首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variable-density k-space sampling method is proposed to reduce aliasing artifacts in MR images. Because most of the energy of an image is concentrated around the k-space center, aliasing artifacts will contain mostly low-frequency components if the k-space is uniformly undersampled. On the other hand, because the outer k-space region contains little energy, undersampling that region will not contribute severe aliasing artifacts. Therefore, a variable-density trajectory may sufficiently sample the central k-space region to reduce low-frequency aliasing artifacts and may undersample the outer k-space region to reduce scan time and to increase resolution. In this paper, the variable-density sampling method was implemented for both spiral imaging and two-dimensional Fourier transform (2DFT) imaging. Simulations, phantom images and in vivo cardiac images show that this method can significantly reduce the total energy of aliasing artifacts. In general, this method can be applied to all types of k-space sampling trajectories.  相似文献   

2.
Multishot spiral imaging is a promising alternative to echo‐planar imaging for high‐resolution diffusion‐weighted imaging and diffusion tensor imaging. However, subject motion in the presence of diffusion‐weighting gradients causes phase inconsistencies among different shots, resulting in signal loss and aliasing artifacts in the reconstructed images. Such artifacts can be reduced using a variable‐density spiral trajectory or a navigator echo, however at the cost of a longer scan time. Here, a novel iterative phase correction method is proposed to inherently correct for the motion‐induced phase errors without requiring any additional scan time. In this initial study, numerical simulations and in vivo experiments are performed to demonstrate that the proposed method can effectively and efficiently correct for spatially linear phase errors caused by rigid‐body motion in multishot spiral diffusion‐weighted imaging of the human brain. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
Variable-density k-space sampling using a stack-of-spirals trajectory is proposed for ultra fast 3D imaging. Since most of the energy of an image is concentrated near the k-space origin, a variable-density k-space sampling method can be used to reduce the sampling density in the outer portion of k-space. This significantly reduces scan time while introducing only minor aliasing artifacts from the low-energy, high-spatial-frequency components. A stack-of-spirals trajectory allows control over the density variations in both the k(x)-k(y) plane and the k(z) direction while fast k-space coverage is provided by spiral trajectories in the k(x)-k(y) plane. A variable-density stack-of-spirals trajectory consists of variable-density spirals in each k(x)-k(y) plane that are located in varying density in the k(z) direction. Phantom experiments demonstrate that reasonable image quality is preserved with approximately half the scan time. This technique was then applied to first-pass perfusion imaging of the lower extremities which demands very rapid volume coverage. Using a variable-density stack-of-spirals trajectory, 3D images were acquired at a temporal resolution of 2.8 sec over a large volume with a 2.5 x 2.5 x 8 mm(3) spatial resolution. These images were used to resolve the time-course of muscle intensity following contrast injection.  相似文献   

4.
PURPOSE: To develop a method of retrospectively correcting for motion artifacts using a variable-density spiral (VDS) trajectory. MATERIALS AND METHODS: Each VDS interleaf was designed to adequately sample the same center region of k-space. This central overlapping region can then be used to measure rigid body motion between the acquisition of each VDS interleaf. By applying appropriate phase shifts and rotations of the k-space data, rigid body motion artifacts can be removed, resulting in images with less motion corruption. RESULTS: Both phantom and volunteer experiments are shown, demonstrating the technique's ability to further reduce artifacts in images acquired with an already motion-resistant acquisition trajectory. Registration accuracy is highly dependent on the trajectory design parameters. This space was explored to find an optimal design of VDS trajectories for motion compensation. CONCLUSION: Using appropriately designed VDS trajectories, residual motion artifacts can be significantly reduced by retrospectively correcting for in-plane rigid body motion. An overlapping region of approximately 8% of the central region of k-space and approximately 70 interleaves were found to be near-optimal parameters for retrospective correction using VDS trajectories.  相似文献   

5.
The correction of motion artifacts continues to be a significant problem in MRI. In the case of uncooperative patients, such as children, or patients who are unable to remain stationary, the accurate determination and correction of motion artifacts becomes a very important prerequisite for achieving good image quality. The application of conventional motion-correction strategies often produces inconsistencies in k-space data. As a result, significant residual artifacts can persist. In this work a formalism is introduced for parallel imaging in the presence of motion. The proposed method can improve overall image quality because it diminishes k-space inconsistencies by exploiting the complementary image encoding capacity of individual receiver coils. Specifically, an augmented version of an iterative SENSE reconstruction is used as a means of synthesizing the missing data in k-space. Motion is determined from low-resolution navigator images that are coregistered by an automatic registration routine. Navigator data can be derived from self-navigating k-space trajectories or in combination with other navigation schemes that estimate patient motion. This correction method is demonstrated by interleaved spiral images collected from volunteers. Conventional spiral scans and scans corrected with proposed techniques are shown, and the results illustrate the capacity of this new correction approach.  相似文献   

