首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RARE method and its variants have become popular, rapid-imaging alternatives to conventional spin-echo imaging, particularly for long repetition time proton density and T2-weighted imaging. One variant is to generate both early and late echo images using the same pulse sequence, which has the added benefit of reduced edge artifacts and blurring. Described in this paper is variable-averaging RARE (VARARE), a method by which independent amounts of averaging can be set for the early and late echo images generated by a single scanning sequence. Through the use of this method, the signal-to-noise ratio (SNR) of late echo images can be improved without unnecessarily increasing the number of averages for the early echo image, thus saving scanning time. Comparisons to various alternatives are made with respect to scanning time and image quality. Phantom measurements and in vivo images are given to demonstrate the effectiveness of VA-RARE as an efficient method for improving SNR of late echo time images in RARE imaging.  相似文献   

2.
Using a T1-weighted hybrid rapid acquisition with relaxation enhancement (RARE) MR sequence that implements an echo-to-view mapping scheme termed “low-high profile order,” we evaluated signal intensity changes in different brain tissues as a function of number of slices, interslice gap, and echo train length (ETL). We also measured phase-encode and frequency-encode noise as well as blurring artifacts along the phase-encode direction as a function of ETL. Off-resonance magnetization transfer effects were demonstrated to be responsible for signal intensities changes in white matter and gray matter when using multislice techniques. These effects are amplified by increasing the number of slices and ETL. Due to the nature of the implemented echo-to-view mapping scheme, no on-resonance magnetization transfer effects were observed from the intraslice echo train. Selective background (white matter and gray matter) suppression in multislice T1-weighted hybrid RARE, secondary to off-resonance magnetization transfer effects, may provide better contrast resolution of enhancing central nervous system (CNS) lesions at much shorter scan time as compared to conventional spin-echo T1-weighted sequences. This improvement in contrast resolution as a function of ETL may be limited by worsening phase-encode noise and blurring artifacts.  相似文献   

3.
PURPOSE: To evaluate the usefulness of the three-dimensional half-Fourier RARE sequence in comparison with single-shot two-dimensional half-Fourier RARE and conventional fast spin echo (FSE) for female pelvic imaging. MATERIALS AND METHODS: Imaging with all sequences was performed in 146 patients with 166 focal lesions on a 1.5-T system. The images were compared on the basis of quality, lesion conspicuity, and lesion to the uterus contrast-to-noise ratio (CNR). RESULTS: The sharpness of intrapelvic organs on the three-dimensional half-Fourier RARE sequence was better than that on two-dimensional half-Fourier RARE and worse than that on FSE. Motion-related artifacts for three-dimensional half-Fourier RARE were more frequent than those for two-dimensional half-Fourier RARE. There was no statistical difference between the three-dimensional half-Fourier RARE sequence and FSE in regard to lesion conspicuity and overall image quality. The CNR of leiomyoma to myometrium and cervical cancer to cervical stroma was the highest with three-dimensional half-Fourier RARE (P< 0.05). CONCLUSION: The three-dimensional half-Fourier RARE sequence generates images with higher contrast and better image resolution than two-dimensional-RARE. The three-dimensional data set provided images that can be observed in any orientation without acquiring an additional scan by using the multiplanar reconstruction (MPR) method.  相似文献   

4.
This article describes the first application of true online motion correction to diffusion-weighted RARE imaging. Two orthogonal navigator echoes were acquired and zeroth and first-order phase corrections applied in less than 8 ms between a diffusion-weighted magnetization preparation and data acquisition using the RARE sequence. The zeroth-order phase correction was realized by pulsing the system's B(0)-coil: the first-order error corrected with appropriate magnetic field gradient pulses. Online correction ensured that no irreversible signal loss could occur in the imaging experiment. Diffusion-weighted images of the brain were obtained from healthy volunteers. EGG-triggered acquisition was applied at 400 ms after the R-wave. Data were acquired on a matrix of 256 x 256 with a RARE factor of 16 and a b-value of 804 smm(-2). The images obtained with online motion correction showed a remarkably high image quality, while those acquired without motion correction were severely degraded by artifacts.  相似文献   

5.
This work describes a novel method for rapid acquisition with relaxation enhancement (RARE)/fast spin-echo (FSE) imaging that removes the constraint of compliance with the Carr-Purcell-Meiboom-Gill (CPMG) condition. In a multiecho sequence, echoes with either odd or even parities are acquired. The refocusing angles are chosen using a recursive algorithm, so that the signal amplitude satisfies a predetermined modulation function. In the examples given in this article an exponential decay to a plateau is used. At each echo the echo parity that gives the desired signal amplitude for the minimum refocusing angle is selected. It is further shown that in the presence of an initial magnetization having an arbitrary phase distribution, the complex conjugate of the signal of one echo parity has to be taken and its k-space coordinates reversed. T(2) (*)-weighted images are presented and initial applications to diffusion-weighted imaging (DWI) and functional imaging shown.  相似文献   

