结果:组织最大剂量比和射线能量、照射野面积有关。6MV和10MVX线的组织最大剂量比的计算值和测量值的误差小于2%。结论:组织最大剂量比的计算值和测量值符合得很好,可以直接应用于吸收剂量计算。  相似文献   

19.
目的:基于IAEA 277和398号报告,分析对比直线加速器FFF模式下绝对剂量的校准结果。方法:利用上海交通大学医学院附属瑞金医院新安装的Varian Edge加速器,根据IAEA 398号报告,测量FFF模式下6X和10X光子线的射线质和百分深度剂量,计算电离室校准因子kQ、极化效应修正因子kpol、复合效应修正因子ks,并对比国内现阶段采用的IAEA 277号报告的校准值。结果:6X-FFF和10X-FFF下,射线质分别为0.629和0.708;校准深度均为10 cm,对应的kQ分别是0.997和0.988,kpol分别是1.000 9和1.001 2,ks分别是1.005 0和1.006 9。FFF模式下复合效应相比较FF模式略高,分别偏高0.36%和0.32%。IAEA 398号报告的校准结果与IAEA 277号报告相比,绝对剂量标准差异分别为-1.0%和-0.7%。结论:在FFF模式下,IAEA 398号报告的绝对剂量校准与现阶段国内采用的IAEA 277号报告相比,结果差异小于2%,且在临床实践中更便捷。  相似文献   

20.
【摘要】目的:探究各项异性算法(AAA)和射野剂量图像预测(PDIP)算法在非均整模式(FFF)容积调强放射治疗计划治疗前验证γ分析中的差异以及计划复杂程度对这种差异的影响,为临床上基于电子射野影像系统(EPID)的剂量预测算法的选择提供依据。方法:选取能量为6 MV FFF的两种测试野和16例头颈部肿瘤治疗计划,利用PDIP和AAA两种算法分别生成预测数据并与EPID实测数据进行γ分析,统计两种算法在不同γ评判标准下的通过率并计算通过率差异(Delta γ)。计算上述病例每个射野的复杂系数,分析不同标准下两种算法的Delta γ与复杂系数的相关性;利用γmean、γsd、γ1和γ通过率共同描述γ分布,并分析其与复杂系数间的相关性。结果:当评判标准为3%/3 mm或2%/2 mm时,不同算法下测试射野的Delta γ较小。当评判标准为1%/1 mm,不同开野的Delta γ变化明显:射野较小时,PDIP算法的通过率低于AAA;当射野增大到(10×10) cm2时,通过率基本一致;当射野继续增大时,PDIP算法的通过率逐渐高于AAA。全部射野的通过率与评判标准的关系类似:在3%/3 mm标准下,两种算法的结果基本一致;随着标准的提高,两种算法的通过率逐渐下降,二者之间的差异也逐渐明显。复杂系数与Delta γ、γmean、γsd和γ1为正相关,与γ通过率为负相关。结论:PDIP算法对于有机械臂支撑的EPID的剂量预测更准确;AAA则适用于无机械臂支撑的EPID或机械臂反散射影响较小的射野。当计划复杂程度或评判标准提高时,两种算法的差异也增大。计划复杂程度对FFF计划验证结果的影响是负面的。上述结果提示临床应针对性地选择计划验证工具来确保治疗的安全有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号