首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to quantitatively compare the hepatic contrast characteristics of conventional spin-echo (CSE) and fast spin-echo (FSE) sequences with breath-hold T2-weighted images acquired with half-Fourier turbo spin echo (HASTE). Forty-five patients were examined with a phased-array surface coil. Nineteen patients had focal hepatic lesions, including eight malignant tumors, 10 cavernous hemangiomas, and one hepatic adenoma. Twenty-six patients had no focal hepatic lesions. T2-weighted images with comparable TE were acquired with CSE, FSE, and HASTE pulse sequences. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for liver, spleen, and lesions were measured. FSE demonstrated significantly better quantitative performance than CSE for liver-spleen CNR (P = .0084). No statistically significant difference was demonstrated between FSE and CSE for liver or spleen SNR. FSE demonstrated clear scan time and resolution advantages over CSE. HASTE performed significantly poorer than CSE and FSE for liver-spleen CNR (P < .0001), liver SNR (P = .0002 for CSE and P < .0001 for FSE), and spleen SNR (P < .0001). Optimized FSE images with a short echo train length performed comparably to CSE images of equivalent TE. Liver-lesion CNR was suppressed on HASTE images, suggesting that long echo train length FSE sequences could diminish solid lesion detection compared to CSE and short echo train length FSE.  相似文献   

2.
In single shot echo train imaging all the data required for a two dimensional image is acquired from a series of echoes generated following a single RF excitation pulse. Spatial resolution is limited because all samples must be acquired before the signal decays. In this paper we show theoretically that more echoes and hence better spatial resolution can be obtained with single shot GRASE imaging than with either echo planar imaging or single shot RARE imaging. This conclusion holds for both conventional imaging hardware and specialized gradient hardware designed for EPI. High quality single shot GRASE images support the theoretical conclusions.  相似文献   

3.
The conventional Fourier‐transform‐based spin‐echo sequence with a view angle tilting gradient during data acquisition can correct the in‐plane distortion induced by a chemical shift or B0 field inhomogeneity. However, when extended for 3D applications, alternate k‐space sampling can be beneficial for reducing the lengthy scan time. As spiral trajectories have high k‐space acquisition efficiency, we investigated the applicability of spiral trajectory on a spin‐echo view angle tilting pulse sequence. Computer simulations and phantom and in vivo experiments were performed to validate the usage of spiral readout gradients in the presence of a view angle tilting gradient. The results show that as long as the readout time is comparable to Cartesian readout, the resulting images have similar quality. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
A new fast spectroscopic imaging (SI) method is presented which is based on spatial localization by the fast MRI method of rapid acquisition with relaxation enhancement (RARE) and encoding of the chemical shift information by shifting the position of a refocusing 180 pulse in a series of measurements. This method is termed spectroscopic RARE. In contrast to spectroscopic ultrafast low-angle RARE (U-FLARE), the formation of two echo families (odd and even) is suppressed by using a train of 180 RF pulses with an internal four-step phase cycle. By this means a high signal-to-noise ratio (SNR) per unit measurement time is obtained, because the separation of odd and even echoes, as well as dummy echoes to stabilize the echo amplitudes, is not needed anymore. The method is of particular interest for detecting signals of coupled spins, as effective homonuclear decoupling can be achieved by use of constant evolution time chemical shift encoding. The pulse sequence was implemented on a 4.7 T imaging system, tested on phantoms, and applied to the healthy rat brain in vivo. Spectroscopic RARE is particularly useful if T2* double less-than sign T2, which is typically fulfilled for in vivo proton SI measurements at high magnetic field strength.  相似文献   

5.
In this work, a multiecho parallel echo‐planar imaging (EPI) acquisition strategy is introduced as a way to improve the acquisition efficiency in parallel diffusion tensor imaging (DTI). With the use of an appropriate echo combination strategy, the sequence can provide signal‐to‐noise ratio (SNR) enhancement while maintaining the advantages of parallel EPI. Simulations and in vivo experiments demonstrate that a weighted summation of multiecho images provides a significant gain in SNR over the first echo image. It is experimentally demonstrated that this SNR gain can be utilized to reduce the number of measurements often required to ensure adequate SNR for accurate DTI measures. Furthermore, the multiple echoes can be used to derive a T2 map, providing additional information that might be useful in some applications. Magn Reson Med 60:1512–1517, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
The signal from the lungs is heavily attenuated by T2 and T2* decay in standard MR images of the thorax. The authors utilized the capabilities of a prototype fast gradient system to develop a multi-slice gradient echo sequence that can obtain images with an echo time of 0.7 ms. Images acquired in a single breath-hold are free from respiratory motion artifacts and clearly display signal from lung parenchyma. The use of fast gradients makes short echo times possible without the use of nonstandard RF pulses and spatial encoding techniques and their associated limitations.  相似文献   

