首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Mucosal immunology》2013,6(3):535-546
The B subunit of E. coli heat-labile enterotoxin (EtxB) protects against the development of T helper type 1 (Th1)-mediated autoimmune pathologies in mice. Protection was transferable with splenic CD4+ T cells and was less effective following CD25 depletion; implying a T regulatory cell (Treg)-mediated process. We hypothesized that if this were the case, then EtxB would also control a Th2-mediated disorder. We tested the effect of EtxB treatment on asthma development in ovalbumin (OVA)-sensitized mice. EtxB treatment diminished eosinophilia in bronchoalveolar lavage samples, reduced OVA-specific immunoglobulin E and interleukin 4 production locally and systemically, and reduced airway hyper-reactivity. EtxB induced a dose-dependent increase in Foxp3+CD4+ T cells, and adoptive transfer of splenic CD4+ T cells partially suppressed lung pathology. Importantly, EtxB treatment increased OVA-specific CD4+Foxp3+ T cells in the lung and systemically. These data demonstrate that EtxB modulates the differentiation of allergen-specific T cells causing inducible Treg induction and preventing disease.  相似文献   

2.
Bystander activation of T cells, i.e. the stimulation of unrelated (heterologous) T cells by cytokines during an Ag‐specific T‐cell response, has been best described for CD8+ T cells. In the CD8+ compartment, the release of IFN and IFN‐inducers leads to the production of IL‐15, which mediates the proliferation of CD8+ T cells, notably memory‐phenotype CD8+ T cells. CD4+ T cells also undergo bystander activation, however, the signals inducing this Ag‐nonspecific stimulation of CD4+ T cells are less well known. A study in this issue of the European Journal of Immunology sheds light on this aspect, suggesting that common γ‐chain cytokines including IL‐2 might be involved in bystander activation of CD4+ T cells.  相似文献   

3.
CD4+ helper T (Th) cells play crucial role in priming, expansion and survival of CD8+ cytotoxic T lymphocytes (CTLs). However, how CD4+ Th cell's help is delivered to CD8+ T cells in vivo is still unclear. We previously demonstrated that CD4+ Th cells can acquire ovalbumin (OVA) peptide/major histocompatibility complex (pMHC I) and costimulatory CD80 by OVA-pulsed DC (DCOVA) stimulation, and then stimulate OVA-specific CD8+ CTL responses in C57BL/6 mice. In this study, we further investigated CD4+ Th cell's effect on stimulation of CD8 CTL responses in major histocompatibility complex (MHC II) gene knockout (KO) mice and transgenic rat insulin promoter (RIP)-mOVA mice with moderate expression of self OVA by using CD4+ Th cells or Th cells with various gene deficiency. We demonstrated that the in vitro DCOVA-activated CD4+ Th cells (3 × 106 cells/mouse) can directly stimulate OVA-specific CD8+ T-cell responses in wild-type C57BL/6 mice and MHC II gene KO mice lacking CD4+ T cells. A large amount of CD4+ Th cells (12 × 106 cells/mouse) can even overcome OVA-specific immune tolerance in transgenic RIP-mOVA mice, leading to CD8+ CTL-mediated mouse pancreatic islet destruction and diabetes. The stimulatory effect of CD4+ Th cells is mediated by its IL-2 secretion and CD40L and CD80 costimulations, and is specifically delivered to OVA-specific CD8+ T cells in vivo via its acquired pMHC I complexes. Therefore, the above elucidated principles for CD4+ Th cells will have substantial implications in autoimmunity and antitumor immunity, and regulatory T-cell-dependent immune suppression.  相似文献   

4.
In this study we show the inheritance of a CD4+CD8+ peripheral T cell population in the H.B15 chicken strain. A large proportion of αβ T cells in peripheral blood (20–40%), spleen (10–20%) and intestinal epithelium (5–10%) co-express CD4 and CD8α, but not CD8β. CD4+ CD8αα cells are functionally normal T cells, since they proliferate in response to mitogens and signals delivered via the αβT cell receptor as well as via the CD28 co-receptor. These cells induce in vivo a graft versus host-reaction, providing further evidence for their function as CD4+ T cells. The CD4+CD8αα T cell population was found in 75% of the first progeny and in 100% of further progenies, demonstrating that co-expression of CD4 and CD8 on peripheral T cells is an inherited phenomenon. In addition, cross-breeding data suggest a dominant Mendelian form of inheritance. The hereditary expression of CD8α on peripheral CD4+ T cells in chicken provides a unique model in which to study the regulation of CD4 and CD8 expression.  相似文献   

