首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebral blood volume (CBV) maps derived from dynamic susceptibility contrast (DSC) magnetic resonance (MR) imaging provide valuable information regarding intracranial micro-hemodynamics and have been helpful in characterizing primary brain tumors and guiding stereotactic biopsy. Another parameter, the maximum signal drop (MSD) during the first pass of intravascular contrast bolus due to T2* effect, can also be measured directly without extensive post-processing and data manipulation. The purpose of our study is to determine whether MSD maps provide information similar to CBV maps in patients presenting with intracranial mass lesions. Twenty-nine patients with various intracranial mass lesions were studied with DSC MR imaging prior to stereotactic biopsy or volumetric resection. Maps of both CBV and MSD are calculated on a pixel-by-pixel basis and displayed as color overlays over the raw images. Relative CBV (rCBV) and MSD (rMSD) values were measured in regions of interest (ROIs) within areas of abnormality and compared. In addition, computer-generated noise was added to the data to estimate the sensitivity of each measurement to noise. The rMSD values were strongly correlated with rCBV values (r = 0.87, P = 0.0001). CBV values were much more sensitive to added noise than MSD values (P < 0.01). MSD maps derived from DSC MR imaging provide information similar to CBV maps in patients with intracranial mass lesions. MSD maps are a simple and reliable indicator of vascularity that can easily be incorporated into routine MR imaging.  相似文献   

2.
The authors measured cerebral blood flow (CBF) and cerebral blood volume (CBV) by bolus tracking of a novel ultrasmall superparamagnetic iron oxide (USPIO) contrast agent (NC100150) and compared absolute and relative perfusion measurements with those obtained by a standard gadolinium-based contrast agent. They found a linear correlation between the two methods. A dose of 0.4 mg Fe/kg body weight was found to produce a signal drop similar to that of a standard 0.2 mmol/kg gadodiamide injection using spin-echo echoplanar imaging (SE-EPI) at 1.0 T. The measurements showed a high degree of reproducibility of repeated absolute as well as relative CBF and CBV values, lending further hope to the possibility of using magnetic resonance bolus tracking for routine CBF and CBV measurements. Finally, the authors present their initial experience with high-resolution, non-EPI CBV maps obtained from steady-state levels of an intravascular superparamagnetic contrast agent.  相似文献   

3.
Calculated T1 images require that magnetic resonance signals be detected at several inversion or repetition times (TR). Multiple spin-echo (SE) acquisitions provide several measurements of the magnetization at each TR, the signal size diminishing according to T2 decay. In this work we review one method (Case 1) for estimating T1 from single echoes and present four new methods (Cases 2-5) in which multiple acquired echoes are used. For Case 2 a fit is performed using the first echo at each TR, repeated using second echoes, etc., and the final T1 estimate is the simple average of the individual fits at each echo time (TE). For Case 3 the optimum weighted average is performed. For Cases 4 and 5 synthetic SE images are generated at each TR prior to the T1 fit, Case 4 using a synthetic TE of zero, and Case 5 using a TE providing maximum signal-to-noise ratio in the synthetic image. The relative precision in T1 provided by each method is calculated rigorously. It is proven that Cases 3 and 5 are optimum and equivalent and can theoretically reduce the noise in T1 images by as much as 40% over Case 1 with no increase in scanning time. Approximations are proposed that enable the optimum methods to be implemented in a practical fashion. Experimental images are presented that verify the relative predicted behavior.  相似文献   

