首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: To develop a method of retrospectively correcting for motion artifacts using a variable-density spiral (VDS) trajectory. MATERIALS AND METHODS: Each VDS interleaf was designed to adequately sample the same center region of k-space. This central overlapping region can then be used to measure rigid body motion between the acquisition of each VDS interleaf. By applying appropriate phase shifts and rotations of the k-space data, rigid body motion artifacts can be removed, resulting in images with less motion corruption. RESULTS: Both phantom and volunteer experiments are shown, demonstrating the technique's ability to further reduce artifacts in images acquired with an already motion-resistant acquisition trajectory. Registration accuracy is highly dependent on the trajectory design parameters. This space was explored to find an optimal design of VDS trajectories for motion compensation. CONCLUSION: Using appropriately designed VDS trajectories, residual motion artifacts can be significantly reduced by retrospectively correcting for in-plane rigid body motion. An overlapping region of approximately 8% of the central region of k-space and approximately 70 interleaves were found to be near-optimal parameters for retrospective correction using VDS trajectories.  相似文献   

2.
A technique has been developed whereby motion can be detected in real time during the acquisition of data. This enables the implementation of several algorithms to reduce or eliminate motion effects from an image as it is being acquired. One such algorithm previously described is the acceptance/rejection method. This paper deals with another real-time algorithm called the diminishing variance algorithm (DVA). With this method, a complete set of preliminary data is acquired along with information about the relative motion position of each frame of data. After all the preliminary data are acquired, the position information is used to determine which data frames are most corrupted by motion. Frames of data are then reacquired, starting with the most corrupted one. The position information is continually updated in an iterative process; therefore, each subsequent reacquisition is always done on the worst frame of data. The algorithm has been implemented on several different types of sequences. Preliminary in vivo studies indicate that motion artifacts are dramatically reduced.  相似文献   

3.
A new single-shot stochastic imaging technique with a random k-space path that provides very selective filtering with respect to chemical shift or off-resonance signals of the investigated tissue is proposed. It is demonstrated that in stochastic imaging only on-resonance compartments are visible whereas frequency shifted compartments cancel to noise that is distributed over the whole image. This method can be used as a single-shot chemical shift selective imaging technique and allows to calculate frequency resolved spectra for each spatial position of the image based on a single signal aquisition. The single-shot stochastic imaging sequence makes high demands on the gradient system and the theoretical k-space trajectory is distorted by imperfect gradient performance. Therefore an additional k-space guided imaging technique that uses the true, measured k-space trajectory to correct artifacts generated by eddy currents and delay times of the rapid switched gradients is presented. In vitro and in vivo measurements demonstrate the successful implementation of single-shot stochastic imaging on a conventional MR scanner with unshielded gradient systems.  相似文献   

4.
A single breath-hold 3D cardiac phase resolved steady-state free precession (SSFP) sequence was developed, allowing 3D visualization of the moving coronary arteries. A 3D stack of spirals was acquired continuously throughout the cardiac cycle, and a sliding window reconstruction was used to achieve high temporal resolution. A coil specific field of view reconstruction technique was combined with Parallel Imaging with Localized Sensitivities (PILS) to allow acquisition of a reduced field of view. A view ordering incorporating fat suppression was employed to allow use of sliding window reconstruction. The technique was evaluated on healthy volunteers (n=8), yielding images with 102 ms temporal resolution and 1.35 mm in-plane resolution, and reasonable visualization of the left and right coronary arteries was achieved.  相似文献   

5.
A technique has been developed whereby motion can be detected in real time during the acquisition of data. This enables the implementation of an algorithm to accept or reject and reacquire data during a scan. Frames of data with motion are rejected and reacquired on the fly so that by the end of the scan, a complete motion-free data set has been acquired. The algorithm has been implemented on several different types of sequences. Preliminary in vivo studies indicate that motion artifacts are dramatically reduced.  相似文献   

6.
Steady-state free precession (SSFP) cardiac cine images are frequently corrupted by dark flow artifacts, which can usually be eliminated by reshimming and retuning the scanner. A theoretical explanation for these artifacts is provided in terms of spins moving through an off-resonant point in the magnetic field, and the theory is validated using phantom experiments. The artifacts can be reproduced in vivo by detuning the center frequency by an amount in the range of half the inverse repetition time (TR). Since this offset is similar in magnitude to the frequency difference between the water and lipid peaks, a likely cause of the artifacts in vivo is that the center frequency is tuned incorrectly to the lipid peak rather than the water peak.  相似文献   