5.
Intravenous immunoglobulin (IVIg) is successfully used in the treatment of autoimmune diseases involving self‐reactive CD8+ T cells. However, its direct influence on the cytotoxic response remains unknown. Using an antigen cross‐presentation assay and a mouse model of ovalbumin (OVA) immunization, we showed that IVIg decreases the in vitro activation, proliferation and cytokine secretion of OVA‐specific CD8+ T cells (OT‐I), as well as the in vivo generation of OVA‐specific CD8+ T cells. In addition, IVIg significantly decreases the proportion of perforin‐ and CD107a‐expressing CD8+ T cells, and inhibits the cytotoxic activity of OVA‐activated OT‐I cells. The interference of IVIg with the CD8+ T‐cell response is associated with T‐cell receptor blockade, therefore reducing the interaction between effector and target cells. A similar blockade is observed on human CD8+ T cells, suggesting that the observations reported here could apply to the IVIg‐mediated improvement of CD8+ T‐cell‐mediated autoimmune conditions in human patients.  相似文献   

6.
Cutaneous sensitization to reactive haptens and subsequent challenge results in a T cell-mediated response, contact hypersensitivity (CHS). Recent results from this laboratory have indicated that hapten sensitization induces two populations of reactive T cells: CD8+ T cells producing interferon (IFN)-γ which mediate the response and CD4+ T cells producing interleukin (IL)-4 and IL-10 which negatively regulate the magnitude and duration of the response. Since CD4+ T cell development to either IFN-γ- (Th1) or IL-4/IL-10- (Th2)-producing cells is dependent upon the cytokine environment during antigen priming, we hypothesized that CD4+ T cell induction in a Th1-promoting environment would not only alter the CD4+ T cell cytokine-producing phenotype but also the course of the CHS response. Administration of the Th1-promoting cytokine IL-12 during hapten sensitization resulted in a CHS response of greater magnitude following challenge and extended the duration of the response. In hapten-sensitized mice depleted of CD8+ T cells, treatment with IL-12 induced effector CD4+ T cells. Histological examination of challenged ear tissue from these mice indicated minimal edema and an acute mononuclear cell infiltration more typical of classical delayed-type hypersensitivity than CHS. Hapten-primed CD4+ T cells from IL-12 treated, sensitized mice produced IFN-γ, but not IL-4 in response to T cell receptor-mediated stimulation. Use of neutralizing anti-IFN-γ antibody indicated that IL-12 not only directly promoted Th1 development but also indirectly inhibited Th2 development through stimulation of IFN-γ production at the time of hapten sensitization. Overall, these results demonstrate that diversion of CD4+ T cell development to Th1 effector cells rather than to Th2 cells alters the efferent nature of CHS and removes a primary regulatory mechanism of the immune response.  相似文献   

7.
The opportunistic fungal pathogen Cryptococcus neoformans causes lung inflammation and fatal meningitis in immunocompromised patients. Regulatory T (Treg) cells play an important role in controlling immunity and homeostasis. However, their functional role during fungal infection is largely unknown. In this study, we investigated the role of Treg cells during experimental murine pulmonary C. neoformans infection. We show that the number of CD4+FoxP3+ Treg cells in the lung increases significantly within the first 4 weeks after intranasal infection of BALB/c wild‐type mice. To define the function of Treg cells we used DEREG mice allowing selective depletion of CD4+FoxP3+ Treg cells by application of diphtheria toxin. In Treg cell‐depleted mice, stronger pulmonary allergic inflammation with enhanced mucus production and pronounced eosinophilia, increased IgE production, and elevated fungal lung burden were found. This was accompanied by higher frequencies of GATA‐3+ T helper (Th) 2 cells with elevated capacity to produce interleukin (IL)‐4, IL‐5, and IL‐13. In contrast, only a mild increase in the Th1‐associated immune response unrelated to the fungal infection was observed. In conclusion, the data demonstrate that during fungal infection pulmonary Treg cells are induced and preferentially suppress Th2 cells thereby mediating enhanced fungal control.  相似文献   