4.
OBJECTIVES: To investigate theoretically enhancement and optimal pulse repetition times for Gd-BOPTA and Gd-DTPA enhanced brain imaging at 0.23, 1.5, and 3.0 T. METHODS: The theoretical relaxation times of unenhanced, conventional contrast agent (Gd-DTPA) and new generation contrast agent (Gd-BOPTA) enhanced glioma were calculated. Then, simulation of the signals and contrasts as a function of concentration and pulse repetition time (TR) in spin echo sequence was done at 0.23, 1.5, and 3.0 T. The effect of echo time (TE) on tumor-white matter contrast was also clarified. Three patient cases were imaged at 0.23 T as a test of principle. RESULTS: Gd-BOPTA may give substantially better glioma-to-white matter contrast than Gd-DTPA but is more sensitive to the length of TR. These characteristics are accentuated at 0.23 T. Optimal TR lengths are shorter for Gd-BOPTA than for Gd-DTPA enhanced imaging at all field strengths. TR optimized for Gd-DTPA may thus give suboptimal contrast in Gd-BOPTA enhanced imaging. Higher enhancement with Gd-BOPTA is further accentuated by short TE. CONCLUSION: Appropriate TRs at 0.23 T appear to be approximately 300 to 400 milliseconds and 250 to 300 milliseconds, at 1.5 T 500 to 600 milliseconds and 400 to 450 milliseconds and at 3.0 T 550 to 650 milliseconds and 475 to 525 milliseconds using Gd-DTPA and Gd-BOPTA, respectively. For Gd-BOPTA enhanced imaging, it seems justified to optimize TR according to contrast and seek options like parallel excitation (Hadamard encoding) for increasing the number of slices and SNR.  相似文献   

5.
Vascular space occupancy (VASO)-dependent functional MRI (fMRI) is a blood-nulling technique capable of generating microvascular cerebral blood volume (CBV)-weighted images. It is shown that at high magnetic field (3.0T) and high spatial resolution (1.89 x 1.89 x 3 mm(3)), the VASO signal changes are too large (6-7%) to originate from CBV effects alone. Additional contributions are investigated theoretically and experimentally as a function of MRI parameters (TR and TE), as well as the signal-to-noise ratio, (SNR) and spatial resolution. First, it is found that an arterial spin labeling (ASL) contribution causes large negative VASO signal changes at short TR. Second, even at high fMRI spatial resolution, CSF volume contributions (7-13%) cause VASO signal changes to become more negative, most noticeably at long TR and TE. Third, white matter (WM) effects reduce signal changes at lower spatial resolution. The VASO technique has been tested using different stimulus paradigms and field strengths (1-3), giving results consistent with comparable tasks investigated using BOLD and cerebral blood flow (CBF)-based techniques. Finally, simulations show that a mixture of fresh and steady-state blood may significantly alter signal changes at short TR (< or =3 s), permitting larger VASO signal changes than expected under pure steady-state conditions. Thus, many competing effects contribute to VASO contrast and care should be taken during interpretation.  相似文献   

6.

Purpose

To demonstrate that with a priori determination of individual patient hemodynamics, peripheral contrast‐enhanced magnetic resonance angiography (pCE‐MRA) can be customized to maximize signal‐to noise ratio (SNR) and avoid venous enhancement.

Materials and Methods

Using a 1.5T MRI scanner and prototype 18‐channel peripheral vascular (PV) coil designed for highly accelerated parallel imaging, geometry (g)‐factor maps were determined. SNR‐maximized protocols considering the two‐dimensional sensitivity encoding (2D SENSE) factor, TE, TR, bandwidth (BW), and flip angle (FA) were precalculated and stored. For each exam, a small aortic timing bolus was performed, followed by dynamic three‐dimensional (3D)‐MRA of the calf. Using this information, the aorta to pedal artery and calf arteriovenous transit times were measured. This enabled estimation of the maximum upper and middle station acquisition duration to allow lower station acquisition to begin prior to venous arrival. The appropriately succinct SNR‐optimized protocol for each station was selected and moving‐table pCE‐MRA was performed using thigh venous compression and high‐relaxivity contrast material.

Results

The protocol was successfully applied in 15 patients and all imaging demonstrated good SNR without diagnosis‐hindering venous enhancement.