6.
Multishot diffusion-weighted SPLICE PROPELLER MRI of the abdomen.   总被引:1,自引:0,他引:1  
Multishot FSE (fast spin echo)-based diffusion-weighted (DW)-PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) MRI offers the potential to reduce susceptibility artifacts associated with single-shot DW-EPI (echo-planar imaging) approaches. However, DW-PROPELLER in the abdomen is challenging due to the large field-of-view and respiratory motion during DW preparation. Incoherent signal phase due to motion will violate the Carr-Purcell-Meiboom-Gill (CPMG) conditions, leading to destructive interference between spin echo and stimulated echo signals and consequent signal cancellation. The SPLICE (split-echo acquisition of FSE signals) technique can mitigate non-CPMG artifacts in FSE-based sequences. For SPLICE, spin echo and stimulated echo are separated by using imbalanced readout gradients and extended acquisition window. Two signal families each with coherent phase properties are acquired at different intervals within the readout window. Separate reconstruction of these two signal families can avoid destructive phase interference. Phantom studies were performed to validate signal phase properties with different initial magnetization phases. This study evaluated the feasibility of combining SPLICE and PROPELLER for DW imaging of the abdomen. It is demonstrated that DW-SPLICE-PROPELLER can effectively mitigate non-CPMG artifacts and improve DW image quality and apparent diffusion coefficient (ADC) map homogeneity.  相似文献   

7.
Spiral imaging has a number of advantages for fast imaging, including an efficient use of gradient hardware. However, inhomogeneity-induced blurring is proportional to the data acquisition duration. In this paper, we combine spiral data acquisition with a RARE echo train. This allows a long data acquisition interval per excitation, while limiting the effects of inhomogeneity. Long spiral k-space trajectories are partitioned into smaller, annular ring trajectories. Each of these annular rings is acquired during echoes of a RARE echo train. The RARE refocusing RF pulses periodically refocus off-resonant spins while building a long data acquisition. We describe both T2-weighted single excitation and interleaved RARE spiral sequences. A typical sequence acquires a complete data set in three excitations (32 cm FOV, 192 × 192 matrix). At a TR = 2000 ms, we can average two acquisitions in an easy breath-hold interval. A multifrequency reconstruction algorithm minimizes the effects of any off-resonant spins. Though this algorithm needs a field map, we demonstrate how signal averaging can provide the necessary phase data while increasing SNR. The field map creation causes no scan time penalty and essentially no loss in SNR efficiency. Multiple slice, 14-s breath-hold scans acquired on a conventional gradient system demonstrate the performance.  相似文献   

8.
A fast multislice imaging technique has been developed. RASTER (Rapid Acquisition with Stimulated Echo Refocusing) is based on RARE (Rapid Acquisition with Relaxation Enhancement), and creates multiple spin echoes/each 180° pulse utilizing stimulated echoes, and phase encode each differently. The sequence can be much faster than RARE while keeping the same spin echo image contrast. The main limitation of the technique is reduced signal-to-noise ratio.  相似文献   

9.
A new fast spectroscopic imaging (SI) method is presented which is based on spatial localization by the fast MRI method of rapid acquisition with relaxation enhancement (RARE) and encoding of the chemical shift information by shifting the position of a refocusing 180 pulse in a series of measurements. This method is termed spectroscopic RARE. In contrast to spectroscopic ultrafast low-angle RARE (U-FLARE), the formation of two echo families (odd and even) is suppressed by using a train of 180 RF pulses with an internal four-step phase cycle. By this means a high signal-to-noise ratio (SNR) per unit measurement time is obtained, because the separation of odd and even echoes, as well as dummy echoes to stabilize the echo amplitudes, is not needed anymore. The method is of particular interest for detecting signals of coupled spins, as effective homonuclear decoupling can be achieved by use of constant evolution time chemical shift encoding. The pulse sequence was implemented on a 4.7 T imaging system, tested on phantoms, and applied to the healthy rat brain in vivo. Spectroscopic RARE is particularly useful if T2* double less-than sign T2, which is typically fulfilled for in vivo proton SI measurements at high magnetic field strength.  相似文献   