7.
Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo‐planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple‐shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral‐in due to increased BOLD signal contrast‐to‐noise ratio (CNR) and higher acquisition efficiency than that of spiral‐out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829–834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral‐in and ‐out trajectories possess artifacts caused by differences in T2* decay, off‐resonance, and k‐space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in‐plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for high spatial resolution BOLD functional magnetic resonance imaging applications. Magn Reson Med 70:420–428, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Hybrid RARE (rapid acquisition with relaxation enhancement) is a family of magnetic resonance (MR) imaging techniques whereby a set of images is phase encoded with more than one spin echo per excitation pulse. This increases the efficiency of obtaining T2-weighted images, allowing greater flexibility regarding acquisition time, resolution, signal-to-noise ratio, and tissue contrast. Hybrid RARE techniques involve several important new user-selectable parameters such as effective TE, echo train length, and echo spacing. Choices of other parameters, such as TR, sampling bandwidth, and acquisition matrix, may be different from those of comparable conventional T2-weighted spin-echo images. Different hybrid RARE implementations can be used for abdominal screening, with T2-weighted or T2-weighted and inversion-recovery contrast, or for characterizing liver lesions or imaging the biliary system with an extremely long TE. High-resolution images may be obtained by averaging multiple signals during quiet breathing, or images may be acquired more rapidly during suspended respiration. In this review, the authors discuss the basic principles of hybrid RARE techniques and how various imaging parameters can be manipulated to increase the quality and flexibility of abdominal T2-weighted MR imaging.  相似文献   

9.
Maxwell's equations imply that imaging gradients are accompanied by higher order spatially varying fields (concomitant fields) that can cause artifacts in MR imaging. The lowest order concomitant fields depend quadratically on the imaging gradient amplitude and inversely on the static field strength. Time-varying concomitant fields that accompany the readout gradients of spiral scans cause unwanted phase accumulation during the readout, resulting in spatially dependent blurring. Concomitant field phase errors are independent of echo time and, therefore, cannot be detected using Dixon-type field map measurements that are normally used to deblur spiral scan images. Data acquisition methods that reduce concomitant field blurring increase off-resonant spin blurring, and vice versa. Blurring caused by concomitant fields can be removed by variations of image reconstruction methods developed to correct for spatially dependent resonance offsets with nonrectangular k-space trajectories.  相似文献   

10.
Spiral imaging has a number of advantages for ultrafast data acquisition. However, implementation on high-field small-bore systems requires carefully addressing the issues of in-homogeneity-induced blurring and gradient hardware constraints. In this paper, spiral imaging on a 40-cm-bore 4.7T CSI Omega System (Bruker Instruments) is discussed. A constant-voltage gradient waveform design algorithm is developed to reduce readout times as well as minimize waveform distortions due to gradient amplifier nonlinearities. Residual errors are then measured and taken into account in the image reconstruction procedure. Multiple spiral interleaves as well as a multifrequency reconstruction algorithm are used to decrease blurring of off-resonance spins. Both phantom and in vivo images demonstrate the performance of the resulting pulse sequences.  相似文献   