Conclusion

By knowing each patient's venous enhancement kinetics, scan parameters can be optimized to utilize maximum possible acquisition time. Some time is added for the timing scans, but in return time‐resolved calf CE‐MRA, maximized SNR, and decreased risk of venous enhancement are gained. J. Magn. Reson. Imaging 2009;29:1106–1115. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
王贵生  高建华  崔英 《武警医学》2008,19(4):320-322
 目的 通过优化动脉粥样硬化标本的MRI扫描方法,以便标准化进行粥样硬化斑块的MRI研究.方法 取6例下肢动脉硬化闭塞症病人截肢后的股动脉.标本按两种方法处理,一种方法是直接裸标本(裸标本法),另一种是经过人工处理的标本(还原标本法).MRI用GE Signa Twinspeed 1.5T超导型磁共振仪,行常规轴位扫描,扫描序列包括SE T1WI,FSE T2WI,DOUBLE IR T1WI.观测指标:对比噪声比(CNR)和信噪比(SNR).并将数据进行t检验,双侧α=0.05,P<0.05为有统计学意义.结果 裸标本和还原标本的对比噪声比(CNR)在T1WI、T2WI、DOUBLE IR T1WI各序列上比较均有明显统计学意义(P=0.000).裸标本和还原标本的信噪比(SNR)在T1WI、T2WI、DOUBLE IR T1WI各序列上比较有明显统计学意义(P=0.000).结论 还原标本的方法在对比噪声比(CNR)、信噪比(SNR)上明显优于裸标本方法.  相似文献   

8.

Purpose:

To use a tissue specific algorithm to numerically optimize UTE sequence parameters to maximize contrast within temporomandibular joint (TMJ) donor tissue.

Materials and Methods:

A TMJ specimen tissue block was sectioned in a true sagittal plane and imaged at 3 Tesla (T) using UTE pulse sequences with dual echo subtraction. The MR tissue properties (PD, T2, T2*, and T1) were measured and subsequently used to calculate the optimum sequences parameters (repetition time [TR], echo time [TE], and θ).

Results:

It was found that the main contrast available in the TMJ could be obtained from T2 (or T2*) contrast. With the first echo time fixed at 8 μs and using TR = 200 ms, the optimum parameters were found to be: θ ≈ 60°, and TE2 ≈ 15 ms, when the second echo is acquired using a gradient echo and θ ≈ 120°, and TE2 ≈ 15 ms, when the second echo is acquired using a spin echo.

Conclusion:

Our results show that MR signal contrast can be optimized between tissues in a systematic manner. The MR contrast within the TMJ was successfully optimized with facile delineation between disc and soft tissues. J. Magn. Reson. Imaging 2011;. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
PURPOSE: To determine the diagnostic value of a new ultrasmall superparamagnetic iron oxide Clariscan, (NC100150) for the evaluation of renal perfusion in an animal model using a 3D-FFE-EPI sequence. MATERIALS AND METHODS: Four groups of four rabbits each were imaged after bolus injection of NC100150, using a 1.5 T MR system (Gyroscan ACS-NT). T2*w MR images in the coronal plane were acquired over 60 seconds with an echo-shifted 3D-FFE-EPI sequence (TR/TE/alpha = 18/25 msec/8 degrees ). Data were transferred to a workstation and converted into concentration curves. Based on the fitted concentration time curves, parameter maps were calculated pixelwise: bolus arrival time (T0), time-to-peak (TTP), mean transit time (MTT), and relative bolus volume (rBV). Maximum signal decrease was determined with respect to the baseline value. RESULTS: Mean MTT increased from 4.2 seconds at a dose of 0.25 mg to 5.9 seconds at 1.0 mg (P < .0001). The maximum signal decrease was observed at 0.75 mg, corresponding to 85% of the baseline value. Transit times of the contrast bolus were accurately calculated for the cortex and the outer medulla, but at the level of the inner medulla no arterial flow profile was identified. No significant difference between the cortex and the outer medulla was found for either T0 or rBV, but medullar TTP and MTT were prolonged with regard to cortical TTP and MTT (6.3 seconds vs. 5.7 seconds, P < .001; 5.7 seconds vs. 4.2 seconds, P < .0001). CONCLUSION: The employed intravascular contrast agent is well suited to assess renal perfusion. By the use of a T2*w3D perfusion sequence, cortical and medullar transit times can be quantified and physiologic information on regional perfusion differences can be obtained.  相似文献   