8.
Through an imbalance in Th1 and Th2 cytokine profiles, diesel exhaust particles (DEP) are thought to induce Th2-dominated IgE and IgG1 production. However, the roles of CD4+ and CD8+ T-cell subtypes in the increased immune responses to antigen in mice exposed to DEP are unclear. In the present study, we investigated whether treatment with anti-CD4 or anti-CD8 mAb abrogated the adjuvant activity of DEP. On day -1 and day 1, each group of mice was injected intraperitoneally with anti-CD4, anti-CD8, or rat IgG (vehicle). On day 0, the mice were immunized with ovalbumin (OVA) or OVA plus DEP. After 3 weeks, each mouse was boosted with 10 microg of OVA alone. On day 7 after the first injection with OVA+DEP or OVA alone, the numbers of total, IA+, CD80+/IA+ and CD86+/IA+ cells in peritoneal exudate cells (PEC) were higher in OVA+DEP-immunized mice than in OVA-immunized mice. Depletion of CD8+ cells resulted in a modulation of the production of granulocyte-macrophage colony-stimulating factor, IL-12 and PGE(2) in peritoneal exudate fluid from OVA+DEP-immunized mice. On day 28, DEP injection markedly increased IL-4 production in the culture supernatants of spleen cells from CD4+ or CD8+-depleted mice. Depletion of CD8+ cells in OVA+DEP-immunized mice resulted in a decrease in IFN-gamma production compared with that in OVA-immunized mice. Adjuvant activity of DEP was observed in anti-OVA IgE, anti-OVA IgG1, anti-OVA IgG3, and total IgE production. Depletion of CD4+ T cells abrogated the adjuvant effect of DEP on anti-OVA IgE, and anti-OVA IgG1 production in plasma. However, depletion of CD8+ T cell inhibited the upregulated anti-OVA IgG3 production. These findings suggest that DEP injection may affect not only the function of CD4+ cells but also that of CD8+ T-cell subsets to modulate the synthesis of proinflammatory cytokine in PEC and type-1 and type-2 cytokine production in spleens.  相似文献   

9.
Background and Objective A subset of IL-4 producing CD8+ T cells was recently identified in HIV patients. Based on these findings we examined whether IL-4 producing CD8+ T cells would also be present in allergic patients and what would be the functional relevance of this T-cell population. Methods We investigated the role of CD8+ T cells in IgE production of allergic diseases by analysing the cytokine profile of individual CD4+ and CD8+ T cells. Results In allergic patients about twice as many CD4+ T cells and six times as many CD8+ T cells produced IL-4 as in non-allergic controls. In contrast the frequency of IFNγ+ T-cell subsets did not significantly differ between the allergic and non-allergic individuals. The frequency of 1L4+CD8+ T cells correlated with the level of serum IgE. Coculture experiments with T cells or purified CD8+ T cells together with autologous B cells indicated that CD8+ T cells enhanced IgE in vitro, but not IgM production, even when they were physically separated from B cells. This effect could be partially blocked by addition of an IL-4 binding protein, a soluble IL-4 receptor indicating that lL-4 is involved in CD8+ T-cell mediated IgE production. Conclusions These data indicate a positive role of IL-4 secreting CD8+ T cells in IgE regulation in allergic patients.  相似文献   