10.
A new navigator‐guided motion‐compensated MR image reconstruction for segmented Cartesian imaging using multiple reception coils is presented. In‐plane patient motion, comprising translation and rotation, is quantified for each scan segment by an orbital navigator. A robust and accurate approach to extract the motion parameters from the orbital navigator data is presented. The navigator information is used in an efficient iterative image reconstruction algorithm to avoid motion‐induced image artifacts. Experiments in phantoms and volunteers using segmented turbo spin echo imaging as an example were performed to show the basic feasibility of this new motion compensation approach. The method can also be applied to other segmented acquisitions such as magnetization‐prepared gradient echo imaging or EPI. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
Hybrid RARE (rapid acquisition with relaxation enhancement) is a family of magnetic resonance (MR) imaging techniques whereby a set of images is phase encoded with more than one spin echo per excitation pulse. This increases the efficiency of obtaining T2-weighted images, allowing greater flexibility regarding acquisition time, resolution, signal-to-noise ratio, and tissue contrast. Hybrid RARE techniques involve several important new user-selectable parameters such as effective TE, echo train length, and echo spacing. Choices of other parameters, such as TR, sampling bandwidth, and acquisition matrix, may be different from those of comparable conventional T2-weighted spin-echo images. Different hybrid RARE implementations can be used for abdominal screening, with T2-weighted or T2-weighted and inversion-recovery contrast, or for characterizing liver lesions or imaging the biliary system with an extremely long TE. High-resolution images may be obtained by averaging multiple signals during quiet breathing, or images may be acquired more rapidly during suspended respiration. In this review, the authors discuss the basic principles of hybrid RARE techniques and how various imaging parameters can be manipulated to increase the quality and flexibility of abdominal T2-weighted MR imaging.  相似文献   

12.
For perfusion-based functional magnetic resonance imaging, the previously introduced flow-sensitive alternating inversion recovery (FAIR) technique is combined with single-shot RARE (rapid acquisition with relaxation enhancement) and GRASE (gradient and spin echo) imaging sequences. The advantages of these sequences compared to commonly used echo-planar imaging (EPI) are an increased signal-to-noise ratio and the absence of distortions and artifacts due to magnetic field inhomogeneities. RARE- and GRASE-FAIR are applied to functional brain mapping studies in humans during visual stimulation. Results demonstrate that the presented techniques allow for perfusion maps with higher spatial resolution compared to EPI-FAIR. Relative regional cerebral blood flow change in the occipital cortex during visual stimulation was measured to be 41+/-4% (n = 5). The comparison of FAIR data obtained with RARE and GRASE techniques shows that RARE yields images with the higher signal-to-noise ratio. However, the GRASE technique features a shorter acquisition time and less RF power deposition and is thus better suited for multi-slice acquisitions.  相似文献   

13.
In single shot echo train imaging all the data required for a two dimensional image is acquired from a series of echoes generated following a single RF excitation pulse. Spatial resolution is limited because all samples must be acquired before the signal decays. In this paper we show theoretically that more echoes and hence better spatial resolution can be obtained with single shot GRASE imaging than with either echo planar imaging or single shot RARE imaging. This conclusion holds for both conventional imaging hardware and specialized gradient hardware designed for EPI. High quality single shot GRASE images support the theoretical conclusions.  相似文献   

14.
Abdominal imaging with a modular combination of spin and gradient echoes.   总被引:1,自引:0,他引:1  
MR-CAT (combined acquisition technique), a modular hybrid imaging concept, was introduced recently. In this article it is demonstrated that the CAT principles can be applied to form a versatile combination of spin and gradient echoes for abdominal imaging. This CAT approach, which essentially integrates RARE and EPI modules in a sequential fashion, was used to implement a set of segmented and single-shot RARE/EPI-CAT imaging techniques. CAT was used in in vivo studies to perform high-resolution abdominal imaging in five healthy subjects. The results demonstrate the feasibility of abdominal imaging using the proposed CAT approach and the potential of this technique to reduce imaging time while preserving image quality.  相似文献   

15.
Slab scan diffusion imaging.   总被引:1,自引:0,他引:1  
For maximum robustness of a diffusion-weighted MR imaging sequence, it is desirable to use a single-shot imaging method. This article introduces a new single-shot imaging approach that combines the advantages of multiple spin-echoes with the technique of line scan diffusion imaging. A slab volume, which can be spatially encoded with fewer phase encodes than a regular field of view, is selected with 2D selective pulses. With the shorter echo train, the sensitivity to field inhomogeneities and chemical shift is thus greatly diminished. Further reduction is achieved by interleaving short gradient echo trains with refocusing spin-echo pulses. Optimized slice-selective RF pulses that produce flip angles close to 180 degrees are used to minimize the stimulated echo component. Motion-related phase shifts, which change polarity with each spin-echo excitation, will give rise to artifacts that are avoidable by processing even and odd spin-echoes separately. As with line scan diffusion imaging, the complete field of view is acquired by sequential scanning. Since with each shot several lines of data are collected, a considerable improvement over line scan diffusion imaging in terms of scanning speed is achieved. Diffusion data obtained in phantoms and normal subjects demonstrate the feasibility of this novel approach.  相似文献   