10.
BACKGROUND AND PURPOSE:DSC perfusion MR imaging assumes that the contrast agent remains intravascular; thus, disruptions in the blood-brain barrier common in brain tumors can lead to errors in the estimation of relative CBV. Acquisition strategies, including the choice of flip angle, TE, TR, and preload dose and incubation time, along with post hoc leakage-correction algorithms, have been proposed as means for combating these leakage effects. In the current study, we used DSC-MR imaging simulations to examine the influence of these various acquisition parameters and leakage-correction strategies on the faithful estimation of CBV.MATERIALS AND METHODS:DSC-MR imaging simulations were performed in 250 tumors with perfusion characteristics randomly generated from the distributions of real tumor population data, and comparison of leakage-corrected CBV was performed with a theoretic curve with no permeability. Optimal strategies were determined by protocol with the lowest mean error.RESULTS:The following acquisition strategies (flip angle/TE/TR and contrast dose allocation for preload and bolus) produced high CBV fidelity, as measured by the percentage difference from a hypothetic tumor with no leakage: 1) 35°/35 ms/1.5 seconds with no preload and full dose for DSC-MR imaging, 2) 35°/25 ms/1.5 seconds with ¼ dose preload and ¾ dose bolus, 3) 60°/35 ms/2.0 seconds with ½ dose preload and ½ dose bolus, and 4) 60°/35 ms/1.0 second with 1 dose preload and 1 dose bolus.CONCLUSIONS:Results suggest that a variety of strategies can yield similarly high fidelity in CBV estimation, namely those that balance T1- and T2*-relaxation effects due to contrast agent extravasation.

DSC-MR imaging is a PWI technique based on the indicator-dilution theory,1 which uses the first pass of a paramagnetic contrast agent to estimate cerebrovascular parameters, including relative CBV (rCBV) and CBF.2,3 A primary clinical application for rCBV includes the evaluation of brain tumor vascularity and angiogenesis; however, neovascularity within neoplasms tends to have elevated vascular permeability, resulting in contrast agent leakage into the extravascular extracellular space (EES) and violation of assumptions made by the indicator-dilution theory. These “leakage effects,” which can be either T1-weighted, which would cause underestimation of the rCBV, or T2*-weighted, which would cause overestimation of the rCBV, greatly depend on the acquisition strategy and protocol used for DSC-MR imaging signal acquisition.4 To address these problems, strategies have been proposed for reducing the influence of contrast agent leakage, many focusing on T1-weighted artifact reduction, including use of low flip angles,5 dual-echo acquisitions,68 preload administration,9 and/or postprocessing leakage-correction algorithms.1013Previous studies have used a combination of these strategies to reduce extravasation-induced error of CBV estimates; however, these approaches have primarily been evaluated empirically. The goal of this study was to systematically evaluate, with simulation, the effects of various leakage-correction strategies on the fidelity of CBV estimation using simulated DSC-MR imaging data derived from the convolution theory14 and recent developments by Quarles et al.15 We hypothesized that this approach could provide insight into the interaction of pulse sequence parameters, preload dosing, and leakage-correction algorithms that are not readily determined experimentally.  相似文献   

11.
Sodium imaging optimization under specific absorption rate constraint.   总被引:1,自引:0,他引:1  
The concept of sodium imaging RF pulse parameter optimization for signal-to-noise ratio (SNR) under specific absorption rate (SAR) constraints is introduced. This optimization concept is unique to sodium imaging, as sodium exhibits ultrarapid T(2) relaxation in vivo, and involves minimizing echo time (TE). For 3D radial k-space acquisition, minimizing TE (and T(2) loss) requires minimizing the RF pulse length. SNR optimization also involves exploiting rapid T(1) relaxation with shortened repetition time (TR) values. However, especially at higher fields, both RF pulse length and TR are constrained by SAR, which is also dependent on the flip angle. Quantum mechanical simulations were performed for SAR equivalent sets of RF pulse length, TR, and flip angle. It was determined that an SNR advantage is associated with a spoiled steady-state approach to sodium imaging with radial acquisition even though significantly longer RF pulses (and TE) are required to implement this approach under the SAR constraint at 4.7T. This advantage, compared to RF pulse sequences implementing ultrashort echo times, 90 degrees flip angles, and longer repetition times, was confirmed in healthy volunteers (measured SNR increase of approximately 38%) and used to produce excellent quality sodium images of the human brain.  相似文献   