7.
8.
9.
RATIONALE AND OBJECTIVES: An image registration method was developed to automatically correct motion artifacts, mostly from breathing, from cardiac cine magnetic resonance (MR) images. MATERIALS AND METHODS: The location of each slice in an image stack was optimized by maximizing a similarity measure of the slice with another image slice stack. The optimization was performed iteratively and both image stacks were corrected simultaneously. Two procedures to optimize the similarity were tested: standard gradient optimization and stochastic optimization in which one slice is chosen randomly from the image stacks and its location is optimized. In this work, cine short- and long-axis images were used. In addition to visual inspection results from real data, the performance of the algorithm was evaluated quantitatively by simulating the movements in four real MR data sets. The mean error and standard deviation were defined for 50 simulated movements as each slice was randomly displaced. The error rate, defined as the percentage of non-satisfactory registration results, was evaluated. The paired t-test was used to evaluate the statistical difference between the tested optimization methods. RESULTS: The algorithm developed was successfully applied to correct motion artifacts from real and simulated data. The results, where typical motion artifacts were simulated, indicated an error rate of about 3%. Subvoxel registration accuracy was also achieved. When different optimization methods were compared, the registration accuracy of the stochastic approach proved to be superior to the standard gradient technique (P < 10(-9)). CONCLUSIONS: The novel method was capable of robustly and accurately correcting motion artifacts from cardiac cine MR images.  相似文献   

10.
Band artifacts due to bulk motion were investigated in images acquired with fast gradient echo sequences. A simple analytical calculation shows that the width of the artifacts has a square-root dependence on the velocity of the imaged object, the time taken to acquire each line of k-space and the field of view in the phase-encoding direction. The theory furthermore predicts that the artifact width can be reduced using parallel imaging by a factor equal to the square root of the acceleration parameter. The analysis and results are presented for motion in the phase- and frequency-encoding directions and comparisons are made between sequential and centric ordering. The theory is validated in phantom experiments, in which bulk motion is simulated in a controlled and reproducible manner by rocking the scan table back and forth along the bore axis. Preliminary cardiac studies in healthy human volunteers show that dark bands may be observed in the endocardium in images acquired with nonsegmented fast gradient echo sequences. The fact that the position of the bands changes with the phase-encoding direction suggests that they may be artifacts due to motion of the heart walls during the image acquisition period.  相似文献   

11.
12.
The high information content of MRI exams brings with it unintended effects, which we call artifacts. The purpose of this review is to promote understanding of these artifacts, so they can be prevented or properly interpreted to optimize diagnostic effectiveness. We begin by addressing static magnetic field uniformity, which is essential for many techniques, such as fat saturation. Eddy currents, resulting from imperfect gradient pulses, are especially problematic for new techniques that depend on high performance gradient switching. Nonuniformity of the transmit radiofrequency system constitutes another source of artifacts, which are increasingly important as magnetic field strength increases. Defects in the receive portion of the radiofrequency system have become a more complex source of problems as the number of radiofrequency coils, and the sophistication of the analysis of their received signals, has increased. Unwanted signals and noise spikes have many causes, often manifesting as zipper or banding artifacts. These image alterations become particularly severe and complex when they are combined with aliasing effects. Aliasing is one of several phenomena addressed in our final section, on artifacts that derive from encoding the MR signals to produce images, also including those related to parallel imaging, chemical shift, motion, and image subtraction. J. Magn. Reson. Imaging 2013;38:269–287. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Cardiac function has traditionally been evaluated using breath-hold cine acquisitions. However, there is a great need for free breathing techniques in patients who have difficulty in holding their breath. Real-time cardiac MRI is a valuable alternative to the traditional breath-hold imaging approach, but the real-time images are often inferior in spatial and temporal resolution. This article presents a general method for reconstruction of high spatial and temporal resolution cine images from a real-time acquisition acquired over multiple cardiac cycles. The method combines parallel imaging and motion correction based on nonrigid registration and can be applied to arbitrary k-space trajectories. The method is demonstrated with real-time Cartesian imaging and Golden Angle radial acquisitions, and the motion-corrected acquisitions are compared with raw real-time images and breath-hold cine acquisitions in 10 (N = 10) subjects. Acceptable image quality was obtained in all motion-corrected reconstructions, and the resulting mean image quality score was (a) Cartesian real-time: 2.48, (b) Golden Angle real-time: 1.90 (1.00-2.50), (c) Cartesian motion correction: 3.92, (d) Radial motion correction: 4.58, and (e) Breath-hold cine: 5.00. The proposed method provides a flexible way to obtain high-quality, high-resolution cine images in patients with difficulty holding their breath.  相似文献   