6.
Single breath-hold whole-heart MRA using variable-density spirals at 3T.   总被引:2,自引:0,他引:2  
Multislice breath-held coronary imaging techniques conventionally lack the coverage of free-breathing 3D acquisitions but use a considerably shorter acquisition window during the cardiac cycle. This produces images with significantly less motion artifact but a lower signal-to-noise ratio (SNR). By using the extra SNR available at 3 T and undersampling k-space without introducing significant aliasing artifacts, we were able to acquire high-resolution fat-suppressed images of the whole heart in 17 heartbeats (a single breath-hold). The basic pulse sequence consists of a spectral-spatial excitation followed by a variable-density spiral readout. This is combined with real-time localization and a real-time prospective shim correction. Images are reconstructed with the use of gridding, and advanced techniques are used to reduce aliasing artifacts.  相似文献   

7.
Although spiral imaging seldom produces apparent artifacts related to flow, it remains sensitive to rapid object motion. In this article, a new correction method is presented for rapid rigid body motion in interleaved spiral imaging. With this technique, an identical circular navigator k-space trajectory is linked to each spiral trajectory. Data inconsistency due to both rotation and translation among spiral interleaves can be corrected by evaluating the magnitudes and phases of the data contained in the navigator "ring." Further, it is difficult to create a frequency field map for off-resonance correction when an object moves during a scan, because there is motion-dependent misregistration between the two images acquired with different TEs. However, this difficulty can be overcome by combining the motion-correction method with a recently proposed technique (off-resonance correction using variable-density spirals (ORC-VDS)), thereby enabling both motion compensation and off-resonance correction with no additional scanning.  相似文献   

8.
Although spiral trajectories have multiple attractive features such as their isotropic resolution, acquisition efficiency, and robustness to motion, there has been limited application of these techniques to first‐pass perfusion imaging because of potential off‐resonance and inconsistent data artifacts. Spiral trajectories may also be less sensitive to dark‐rim artifacts that are caused, at least in part, by cardiac motion. By careful consideration of the spiral trajectory readout duration, flip angle strategy, and image reconstruction strategy, spiral artifacts can be abated to create high‐quality first‐pass myocardial perfusion images with high signal‐to‐noise ratio. The goal of this article was to design interleaved spiral pulse sequences for first‐pass myocardial perfusion imaging and to evaluate them clinically for image quality and the presence of dark‐rim, blurring, and dropout artifacts. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

9.
Multiple receiver-coil data collection is an effective approach to reduce scan time. There are many parallel imaging techniques that reduce scan time using multiple receiver coils. One of these methods, partially parallel imaging with localized sensitivities (PILS), utilizes the localized sensitivity of each coil. The advantages of PILS over other parallel imaging methods include the simplicity of the algorithm, good signal-to-noise ratio (SNR) properties, and the fact that there is no additional complexity involved in applying the algorithm to arbitrary k-space trajectories. This PILS method can be further improved to provide truly parallel broadband imaging with the use of multiple-demodulation hardware. By customizing the demodulation based on each coil's location, the k-space sampling rate can be chosen based on each coil's localized sensitivity region along the readout direction. A simulated demodulation of data from 2D Fourier transform (FT) and spiral trajectories is shown to demonstrate the method's feasibility.  相似文献   

10.
Spiral imaging has a number of advantages for fast imaging, including an efficient use of gradient hardware. However, inhomogeneity-induced blurring is proportional to the data acquisition duration. In this paper, we combine spiral data acquisition with a RARE echo train. This allows a long data acquisition interval per excitation, while limiting the effects of inhomogeneity. Long spiral k-space trajectories are partitioned into smaller, annular ring trajectories. Each of these annular rings is acquired during echoes of a RARE echo train. The RARE refocusing RF pulses periodically refocus off-resonant spins while building a long data acquisition. We describe both T2-weighted single excitation and interleaved RARE spiral sequences. A typical sequence acquires a complete data set in three excitations (32 cm FOV, 192 × 192 matrix). At a TR = 2000 ms, we can average two acquisitions in an easy breath-hold interval. A multifrequency reconstruction algorithm minimizes the effects of any off-resonant spins. Though this algorithm needs a field map, we demonstrate how signal averaging can provide the necessary phase data while increasing SNR. The field map creation causes no scan time penalty and essentially no loss in SNR efficiency. Multiple slice, 14-s breath-hold scans acquired on a conventional gradient system demonstrate the performance.  相似文献   