12.
A new approach for producing primarily T2- and proton-density-weighted MR images in less time than the conventional long TR, long TE imaging is to reduce the TR of a double spin-echo pulse sequence and to also reduce the RF excitation flip angle to minimize the resulting T1 sensitivity. In preliminary studies with a human volunteer and five patients with various diseases of the head and neck, conventional long TR, long TE and short TR, short TE images were compared with short TR, long TE images with reduced flip angles (45 degrees, 30 degrees), which required only 40% of the imaging time of the long TR images. The latter images showed a similar contrast pattern to the conventional T2-weighted image, and contrast-to-noise measurements indicated an increase in contrast between the lesion and nearby tissue when the flip angle was reduced. Furthermore, the maximum contrast/noise per unit imaging time on the short TR, long TE image was comparable to that on the long TR, long TE image. Optimization of the flip angle with short TR allows a substantial reduction in imaging time but with a reduction in multislice capability. This technique will be most useful in areas of complex anatomy where two or more orthogonal imaging planes are required, such as the head and neck.  相似文献   

13.
An animal model of liver cancer was used to demonstrate that with a fast MRI technique, Gadolinium-DTPA increases tumor-liver contrast. A spin-echo pulse sequence with short repetition (TR) and echo-delay (TE) times (TR 250/TE 15/Excitations 1) has a scan time of 0.6 min, which allows early dynamic postcontrast infusion imaging. This is necessary to capture peak compartmental differences when an extracellular contrast agent such as Gadolinium-DTPA is used. This short TR/short TE pulse sequence also increases T1-dependent tissue contrast over the traditional (inversion recovery or spin echo) T1-weighted pulse sequences. Our studies suggest a significant potential for improved detection of liver metastases with Gadolinium-DTPA-enhanced liver MRI.  相似文献   

14.
OBJECTIVES: We sought to compare the intravascular enhancement of an ultrasmall superparamagnetic iron oxide (USPIO) blood-pool contrast agent to gadopentetate dimeglumine for contrast-enhanced magnetic resonance angiography (CE-MRA) at field strengths of 1.5 and 3.0 T in rabbits. MATERIALS AND METHODS: CE-MRA at 1.5 and 3.0 T was performed at several time points (50 seconds and 5, 10, 20, and 30 minutes) after the manual intravenous injection of 40 micromol Fe/kg body weight of an USPIO (SH U 555 C; Schering AG, Berlin, Germany) and 100 micromol/kg body weight gadopentetate dimeglumine (Magnevist; Schering AG, Berlin, Germany). MRA was performed with comparable acquisition parameters at both field strengths (Turbo-gradient sequence; 1.5 T: TR/TE/alpha: 5.5/1.7 milliseconds/40 degrees ; 3.0 T: TR/TE/alpha: 5.1/1.8 milliseconds/40 degrees ) on clinical imaging systems (both: Gyroscan Intera, Philips Medical Systems, Best, The Netherlands). At either field strength, 6 rabbits were studied with both contrast agents (n = 24 in total). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated from signal intensity measurements in the abdominal aorta. RESULTS: Compared with 1.5 T, the SNR and CNR of gadopentetate dimeglumine significantly increased at 3.0 T by a factor of 2.2 and 2.3, respectively (P or= 0.05). At both field strength and either time point, CNR and SNR of SH U 555 C were significantly higher compared with gadopentetate dimeglumine at 3.0 T (P 相似文献   

