首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic MRI has proven to be an important tool in studies of transient physiologic changes in animals and humans. High sensitivity and temporal resolution in such measurements are critical for accurate estimation of dynamic information. Fast imaging, often involving expensive hardware, has evolved for use in such cases. We demonstrate herein the possibility of accelerated data acquisition schemes on conventional machines using standard pulse sequences for dynamic studies. This is achieved by combining reduced-encoded dynamic data (typically 30 to 40 phase encodings) with a priori high-resolution data via a novel constrained image reconstruction algorithm. Such an approach reduces image acquisition time significantly (by a factor of 3 to 4 in the examples described here) without loss in the accuracy of information.  相似文献   

2.

Purpose:

To validate a novel approach for accelerated four‐dimensional phase contrast MR imaging (4D PC‐MRI) with an extended range of velocity sensitivity.

Materials and Methods:

4D PC‐MRI data were acquired with a radially undersampled trajectory (PC‐VIPR). A dual Venc (dVenc) processing algorithm was implemented to investigate the potential for scan time savings while providing an improved velocity‐to‐noise ratio. Flow and velocity measurements were compared with a flow pump, conventional 2D PC MR, and single Venc 4D PC‐MRI in the chest of 10 volunteers.

Results:

Phantom measurements showed excellent agreement between accelerated dVenc 4D PC‐MRI and the pump flow rate (R2 ≥ 0.97) with a three‐fold increase in measured velocity‐to‐noise ratio (VNR) and a 5% increase in scan time. In volunteers, reasonable agreement was found when combining 100% of data acquired with Venc = 80 cm/s and 25% of the high Venc data, providing the VNR of a 80 cm/s acquisition with a wider velocity range of 160 cm/s at the expense of a 25% longer scan.

Conclusion:

Accelerated dual Venc 4D PC‐MRI was demonstrated in vitro and in vivo. This acquisition scheme is well suited for vascular territories with wide ranges of flow velocities such as congenital heart disease, the hepatic vasculature, and others. J. Magn. Reson. Imaging 2012;35:1462–1471. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Sensitivity-encoded spectroscopic imaging.   总被引:11,自引:0,他引:11  
Sensitivity encoding (SENSE) offers a new, highly effective approach to reducing the acquisition time in spectroscopic imaging (SI). In contrast to conventional fast SI techniques, which accelerate k-space sampling, this method permits reducing the number of phase encoding steps in each phase encoding dimension of conventional SI. Using a coil array for data acquisition, the missing encoding information is recovered exploiting knowledge of the distinct spatial sensitivities of the individual coil elements. In this work, SENSE is applied to 2D spectroscopic imaging. Fourfold reduction of scan time is achieved at preserved spectral and spatial resolution, maintaining a reasonable SNR. The basic properties of the proposed method are demonstrated by phantom experiments. The in vivo feasibility of SENSE-SI is verified by metabolic imaging of N-acetylaspartate, creatine, and choline in the human brain. These results are compared to conventional SI, with special attention to the spatial response and the SNR.  相似文献   

4.
5.
6.
Velocity imaging with phase contrast (PC) MRI is a noninvasive tool for quantitative blood flow measurement in vivo. A shortcoming of conventional PC imaging is the reduction in temporal resolution as compared to the corresponding magnitude imaging. For the measurement of velocity in a single direction, the temporal resolution is halved because one must acquire two differentially flow-encoded images for every PC image frame to subtract out non-velocity-related image phase information. In this study, a high temporal resolution PC technique which retains both the spatial resolution and breath-hold length of conventional magnitude imaging is presented. Improvement by a factor of 2 in the temporal resolution was achieved by acquiring the differentially flow-encoded images in separate breath-holds rather than interleaved within a single breath-hold. Additionally, a multiecho readout was incorporated into the PC experiment to acquire more views per unit time than is possible with the single gradient-echo technique. A total improvement in temporal resolution by approximately 5 times over conventional PC imaging was achieved. A complete set of images containing velocity data in all three directions was acquired in four breath-holds, with a temporal resolution of 11.2 ms and an in-plane spatial resolution of 2 mm x 2 mm.  相似文献   

7.
Blood flow in large vessels can be noninvasively evaluated with phase-contrast (PC) MRI by encoding the spin velocity to the image phase. Conventional phase-difference processing of the flow-encoded image data yields velocity images. Complex-difference processing is an alternative to phase-difference methods, and has the advantage of eliminating signal from stationary spins. In this study, two acquisitions with differential flow encoding are subtracted to yield a single projection that contains signal from only those spins moving in the direction of the flow-encoding gradients. The increase in acquisition efficiency allows real-time flow imaging with a temporal window as short as two acquisition lengths (60 ms). Validation of the complex-difference method by comparison with conventional gated-segmented PC-MRI in a flow phantom yielded a correlation of r > 0.99. Peak arterial flow rates in the popliteal artery and desending aorta measured in vivo with the complex-difference method were 0.92 +/- 0.06 of the values measured with conventional PC imaging. Real-time in vivo volumetric flow imaging of transient flow events is also presented.  相似文献   