14.
The purpose of this study was to assess the feasibility of magnetic resonance imaging (MRI) to evaluate in real-time, the effects of respiration in ventricular septal motion and configuration in normal volunteers and cardiac patients. Real-time cine MRI studies, using the steady-state free precession (SSFP) technique, were performed in the cardiac short-axis during operator-guided deep inspiration and expiration in normal volunteers (N = 6), and in patients with constrictive pericarditis (CP; N = 6), restrictive cardiomyopathy (RCM; N = 4), chronic cor pulmonale (N = 5), and pericardial effusion. The respiratory effects on septal position and configuration during early ventricular filling were visually assessed. Results were compared with the short-axis breath-hold cine MRI studies, obtained at end-inspiration. In CP patients, onset of inspiration led to a leftward inversion in four of six patients and flattening of the septum in two of six patients during early ventricular filling. Septal abnormalities progressively disappeared during the following heartbeats. A similar pattern was found in one of six patients with pericardial effusion. The above pattern was absent in RCM patients. Although septal flattening during early inspiration was also found in two of six normal volunteers, flattening was minimal compared to that in CP patients. In all cor pulmonale patients, septal flattening or inversion was present, but this was not influenced by respiratory motion. Real-time cine MRI is a promising technique for determining the influence of respiration on septal motion and might be helpful in differentiating between different causes of impaired ventricular filling.  相似文献   

15.
Despite the excellent image-contrast capability of MRI and the ability to synchronize MRI with the murine cardiac cycle, this technique is underused for assessing mouse models of cardiovascular disease because of its perceived cost and complexity. This perception stems, in part, from complications associated with the placement and adjustment of electrocardiographic leads that may interact with gradient pulses and the relatively long acquisition times required with traditional gating schemes. To improve the efficiency and reduce the cost and complexity of using cardiac MRI in mice, we combined wireless self-gating techniques (with which we derived cardiac synchronization signals from acquired data) with an imaging technique that acquires multislice cardiac cine images from four mice simultaneously. As a result, the wireless self-gated acquisitions minimized animal preparation time and improved image quality. The simultaneous acquisition of cardiac cine data from multiple animals greatly increased throughput and reduced costs associated with instrument access.  相似文献   

16.
A new approach to understanding and reducing motion artifacts in magnetic resonance imaging (MRI) is introduced. This paper presents a novel technique for correcting generalized motion artifacts arising from translation, rotation, dilation, and compression, or any combination thereof. We also describe a new pulse sequence and a specialized postprocessing technique required to suppress these motion artifacts. The correction algorithm corrects for generalized motion. The theoreticial basis of the correction scheme is founded upon the (k,t)-space formalism and the concept of pulse sequence contrast mapping functions. The proposed (k,t) formalism is based on the Fourier projection slice theorem and allows us to determine how motion artifacts arise. The correction technique currently suffers from some spatial resolution and signal-to-noise ratio limitations, and works better for small object than large objects. These problems will be investigated in subsequent studies.  相似文献   

17.
The k-space trajectory of a spiral imaging sequence was measured with a self-encoding technique. The image quality improved dramatically when reconstructed with the measured k-space trajectory. There were substantial artifacts in images reconstructed with the derived k-space trajectory under the assumption of gradient system linearity. The results indicated the non-linearity of the gradient system and the effectiveness of the correction technique.  相似文献   

18.
Reduction of image-to-image signal fluctuations and imaging artifacts is important for fMRI studies. The imaging artifacts caused by respiration, cardiac pulsation, and gross head motion and the suppression of these artifacts have been studied for many years. However, the artifacts caused by eye movement and their effects on fMRI mapping are not well known. It is demonstrated in this report that involuntary eye movements during resting conditions can cause substantial signal fluctuations in the phase-encoding direction even for a fast echo-planar imaging sequence. An oblique slab presaturation technique is proposed for saturating the magnetization of eyes and suppressing the artifacts from eye movements with minimal signal loss of other brain tissues. The results show that the technique significantly reduces signal fluctuations and improves fMRI reliability for mapping functional activation in the human brain.  相似文献   

19.
For diffusion-weighted magnetic resonance imaging and under circumstances where patient movement can be modeled as rigid body motion, it is shown both theoretically and experimentally that translations and rotations produce phase errors which are zero- and first-order, respectively, in position. Whlile a navigator echo can be used to correct the imaging data for arbitrary translations, only when the diffusion gradient is applied in the phase encode direction is there sufficient information to correct for rotations around all axes, and therefore for general rigid body motion. Experiments in test objects and human brain imaging confirm theoretical predictions and demonstrate that appropriate corrections dramatically improve image quality in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号