10.
BACKGROUND: Although T-cell responses to food antigens are normally inhibited either by deletion, active suppression, or both of antigen-specific T cells, T helper cells for IgE response to a food antigen still develop by unknown mechanisms in a genetically susceptible host. OBJECTIVE: We determined the site at which those IgE helper T cells develop. METHODS: We administered ovalbumin (OVA) orally to DO11.10 mice and studied CD4+ T cells in Peyer's patches, the spleen, and the liver. Helper activity for IgE response was assessed by adoptively transferring those CD4+ T cells to naive BALB/c mice, followed by systemic immunization with OVA. RESULTS: OVA-specific CD4+ T cells were deleted by cell death in the liver and Peyer's patches of DO11.10 mice fed OVA. OVA-specific CD4+ T cells that survived apoptosis in the liver expressed Fas ligand and secreted IL-4, IL-10, and transforming growth factor beta(1). CD4+ T cells producing IFN-gamma were deleted in the liver by repeated feeding of OVA. On transfer of CD4+ T cells to naive mice and systemic immunization with OVA, a marked increase in OVA-specific IgE response developed only in the mice that received hepatic CD4+ T cells from OVA-fed mice, the effect of which was not observed in the recipients of hepatic CD4+ T cells deficient in IL-4. In addition, significant suppression of delayed-type hypersensitivity and IgG(1)/IgG(2a) responses to OVA was observed in the recipients of hepatic CD4+ T cells, and this suppression required Fas/Fas ligand interaction. CONCLUSION: Together, these results suggested that a food antigen might negatively select helper T cells for IgE response to the antigen by preferential deletion of T(H)1 cells in the liver.  相似文献   

11.
Interaction of CD4+ T cells and B cells is necessary for IgE production. It has been recently demonstrated that cell surface antigen CD21 is a ligand for CD23 (Fc?RII) and that the pairing of these molecules may participate in the control of IgE production. In this study we investigated the effect of the Dermatophagoides pteronyssinus (Dpt) allergen and recombinant interleukin(rIL)-4 on the expression of CD21 and CD23 on T and B cells of asthmatic patients allergic to Dpt and of healthy controls. Peripheral blood mononuclear cells (PBMC) were incubated alone or with Dpt allergen (100 biological units/ml) and/or rIL-4 (100 U/ml) for up to 7 days. The flow-cytometric analysis of double-fluorescence staining revealed that Dpt allergen and/or rIL-4 induced CD23 on CD4+ T lymphocytes only in allergic patients. The allergen-induced CD23 on T cells is de novo synthesized antigen since no induction of CD23 on T cells was observed in cultures with 0.4 μg/ml actinomycin D. Moreover, 100 U/ml of interferon-γ inhibited the induction of CD23 on CD4+ T cells. T cells obtained from healthy donors did not express CD23 or CD21 antigen upon incubation with allergen and/or rIL-4. Although rIL-4 also induced CD23 in controls, the expression was only observed on CD20+ cells. The allergen alone induced a significant elevation of the mean fluorescence intensity of both CD21 and CD23 only in allergic in dividuals. When the cell proliferation was analyzed, a slightly increased stimulation index upon cultivation of PBMC was obtained from non-allergic donors as well, but less than in allergic patients. The co-expression of major histocompability complex class II molecules and CD23 on CD4+ T lymphocytes in allergic patients, as assessed by the three-color immunofluorescence analysis, indicates that these cells were activated. We conclude that CD4+ T lymphocytes possess a unique capability to express CD23 upon exposure to allergen. Moreover, the allergen-mediated induction of CD23 on T cells observed only in allergic patients may be the reason for the increase of IgE production. This would not occur in non-allergic individuals as there is no CD23 expression on T cells.  相似文献   