15.
OBJECTIVE: Cardiac magnetic resonance imaging (MRI) at 3.0 T has recently become available and potentially provides a significant improvement of tissue contrast in T1-weighted imaging techniques relying on Gd-based contrast enhancement. Imaging at high-field strength may be especially advantageous for methods relying on strong T1-weighting and imaging after contrast material administration. The aim of this study was to compare cardiac delayed enhancement (DE) MRI at 3.0 T and 1.5 T with respect to image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) between infarcted and normal myocardium. MATERIALS AND METHODS: Forty consecutive patients with history of myocardial infarction were examined at 3.0 T (n = 20) or at 1.5 T (n = 20). Myocardial function was assessed using cine steady-state-free-precession (SSFP) sequences (TR 3.1 milliseconds, TE 1.6 milliseconds, flip angle 70 degrees , and a matrix of 168 x 256 at 1.5 T and TR 3.4 milliseconds, TE 1.7 milliseconds, flip angle 50 degrees and a matrix of 168 x 256 at 3.0 T), acquired in long- and short-axes views. DE images were obtained 15 minutes after the administration of 0.15 mmol of Gd-DTPA/kg body weight using a segmented inversion recovery prepared gradient echo sequence at 1.5 T (TR 9.6 milliseconds, TE 4.4 milliseconds, flip angle 25 degrees , matrix 160 x 256, bandwidth 140 Hertz/pixel) and at 3.0 T (TR 9.8 milliseconds, TE 4.3 milliseconds, flip angle 30 degrees , matrix 150 x 256, bandwidth 140 Hertz/pixel). For image analysis, standardized SNR and CNR measurements were performed in infarcted and remote myocardial regions. Two independent observers rated image quality on a 4-point scale (0 = poor image quality, 1 = sufficient image quality, 2 = good image quality, 3 = excellent image quality). RESULTS: High diagnostic image quality was obtained in all patients. Rating of mean image quality was 2.2 +/- 0.8 at 1.5 T and 2.5 +/- 0.6 at 3.0 T (P = 0.012) for observer 1 and 2.2 +/- 0.7 at 1.5 T and 2.6 +/- 0.6 at 3.0 T (P = 0.003) for observer 2, respectively. Interobserver agreement was good (kappa = 0.68 at 1.5 T and 0.78 at 3.0 T). SNR measurements yielded a mean SNR of 37.8 +/- 13.9/22.9 +/- 6.0 in infarcted myocardium (P < 0.001) and 5.6 +/- 2.2/5.9 +/- 2.4 in normal myocardium (P = 0.45) at 3.0 T/1.5 T, respectively. CNR measurements revealed mean values of 32.4 +/- 13.0/16.7 +/- 5.4 (P< 0.001) at 3.0 T/1.5 T, respectively. CONCLUSIONS: Delayed enhancement MRI at 3.0 T is feasible and provides superior image quality compared with 1.5 T. Furthermore, using identical contrast doses, increased SNR and CNR values were recorded at 3.0 T.  相似文献   

16.
Staining methods for magnetic resonance microscopy of the rat fetus   总被引:2,自引:0,他引:2  
PURPOSE: To develop a magnetic resonance histology (MRH) staining and fixation method by immersion to enhance the signal-to-noise ratio (SNR) with a paramagnetic contrast agent permitting microscopic acquisition within a 3-hour scan time. MATERIALS AND METHODS: Methods were optimized for embryonic day 18.5 (E18.5) rat fetuses and imaging at 9.4T with an RF refocused spin-echo pulse sequence (TR/TE = 75 msec/5.2 msec). Fixation/staining was performed by immersion in Bouin's fixative containing varied concentrations of ProHance (from 10:1 to 500:1 Bouin's:ProHance) and for varied immersion durations (up to 24 hours). RESULTS: The results showed a significant change in T1 and T2 relaxation times as a function of concentration of contrast agent and immersion duration. As the contrast agent penetrated the tissues, T1 was reduced as desired (typically by 10x), but at the same time T2 was profoundly reduced (typically by 3x) due to both protein cross-linking from the fixative and the high concentration of contrast agent. A systematic assessment of this staining protocol showed an increased SNR (by 5x) over that in unstained specimens. CONCLUSION: This staining protocol reduced scan time for very-high-resolution images (19.5 microm) to only 3 hours, making MRH a routine tool for evaluating fetal development.  相似文献   

17.
Theoretical and simulation evidence is presented in support of the idea that the optimal manner of determining blood flow from MR perfusion studies is not necessarily obtained by setting experimental conditions to maximize either the arterial input or the measured tissue concentration level for a particular echo time (TE). The noise power in the contrast concentration curve is associated with its peak because of the nonlinear relationship between the contrast concentration and MR signal intensity curves. The optimum signal-to-noise ratio (SNR), SNR(C), for a particular contrast concentration curve can be obtained when the experimental concentration level and TE are adjusted to produce an MR intensity curve whose signal loss is 63% of the precontrast MR signal intensity. It is demonstrated that the stability of the singular valued decomposition (SVD) deconvolution approach to determine blood flow parameters is increased when the tissue curve maximum signal loss is in the range of 40-80%. The accuracy and stability of the SVD-determined blood flow parameters are affected by deviations from these optimum conditions in a manner that depends on the mean transit time (MTT) associated with the residue function. It is recommended that the experimental TE value be set so that neither the tissue nor the arterial curves are placed a region of rapidly deteriorating SNR(C).  相似文献   