11.
High‐resolution, diffusion‐weighted (DW) MR microscopy is gaining increasing acceptance as a nondestructive histological tool for the study of fixed tissue samples. Spin‐echo sequences are popular for high‐field diffusion imaging due to their high tolerance to B0 field inhomogeneities. Volumetric DW rapid acquisition with relaxation enhancement (DW‐RARE) currently offers the best tradeoff between imaging efficiency and image quality, but is relatively sensitive to residual eddy‐current effects on the echo train phase, resulting in encoding direction‐dependent ghosting in the DW images. We introduce two efficient, image‐based phase corrections for ghost artifact reduction in DW‐RARE of fixed tissue samples, neither of which require navigator echo acquisition. Both methods rely on the phase difference in k‐space between the unweighted reference image and a given DW image and assume a constant, per‐echo phase error arising from residual eddy‐current effects in the absence of sample motion. Significant qualitative and quantitative ghost artifact reductions are demonstrated for individual DW and calculated diffusion tensor images. Magn Reson Med, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
Zero echo time can be obtained in MRI by performing radiofrequency (RF) excitation as well as acquisition in the presence of a constant gradient applied for purely frequency‐encoded, radial centre‐out k‐space encoding. In this approach, the spatially nonselective excitation must uniformly cover the full frequency bandwidth spanned by the readout gradient. This can be accomplished either by short, hard RF pulses or by pulses with a frequency sweep as used in the SWIFT (Sweep imaging with Fourier transform) method for improved performance at limited RF amplitudes. In this work, the two options are compared with respect to T2 sensitivity, signal‐to‐noise ratio (SNR), and SNR efficiency. In particular, the SNR implications of sweep excitation and of initial or periodical acquisition gaps required for transmit‐receive switching are investigated. It was found by simulations and experiments that, whereas equivalent in terms of T2 sensitivity, the two techniques differ in SNR performance. With ideal, ungapped simultaneous excitation and acquisition, the sweep approach would yield higher SNR throughout due to larger feasible flip angles. However, acquisition gapping is found to take a significant SNR toll related to a reduced acquisition duty cycle, rendering hard pulse excitation superior for sufficient RF amplitude and also in the short‐T2 limit. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
Chemical-shift artifacts associated with non-Cartesian imaging are more complex to model and less clinically acceptable than the bulk fat shift that occurs with conventional spin-warp Cartesian imaging. A novel k-space based iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) approach is introduced that decomposes multiple species while simultaneously correcting distortion of off-resonant species. The new signal model accounts for the additional phase accumulated by off-resonant spins at each point in the k-space acquisition trajectory. This phase can then be corrected by adjusting the decomposition matrix for each k-space point during the final IDEAL processing step with little increase in reconstruction time. The technique is demonstrated with water-fat decomposition using projection reconstruction (PR)/radial, spiral, and Cartesian spin-warp imaging of phantoms and human subjects, in each case achieving substantial correction of chemical-shift artifacts. Simulations of the point-spread-function (PSF) for off-resonant spins are examined to show the nature of the chemical-shift distortion for each acquisition. Also introduced is an approach to improve the signal model for species which have multiple resonant peaks. Many chemical species, including fat, have multiple resonant peaks, although such species are often approximated as a single peak. The improved multipeak decomposition is demonstrated with water-fat imaging, showing a substantial improvement in water-fat separation.  相似文献   

14.
In this work, the authors present 3D images acquired from the human head using echo planar encoding for two of the three dimensions of k-space. The third dimension of k-space is filled by selecting and phase encoding a slab of spins as in conventional 3D steady state (GRASS based) acquisition regimens. Using this approach, a 128 x 64 x 64 3D data matrix could be obtained in 3.4–4.7 sec using effective TE values of 24 and 34 ms, respectively. High quality 3D images could be acquired once phase ghosts present on 2D images were minimized through proper adjustments of scanner hardware.  相似文献   

15.
T2-weighted high-resolution gradient and fast spin echo sequences are widely used as an alternative or adjunct to contrast-enhanced T1-weighted temporal bone imaging. However, to date no systematic comparison has been presented. The purpose of this work is to identify optimal acquisition parameters and to compare volume gradient and fast spin echo techniques. Signal intensities and scan efficiency were computed for gradient echo segment-interleaved motion-compensated acquisition into steady state (SIMCAST), standard fast spin echo (FSE), and fast recovery fast spin echo (FR-FSE). Computations were compared with inner ear images acquired with cubic voxel sizes of 0.35-0.40 mm(3)in 5-8 minutes. Given otherwise identical conditions, the FR-FSE sequence produces images with improved SNR in shorter scan times than standard FSE. For FR-FSE, the scan efficiency is optimal for specific pairs of TR and echo train length, eg, 400 ms/8, 735 ms/16, and 2,050 ms/48. FR-FSE images with large TR and echo trains, while achieving better SNR, are severely compromised by blurring. Imaging with echo train lengths of 16-24 and TR of 800-1,200 ms is a good compromise, and FR-FSE signal-to-noise ratio (SNR) and scan efficiency become comparable to SIMCAST. In vivo image quality is excellent with both FR-FSE and SIMCAST, but SIMCAST images have slightly higher SNR and are significantly more crisp. J. Magn. Reson. Imaging 2000;12:814-825.  相似文献   

16.

Purpose

To optimize the Rosette trajectories for fast, high sensitivity spectroscopic imaging experiments and to compare this acquisition technique with other chemical shift imaging (CSI) methods.