16.
An electrocardiogram (ECG)-triggered, magnetization-prepared, segmented, 3D true fast imaging with steady-state precession (true-FISP) sequence with fat saturation was recently proposed for coronary artery imaging. A magnetization preparation scheme consisting of an alpha/2 radiofrequency (RF) pulse followed by 20 constant flip angle dummy RF cycles was used to reduce signal oscillations in the approach to steady state. However, if large resonance offsets on the order of 70-100 Hz are present, significant magnetization oscillations will still occur during data acquisition, which will result in image ghosting and blurring. The goal of this work was to validate that a linear flip angle (LFA) series can be used during magnetization preparation to reduce these image artifacts. Computer simulations, phantom studies, and coronary artery imaging in healthy volunteers were performed to compare this magnetization preparation scheme with that of an alpha/2 pulse followed by constant flip angle dummy RF cycles. The results demonstrated substantial reduction in the apparent image artifacts when using linearly increasing flip angles during magnetization preparation.  相似文献   

17.
Merkle EM 《European radiology》2006,16(10):2366-2368
The presence of pneumobilia is a particular problem in magnetic resonance cholangiopancreatography (MRPC) and may create an appearance that can be mistaken for intraductal stones. Compared with biliary stones, however, pneumobilia causes a susceptibility artifact on hepatic MR imaging and appears as a signal void on a dual echo gradient MR sequence, such as the T1-weighted in-phase and opposed-phase gradient echo sequence. This susceptibility artifact is more pronounced on the gradient echo image with the longer echo time due to the continued decay of the transverse magnetization. Besides identification of hepatic steatosis, the double echo approach is particularly helpful in identification of pneumobilia.  相似文献   

18.
Single shot (SS) rapid acquisition with relaxation enhancement (RARE) and half Fourier SS-RARE (HFSS-RARE, HASTE, or SS-FSE) sequences allow ultrafast imaging acquisition and generate high imaging quality. Images can be acquired within a very short time, without artifacts from physiologic motion. They are widely applied in the abdominal MRI. Clinical application of the ultrafast SS-RARE imaging techniques provide not only improved temporal resolution but better spatial resolution, higher SNR, and higher tissue contrast. Imaging parameters must be optimized for different MR scanners to obtain diagnostic images.  相似文献   

19.
Echo‐planar imaging is the most widely used imaging sequence for functional magnetic resonance imaging (fMRI) due to its fast acquisition. However, it is prone to local distortions, image blurring, and signal voids. As these effects scale with echo train length and field strength, it is essential for high‐resolution echo‐planar imaging at ultrahigh field to address these problems. Partially parallel acquisition methods can be used to improve the image quality of echo‐planar imaging. However, partially parallel acquisition can be affected by aliasing artifacts and noise enhancement. Another way to shorten the echo train length is to reduce the field‐of‐view (FOV) while maintaining the same spatial resolution. However, to achieve significant acceleration, the resulting FOV becomes very small. Another problem occurs when FOV selection is incomplete such that there is remaining signal aliased from the region outside the reduced FOV. In this article, a novel approach, a combination of reduced FOV imaging with partially parallel acquisition, is presented. This approach can address the problems described above of each individual method, enabling high‐quality single‐shot echo‐planar imaging acquisition, with submillimeter isotropic resolution and good signal‐to‐noise ratio, for fMRI at ultrahigh field strength. This is demonstrated in fMRI of human brain at 7T with an isotropic resolution of 650 μm. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Radiofrequency (RF)‐spoiled gradient‐echo imaging provides a signal intensity close to pure T1 contrast by using spoiler gradients and RF phase cycling to eliminate net transverse magnetization. Generally, spins require many RF excitations to reach a steady‐state magnetization level; therefore, when unsaturated flowing spins enter the imaging slab, they can cause undesirable signal enhancement and generate image artifacts. These artifacts can be reduced by partially saturating an outer slab upstream to drive the longitudinal magnetization close to the steady state, while the partially saturated spins generate no signal until they enter the imaging slab. In this work, magnetization evolution of flowing spins in RF‐spoiled gradient‐echo sequences with and without partial saturation was simulated using the Bloch equations. Next, the simulations were validated by phantom and in vivo experiments. For phantom experiments, a pulsatile flow phantom was used to test partial saturation for a range of flip angles and relaxation times. For in vivo experiments, the technique was used to image the carotid arteries, abdominal aorta, and femoral arteries of normal volunteers. All experiments demonstrated that partial saturation can provide consistent T1 contrast across the slab while reducing inflow artifacts. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号