11.
Reduced spatial side lobes in chemical-shift imaging.   总被引:2,自引:0,他引:2  
Density-weighted k-space sampling with spiral trajectories is used to reduce spatial side lobes in chemical-shift imaging (CSI). In this method, more time is spent collecting data at the center of k space and less time at the edges of k space in order to make the sampling density proportional to a given apodization function, subject to constraints imposed by gradient performance and Nyquist sampling. The efficient k-space coverage of spiral-based trajectories enables good control over the sampling density within practical in vivo scan times. The density-weighted acquisition is compared to a conventional, nonweighted spiral sampling without the application of a window function. For a fixed voxel size and imaging time, the noise variance is observed to be the same for both cases, while spatial side lobes are greatly reduced with the variable-density sampling. This method is demonstrated on a normal volunteer by imaging of brain metabolites at 1.5 T with both single slice CSI and volumetric CSI. Magn Reson Med 42:314-323, 1999.  相似文献   

12.
A method for cardio-thoracic multislice spiral CT imaging with ECG gating for suppression of heart pulsation artifacts is introduced. The proposed technique offers extended volume coverage compared with standard ECG-gated spiral scan and reconstruction approaches for cardiac applications: Thin-slice data of the entire thorax can be acquired within one breath-hold period using a four-slice CT system. The extended volume coverage is enabled by a modified approach for ECG-gated image reconstruction. For a CT system with 0.5-s gantry rotation time, images are reconstructed with 250-ms image temporal resolution. Instead of selecting scan data acquired in exactly the same phase of the cardiac cycle for each image as in standard ECG-gated reconstruction techniques, the patient's ECG signal is used to omit scan data acquired during the systolic phase of highest cardiac motion. With this approach cardiac pulsation artifacts in CT studies of the aorta, of paracardiac lung segments, and of coronary bypass grafts can be effectively reduced.  相似文献   

13.
Activation signals based on BOLD contrast changes consequent to neuronal stimulation typically produce cortical intensity differences of < 10% at 1.5T. Hemodynamically driven pulsation of the brain can cause highly pulsatile phase shifts, which in turn result in motion artifacts whose intensity is larger than the activation signals in 2DFT scan methods. This paper presents a theoretical and experimental comparison of the magnitude of such artifacts for 2DFT and two other methods using non-Cartesian k-space trajectories. It is shown that artifacts increase with TR for 2DFT methods, and that projection reconstruction (PR) and spiral methods have significantly reduced artifact intensities, because these trajectories collect low spatial frequencies with every view. The spiral technique is found to be superior in terms of efficiency and motion insensitivity.  相似文献   

14.
Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo‐planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple‐shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral‐in due to increased BOLD signal contrast‐to‐noise ratio (CNR) and higher acquisition efficiency than that of spiral‐out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829–834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral‐in and ‐out trajectories possess artifacts caused by differences in T2* decay, off‐resonance, and k‐space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in‐plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for high spatial resolution BOLD functional magnetic resonance imaging applications. Magn Reson Med 70:420–428, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Two-dimensional (2D) axial continuously-moving-table imaging has to deal with artifacts due to gradient nonlinearity and breathing motion, and has to provide the highest scan efficiency. Parallel imaging techniques (e.g., generalized autocalibrating partially parallel acquisition GRAPPA)) are used to reduce such artifacts and avoid ghosting artifacts. The latter occur in T(2)-weighted multi-spin-echo (SE) acquisitions that omit an additional excitation prior to imaging scans for presaturation purposes. Multiple images are reconstructed from subdivisions of a fully sampled k-space data set, each of which is acquired in a single SE train. These images are then averaged. GRAPPA coil weights are estimated without additional measurements. Compared to conventional image reconstruction, inconsistencies between different subsets of k-space induce less artifacts when each k-space part is reconstructed separately and the multiple images are averaged afterwards. These inconsistencies may lead to inaccurate GRAPPA coil weights using the proposed intrinsic GRAPPA calibration. It is shown that aliasing artifacts in single images are canceled out after averaging. Phantom and in vivo studies demonstrate the benefit of the proposed reconstruction scheme for free-breathing axial continuously-moving-table imaging using fast multi-SE sequences.  相似文献   

16.
Geometric distortions and poor image resolution are well known shortcomings of single-shot echo-planar imaging (ss-EPI). Yet, due to the motion immunity of ss-EPI, it remains the most common sequence for diffusion-weighted imaging (DWI). Moreover, both navigated DW interleaved EPI (iEPI) and parallel imaging (PI) methods, such as sensitivity encoding (SENSE) and generalized autocalibrating parallel acquisitions (GRAPPA), can improve the image quality in EPI. In this work, DW-EPI accelerated by PI is proposed as a self-calibrated and unnavigated form of interleaved acquisition. The PI calibration is performed on the b = 0 s/mm2 data and applied to each shot in the rest of the DW data set, followed by magnitude averaging. Central in this study is the comparison of GRAPPA and SENSE in the presence of off-resonances and motion. The results show that GRAPPA is more robust than SENSE against both off-resonance and motion-related artifacts. The SNR efficiency was also investigated, and it is shown that the SNR/scan time ratio is equally high for one- to three-shot high-resolution diffusion scans due to the shortened EPI readout train length. The image quality improvements without SNR efficiency loss, together with motion tolerance, make the GRAPPA-driven DW-EPI sequence clinically attractive.  相似文献   