12.
Background Symptoms of allergy are largely attributed to an IgE‐mediated hypersensitivity response. However, a considerable number of patients also exhibit clinical features of allergy without detectable systemic IgE. Previous work showed that Ig‐free light chains (IgLC) may act as an alternate mechanism to induce allergic responses. CD4+CD25+ T cells are crucial in the initiation and regulation of allergic responses and compromised function might affect the response to allergens. Objective To examine the contribution of CD4+CD25+ T cells and IgLC towards the whey‐allergic response. Methods Mice were sensitized orally with whey using cholera toxin as an adjuvant. CD25+ T cells were depleted in vivo using a CD25 mAb. The acute allergic skin response to whey and ex vivo colon reactivity was measured in the presence or absence of F991, a specific inhibitor of IgLC. Serum whey‐specific antibodies and IgLC in serum and mesenteric lymph node (MLN) supernatants were measured. Depletion of CD4+CD25+ T cells was confirmed in the spleen. Results Anti‐CD25 treatment strongly reduced whey‐specific antibody levels and resulted in a partial depletion of effector T cells and a major depletion of Foxp3+ regulatory T cells. Surprisingly, despite the abolished specific IgE response, the acute allergic skin response to whey was not affected. IgLC levels were enhanced in the serum and MLN supernatants of CD25‐depleted sensitized mice. F991 inhibited the acute skin response and colon hyperreactivity in anti‐CD25‐treated mice, indicating that these responses were mainly IgLC dependent. Conclusions Depletion of CD4+CD25+ T cells resulted in a switch from an IgE‐ to an IgLC‐dependent acute skin response and functional hyperresponsiveness of the colon. Our data suggest that CD25+ T cells play a crucial role in balancing cow's milk allergy between IgE and IgE‐independent responses and both mechanisms might play a role in allergic responses to the same allergen. Cite this as: B. C. A. M. van Esch, B. Schouten, B. R. J. Blokhuis, G. A. Hofman, L. Boon, J. Garssen L. M. J. Knippels, L. E. M. Willemsen and F. A. Redegeld, Clinical & Experimental Allergy, 2010 (40) 1414–1421.  相似文献   

13.
Background In human asthma, and experimental allergic airways disease in mice, antigen‐presenting cells and CD4+ effector cells at the airway mucosa orchestrate, and CD4+CD25+ regulatory T cells attenuate, allergen immunity. UV irradiation of skin before sensitization with ovalbumin (OVA) causes significantly reduced asthma‐like responses in respiratory tissues. Objective To determine whether UV‐induced changes in CD11c+ cells, CD4+CD25+ effector cells or CD4+CD25+ regulatory cells in the trachea and airway draining lymph nodes (ADLNs) were responsible for reduced allergic airways disease. Methods The phenotype and function of CD11c+ cells and CD4+CD25+ cells in the trachea and ADLNs of UV‐ and non‐irradiated, OVA‐sensitized mice was examined 24 h after a single exposure to aerosolized OVA. Results No changes in the function of CD11c+ cells from UV‐irradiated mice were observed. CD4+CD25+ cells from UV‐irradiated, OVA‐sensitized mice harvested 24 h after OVA aerosol proliferated less in response to OVA in vitro and were unable to suppress the proliferation of OVA‐sensitized responder cells. This result suggested reduced activation of effector T cells in the airway mucosa of UV‐irradiated, OVA‐sensitized mice. To exclude regulatory cells of any type, there was similar proliferation in vivo to aerosolized OVA by CFSE‐loaded, OVA‐TCR‐specific CD4+ cells adoptively transferred into UV‐ and non‐irradiated, OVA‐sensitized mice. In addition, there was no difference in the expression of regulatory T cell markers (Foxp3, IL‐10, TGF‐β mRNA). To examine effector T cells, ADLN cells from UV‐irradiated, OVA‐sensitized and ‐challenged mice were cultured with OVA. There was reduced expression of the early activation marker CD69 by CD4+CD25+ cells, and reduced proliferation in the absence of the regulatory cytokine, IL‐10. Conclusion Reduced allergic airways disease in UV‐irradiated mice is due to fewer effector CD4+CD25+ cells in the trachea and ADLNs, and not due to UV‐induced regulatory cells. Cite this as: J. P. McGlade, D. H. Strickland, M. J. M. Lambert, S. Gorman, J. A. Thomas, M. A. Judge, J. T. Burchell, G. R. Zosky and P. H. Hart, Clinical & Experimental Allergy, 2010 (40) 772–785.  相似文献   