18.
OBJECTIVE: Our aim was to measure the relaxation times of the neonatal brain and to use these to derive pulse sequence parameters that enhance the signal-to-noise ratio (SNR) and contrast of MRI scans of the neonatal brain. SUBJECTS AND METHODS: The transverse (T2) and longitudinal (T1) relaxation times were measured for 10 healthy neonates, and the average relaxation times were calculated for both gray and white matter. Simulations using these values were then performed to estimate the optimal pulse sequence parameters. Images were obtained in three neonates using both the optimized and conventional sequence parameters. RESULTS: The measured (mean +/- SD) relaxation times of the neonatal brain at 1.5 T were T1 equals 1712 +/- 235 msec and T2 equals 394 +/- 52 msec in white matter and T1 equals 1144 +/- 245 msec and T2 equals 206 +/- 26 msec in gray matter. The optimized T1-weighted imaging used a turbo spin-echo sequence with an echo-train length of 3 and TR/TE of 850/11 msec and showed increases in both the contrast and the SNR. The optimized T2-weighted sequence used a TE of 270 msec and markedly increased the contrast but at the expense of a reduction in the SNR. CONCLUSION: Parameters of MRI turbo spin-echo sequences for scanning neonates are different from those required for adult studies, and appropriate protocols should be used.  相似文献   

19.
PURPOSE: To evaluate the T1 efficacy of EVP-ABD, a new manganese (Mn)-based contrast agent, for vascular and liver tissue enhancement in comparison with currently approved agents. MATERIALS AND METHODS: Ten Yorkshire pigs (body weight, 26 -46 kg) were used for the efficacy evaluation, nine for kinetic T1 evaluation (three each agent) and one for post EVP-ABD imaging. With a fast imaging scheme to monitor T1 values of blood and liver, 10 micromol/kg EVP-ABD was injected intravenously and compared with gadopentetate dimeglumine (Magnevist, GdDTPA) and mangafodipir trisodium (Teslascan, mangafodipir trisodium) at routine clinical dosages. All were imaged with 3D T1 Gradient Recalled Echo (GRE) sequence (TR/TE/alpha = 3.8/1.6/25 degrees ) prior to and 10 minutes post injection using a 1.5-T whole-body scanner. Additional high-resolution 2D liver images (TR/TE/alpha = 50/4.6/40 degrees ) and arterial phase images of the upper aorta were acquired from the pig for post EVP-ABD imaging. RESULTS: At 10 micromol/kg, EVP-ABD provided a dramatic decline in blood T1, comparable to 0.1 mmol/kg GdDTPA, followed by a rapid return to blood baseline T1 values. In addition to the blood enhancement phase, EVP-ABD achieved a 70% reduction in liver T1 within 2 minutes postadministration, with an imaging window of at least 2 hours. A substantially improved signal-to-noise ratio (SNR) was observed in both the 2D and 3D liver images postcontrast. CONCLUSION: EVP-ABD demonstrated peak vascular enhancement similar to GdDTPA and prolonged specific liver enhancement exceeding mangafodipir trisodium. EVP-ABD has favorable T1 enhancing characteristics with the potential to allow for a comprehensive liver evaluation.  相似文献   

20.
Measurement of the concentration of the contrast agent using dynamic susceptibility contrast MRI relies on field inhomogeneities caused by the presence of the paramagnetic agent. The usual method for calculation of the concentration from dynamic T2*-weighted images is based on two key assumptions: 1) a linear relation between the change in R2* and the contrast agent concentration, and 2) a negligible effect on the MR signal due to concurrent T1 changes. In this study the effect of inaccuracies in these two assumptions on perfusion measurements was investigated using simulations and in vivo data. The results of the simulations provide a quantitative characterization of the magnitude of these effects for various experimental conditions (e.g., when a 1-sec TR is used with TE=20 ms, the T1 effects can introduce up to 40% cerebral blood flow underestimation depending on the flip angle). These findings can be used as a guide to estimate the errors in specific practical implementations, as well as to optimize the sequence parameters to minimize their effect. In summary, this study shows that the arterial input function measurement should be corrected for nonlinear R2* effects and that care should be taken in the study design to avoid introducing significant T1 effects in perfusion quantification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号