17.
Fast gradient-echo magnetic resonance scan techniques with spiral and rectilinear (echoplanar) k-space trajectories were optimized to perform bolus-tracking studies of human brain. Cerebral hemodynamics were studied with full brain coverage, a spatial resolution of 4 mm, and a temporal resolution of 2 seconds. The sensitivity of the techniques to detect image signal-intensity changes during the first pass of the contrast agent was studied at a range of TEs using dedicated experiments. For single-shot versions of spiral scanning and echoplanar imaging techniques with a 0.1-mmol/kg injection of gadolinium diethylenetriamine pentaacetic acid using a mechanical injector at 10 mL/sec under 1.5 T, the maximum sensitivity was obtained at TEs between 35 and 45 msec. At TEs less than 35 msec, signal-intensity artifacts were observed in the images. Analysis of the point-spread function revealed that susceptibility changes induced by the contrast agent can result in signal shifts to neighboring voxels. These artifacts are attributed to susceptibility-related signal changes during the acquisition window.  相似文献   

18.
The use of spiral trajectories is an efficient way to cover a desired k-space partition in magnetic resonance imaging (MRI). Compared to conventional Cartesian k-space sampling, it allows faster acquisitions and results in a slight reduction of the high gradient demand in fast dynamic scans, such as in functional MRI (fMRI). However, spiral images are more susceptible to off-resonance effects that cause blurring artifacts and distortions of the point-spread function (PSF), and thereby degrade the image quality. Since off-resonance effects scale with the readout duration, the respective artifacts can be reduced by shortening the readout trajectory. Multishot experiments represent one approach to reduce these artifacts in spiral imaging, but result in longer scan times and potentially increased flow and motion artifacts. Parallel imaging methods are another promising approach to improve image quality through an increase in the acquisition speed. However, non-Cartesian parallel image reconstructions are known to be computationally time-consuming, which is prohibitive for clinical applications. In this study a new and fast approach for parallel image reconstructions for spiral imaging based on the generalized autocalibrating partially parallel acquisitions (GRAPPA) methodology is presented. With this approach the computational burden is reduced such that it becomes comparable to that needed in accelerated Cartesian procedures. The respective spiral images with two- to eightfold acceleration clearly benefit from the advantages of parallel imaging, such as enabling parallel MRI single-shot spiral imaging with the off-resonance behavior of multishot acquisitions.  相似文献   

19.
Breath-holding during MR imaging eliminates respiratory motion artifacts but places a major time constraint on data acquisition. This constraint limits image signal-to-noise ratio and hence spatial resolution. A new method, multiple breathhold averaging, is presented that overcomes these time limitations. Several images are acquired in sequential breath-hold periods, separated by periods of normal breathing, and averaged. This averaged image shows the expected increase in SNR with surprisingly little blurring due to misregistration. SNR improvements can be traded for increased spatial resolution. The MBA methodology can also be applied to 3D data acquisitions, dynamic contrast acquisitions, and image subtractions.  相似文献   

20.
Spiral imaging has recently gained acceptance in MR applications requiring rapid data acquisition. One of the main disadvantages of spiral imaging, however, is blurring artifacts that result from off-resonance effects. Spatial-spectral (SPSP) pulses are commonly used to suppress those spins that are chemically shifted from water and lead to off-resonance artifacts. However, SPSP pulses may produce nonuniform fat signal suppression or unwanted water signal suppression when applied in the presence of B(0) field inhomogeneities. Dixon techniques have been developed as methods for water-fat signal decomposition in rectilinear sampling schemes since they can produce unequivocal water-fat signal decomposition even in the presence of B(0) inhomogeneities. This article demonstrates that three-point and two-point Dixon techniques can be extended to conventional spiral and variable-density spiral data acquisitions for unambiguous water-fat decomposition with off-resonance blurring correction. In the spiral three-point Dixon technique, water-fat signal decomposition and image deblurring are performed based on the frequency maps that are directly derived from the acquired images. In the spiral two-point Dixon technique, several predetermined frequencies are tested to create a frequency map. The newly proposed techniques can achieve more effective and more uniform fat signal suppression when compared to the conventional spiral acquisition method with SPSP pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号