14.
Immune stimulating complexes (ISCOMs) containing the saponin adjuvant Quil A are vaccine adjuvants that promote a wide range of immune responses in vivo, including delayed-type hypersensitivity (DTH) and the secretion of both T helper 1 (Th1) and Th2 cytokines. However, the antigen-presenting cell (APC) responsible for the induction of these responses has not been characterized. Here we have investigated the role of dendritic cells (DC), macrophages (Mφ) and B cells in the priming of antigen-specific CD4+ T cells in vitro by ISCOMs containing ovalbumin (OVA). OVA ISCOMs pulsed bone marrow (BM)-derived DC but not BM Mφ, nor naïve B cells prime resting antigen-specific CD4+ T cells, and this response is greatly enhanced if DC are activated with lipopolysaccharide (LPS). Of the APC found in the spleen, only DC had the capacity to prime resting antigen specific CD4+ T cells following exposure to OVA ISCOMs in vitro, while Mφ and B cells were ineffective. DC, but not B cells purified from the draining lymph nodes of mice immunized with OVA ISCOMs also primed resting antigen-specific CD4+ T cells in vitro, suggesting that DC are also critical in vivo. Using DC and T cells from interleukin (IL)-12 p40−/− mice, we also identified a crucial role for IL-12 in the priming of optimal CD4+ T cell responses by OVA ISCOMs. We suggest that DC are the principal APC responsible for the priming of CD4+ T cells by ISCOMs in vivo and that directed targeting of these vectors to DC may enhance their efficancy as vaccine adjuvants.  相似文献   

15.
16.
The immune response to Leishmania major has been the subject of many investigations. However, Leishmania includes many species with different clinical manifestations. In this report, we studied the Tcell response to L. mexicana amazonensis, a New World species, in a murine model. We found that, similar to L. major, an Old World species, resistant C57BL/6 mice produced a high level of IFN-γ and a low level of IL-4. Conversely, susceptible BALB/c mice produced a much lower level of IFN-γ and higher level of IL-4. Although IFN-γ is one of the important lymphokines that mediate macrophage activation and thus the destruction of the intracellular parasites, which lymphocyte subsets are producing the IFN-γ is still a controversy. Much evidence including the isolation of protective, IFN-γ-producing, CD4+ cell lines have confirmed the participation of CD4+ Thl cells unequivocally. However, both CD4+ and CD8+ cells produced IFN-γ. Recently, an increasing body of evidence has appeared suggesting that CD8+ cells also play a role in the resolution of murine L. major infection. We found that in the L. m. amazonensis model, when CD8+ lymphocytes from resistant C57BL/6 mice were eliminated by anti-CD8 antibody and complement-mediated lysis, the IFN-γ production was reduced by 77%. This indicated that CD8+ cells produced a significant amount of the IFN-γ. However, our results also indicate that IFN-γ production by CD8+ cells was dependent on CD4+ cells.  相似文献   

17.
B cells activated with anti-γ antibody plus interferon (IFN)-γ exerted strong antigen presentation activity for T cell proliferation. The enhanced antigen presentation function was shown to be due to the increase in B7-2 expression. When B cells were stimulated with anti-μ, expression of MHC major histocompatibility complex class II, heat-stable antigen (HSA), ICAM-1 and B7-2 was increased. The presence of IFN-γ further augmented the expression of B7-2 on anti-μ-stimulated B cells. B7-1 was not expressed on B cells under these conditions. The participation of B7-2 in the elicitation of the proliferative response of T cells was confirmed by the inclusion of anti-B7-2 antibody in cultures. The enhanced expression of either HSA or ICAM-1 was shown not to play a major role in the increased B cell antigen presentation capacity. The major T cell population responding to this activated B cell antigen presentation was shown to be CD44low naive CD4+ T cells, whereas CD45RBlow memory CD4+ T cells responded only weakly. The difference in proliferative responses between naive and memory CD4+ T cells was explained by the different efficiency in IL-2 production of these cell populations in response to antigen presentation by B cells activated by anti-μ plus IFN-γ. These results suggest that IFN-γ plays an important role in recruitment of naive T cells for an immune response.  相似文献   