Materials and Methods

A framework for comparing the sensitivity of the Rosette Spectroscopic Imaging (RSI) acquisition to other spectroscopic imaging experiments is outlined. Accounting for hardware constraints, trajectory parameters that provide for optimal sampling and minimal artifact production are found. Along with an analytical expression for the number of excitations to be used in an RSI experiment that is provided, the theoretical precompensation weights used for optimal image reconstruction are derived.

Results

The spectral response function for RSI is shown to be approximately the same as the point spread function of standard Fourier reconstructions. While the signal‐to‐noise ratio (SNR) for an RSI experiment is reduced by the inherent nonuniform sampling of these trajectories, their circular k‐space support and speed of spatial encoding leads to greater SNR efficiency and improvements in the total data acquisition time relative to the gold standard CSI approach with square k‐space support and to similar efficiency to spiral CSI acquisitions. Numerical simulations and in vivo experimental data are presented to demonstrate the properties of this data acquisition technique.

Conclusion

This work demonstrates the use of Rosette trajectories and how to achieve improved efficiency for these trajectories in a two‐dimensional spectroscopic imaging experiment. J. Magn. Reson. Imaging 2009;29:1375–1385. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Arterial spin labeling is a noninvasive technique that can quantitatively measure cerebral blood flow. While traditionally arterial spin labeling employs 2D echo planar imaging or spiral acquisition trajectories, single‐shot 3D gradient echo and spin echo (GRASE) is gaining popularity in arterial spin labeling due to inherent signal‐to‐noise ratio advantage and spatial coverage. However, a major limitation of 3D GRASE is through‐plane blurring caused by T2 decay. A novel technique combining 3D GRASE and a periodically rotated overlapping parallel lines with enhanced reconstruction trajectory (PROPELLER) is presented to minimize through‐plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3 × 3 × 5 mm3 nominal voxel size with pulsed arterial spin labeling preparation sequence. Data from five healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in cerebral blood flow quantification with 3D gradient echo and spin echo, 3D GRASE PROPELLER demonstrated reduced through‐plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
Efficient off-resonance correction for spiral imaging.   总被引:1,自引:0,他引:1  
A new spiral imaging technique incorporates the acquisition of a field map into imaging interleaves. Variable density spiral trajectories are designed to oversample the central region of k-space, and interleaves are acquired at two different echo times. A field map is extracted from this data and multifrequency reconstruction is used to form an off-resonance corrected image using the entire dataset. Simulation, phantom, and in vivo results indicate that this technique can be used to achieve higher image and/or field map spatial resolution compared to conventional techniques. Magn Reson Med 45:521-524, 2001.  相似文献   

19.
A novel MR angiography (MRA) method, swap phase encode extended data (SPEED), was developed. Two one-shot images with the phase-encode directions swapped were collected within a single breath-hold period and processed with a maximum intensity projection (MIP) to obtain an image. In this study, a long echo train two-dimensional rapid acquisition with relaxation enhancement (RARE) sequence with half-Fourier (half-RARE) was used to obtain the pulmonary MRA images. The MIP image obtained using the SPEED technique presented promising results for pulmonary vessels.  相似文献   

20.

Purpose

To improve the image quality of pulmonary magnetic resonance (MR) imaging using an ultra‐short inter‐echo spacing half‐Fourier single shot rapid acquisition with relaxation enhancement (USHA‐RARE) sequence.

Materials and Methods

Pulmonary MR images were acquired by USHA‐RARE sequence with various inter‐echo spacings. The sequence parameters were as follows: repetition time (TR)/effective TE: infinite/39–41 msec; section thickness: 10 mm; acquisition matrix: 128 × 128; field of view: 450 × 450 mm. Inter‐echo spacing varied (2.5 msec, 3.0 msec, 3.5 msec, 4.0 msec, 4.5 msec, 5.0 msec), and the respective phase‐encoding steps were 80, 77, 75, 74, 73, and 72. Signal‐to‐noise ratios (SNRs), the signal ratios between lung and fat (lung‐to‐fat ratio: LFRs), and the signal ratios between the lung and the serratus anterior muscle (lung‐to‐muscle ratio: LMRs) of each inter‐echo spacing were calculated, and statistically evaluated.

Results

The SNRs at inter‐echo spacings of ≤ 3.0 msec were significantly higher than those ≥ 4.0 msec (P < 0.05). The LFRs and LMRs at inter‐echo spacing ≤ 3.0 msec were significantly higher than those ≥ 4.0 msec (P < 0.05).

Conclusion

USHA‐RARE sequence does improve signal intensity from the lung. J. Magn. Reson. Imaging 2004;20:336–339. © 2004 Wiley‐Liss, Inc.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号