18.
Immunotherapies that augment antitumor T cells have had recent success for treating patients with cancer. Here we examined whether tumor‐specific CD4+ T cells enhance CD8+ T‐cell adoptive immunotherapy in a lymphopenic environment. Our model employed physiological doses of tyrosinase‐related protein 1‐specific CD4+ transgenic T cells‐CD4+ T cells and pmel‐CD8+ T cells that when transferred individually were subtherapeutic; however, when transferred together provided significant (p ≤ 0.001) therapeutic efficacy. Therapeutic efficacy correlated with increased numbers of effector and memory CD8+ T cells with tumor‐specific cytokine expression. When combined with CD4+ T cells, transfer of total (naïve and effector) or effector CD8+ T cells were highly effective, suggesting CD4+ T cells can help mediate therapeutic effects by maintaining function of activated CD8+ T cells. In addition, CD4+ T cells had a pronounced effect in the early posttransfer period, as their elimination within the first 3 days significantly (p < 0.001) reduced therapeutic efficacy. The CD8+ T cells recovered from mice treated with both CD8+ and CD4+ T cells had decreased expression of PD‐1 and PD‐1‐blockade enhanced the therapeutic efficacy of pmel‐CD8 alone, suggesting that CD4+ T cells help reduce CD8+ T‐cell exhaustion. These data support combining immunotherapies that elicit both tumor‐specific CD4+ and CD8+ T cells for treatment of patients with cancer.  相似文献   

19.
Antigen‐specific CD4+ T cells are central to natural and vaccine‐induced immunity. An ongoing antigen‐specific T‐cell response can, however, influence surrounding T cells with unrelated antigen specificities. We previously observed this bystander effect in healthy human subjects following recall vaccination with tetanus toxoid (TT). Since this interplay could be important for maintenance of memory, we have moved to a mouse model for further analysis. We investigated whether boosting memory CD4+ T cells against TT in vivo would influence injected CD4+ TCR transgenic T cells (OT‐II) specific for an unrelated OVA peptide. If OT‐II cells were pre‐activated with OVA peptide in vitro, these cells showed a bystander proliferative response during the ongoing parallel TT‐specific response. Bystander proliferation was dependent on boosting of the TT‐specific memory response in the recipients, with no effect in naive mice. Bystander stimulation was also proportional to the strength of the TT‐specific memory T‐cell response. T cells activated in vitro displayed functional receptors for IL‐2 and IL‐7, suggesting these as potential mediators. This crosstalk between a stimulated CD4+ memory T‐cell response and CD4+ T cells activated by an unrelated antigen could be important in human subjects continually buffeted by environmental antigens.  相似文献   

20.
Interleukin (IL)-13 is a cytokine originally identified as a product of activated T cells. Little is known, however, about IL-13 production by human T cells and its modulation by other cytokines. Here, we show that IL-13 is produced by activated human CD4+ and CD8+ CD45R0+ memory T cells and CD4+ and CD8+ CD45RA+ naive T cells. In contrast, IL-4, which shares many biological activities with IL-13, is only produced by CD45R0+ T cells following activation. Analysis of intracellular cytokine production by single CD45RA+ and CD45R0+ T cells indicated that IL-13 continued to be produced for more than 24 h after stimulation, whereas IL-4 could not be detected after 24 h. These data were confirmed by measurement of specific mRNA and suggest that IL-13, unlike IL-4, but like interferon-γ (IFN-γ), is a cytokine with long-lasting kinetics. The majority of human CD45R0+ T cells produced IL-4 and IL-13 simultaneously. In contrast, IFN-γ protein was generally not co-expressed with IL-4 or IL-13. IL-4 added to primary cultures of highly purified peripheral blood T cells activated by the combination of anti-CD3+anti-CD28 mAb enhanced IL-13 production by CD45RA+ and to a lesser extent by CD45R0+ T cells. Under these conditions, however, IL-12 inhibited IL-13 production by CD45RA+ T cells and to a lesser extent by CD45R0+ T cells in a dose-dependent fashion. These inhibiting effects were not related to enhanced IFN-γ production induced by IL-12, since IFN-γ by itself did not affect IL-13 production. Collectively, our data indicate that IL-13 is produced by peripheral blood T cells which also produce IL-4, but not IFN-γ, and by naive CD45RA+ T cells which, in contrast, fail to produce IL-4. These observations, together with the long-lasting production of IL-13, suggest that IL-13 may have IL-4-like functions in situations where T cell-derived IL-4 is still absent or where its production has already been down-regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号