8.
We introduce a fast and robust spatial-spectral encoding method, which enables acquisition of high resolution short echo time (13 ms) proton spectroscopic images from human brain with acquisition times as short as 64 s when using surface coils. The encoding scheme, which was implemented on a clinical 1.5 Tesla whole body scanner, is a modification of an echo-planar spectroscopic imaging method originally proposed by Mansfield Magn. Reson. Med. 1, 370–386 (1984), and utilizes a series of read-out gradients to simultaneously encode spatial and spectral information. Superficial lipid signals are suppressed by a novel double outer volume suppression along the contours of the brain. The spectral resolution and the signal-to-noise per unit time and unit volume from resonances such as N-acetyl aspartate, choline, creatine, and inositol are comparable with those obtained with conventional methods. The short encoding time of this technique enhances the flexibility of in vivo spectroscopic imaging by reducing motion artifacts and allowing acquisition of multiple data sets with different parameter settings.  相似文献   

9.
PURPOSE: To demonstrate the feasibility of a four-dimensional phase contrast (PC) technique that permits spatial and temporal coverage of an entire three-dimensional volume, to quantitatively validate its accuracy against an established time resolved two-dimensional PC technique to explore advantages of the approach with regard to the four-dimensional nature of the data. MATERIALS AND METHODS: Time-resolved, three-dimensional anatomical images were generated simultaneously with registered three-directional velocity vector fields. Improvements compared to prior methods include retrospectively gated and respiratory compensated image acquisition, interleaved flow encoding with freely selectable velocity encoding (venc) along each spatial direction, and flexible trade-off between temporal resolution and total acquisition time. RESULTS: The implementation was validated against established two-dimensional PC techniques using a well-defined phantom, and successfully applied in volunteer and patient examinations. Human studies were performed after contrast administration in order to compensate for loss of in-flow enhancement in the four-dimensional approach. CONCLUSION: Advantages of the four-dimensional approach include the complete spatial and temporal coverage of the cardiovascular region of interest and the ability to obtain high spatial resolution in all three dimensions with higher signal-to-noise ratio compared to two-dimensional methods at the same resolution. In addition, the four-dimensional nature of the data offers a variety of image processing options, such as magnitude and velocity multi-planar reformation, three-directional vector field plots, and velocity profiles mapped onto selected planes of interest.  相似文献   

10.
Displacement encoding with stimulated echoes (DENSE) is a quantitative imaging technique that encodes tissue displacement in the phase of the acquired signal. Various DENSE sequences have encoded displacement using methods analogous to the simple multipoint methods of phase contrast (PC) MRI. We developed general n‐dimension balanced multipoint encoding for DENSE. Using these methods, phase noise variance decreased experimentally by 73.7%, 65.6%, and 61.9% compared with simple methods, which closely matched the theoretical decreases of 75%, 66.7%, and 62.5% for one‐dimensional (1D), 2D, and 3D encoding, respectively. Phase noise covariances decreased by 99.2% and 99.3% for balanced 2D and 3D encoding, consistent with the zero‐covariance prediction. The direction bias inherent to the simple methods was decreased to almost zero using balanced methods. Reduced phase noise and improved displacement and strain maps using balanced methods were visually observed in phantom and volunteer images. Balanced multipoint encoding can also be applied to PC MRI. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Intracardiovascular blood pressure differences can be derived from velocity images acquired with phase-contrast (PC) MRI by evaluating the Navier-Stokes equations. Pressure differences within a slice of interest can be calculated using only the in-plane velocity components from that slice. This rapid exam is proposed as an alternative to the lengthy 3D velocity imaging exams. Despite their good spatial coverage, the 3D exams are prone to artifacts and errors from respiratory motion and insufficient temporal resolution, and are unattractive in the clinical setting due to their excessive scan times (>10 min of free breathing). The proposed single-slice approach requires only one or two breath-holds of acquisition time, and the velocity data can be processed for the calculation of pressure differences online with immediate feedback. The impact of reducing the pressure difference calculation to two dimensions is quantified by comparison with 3D data sets for the case of blood flow within the cardiac chambers. The calculated pressure differences are validated using high-fidelity pressure transducers both in a pulsatile flow phantom and in vivo in a dog model. There was excellent agreement between the transducer and PC-MRI results in all of the studies.  相似文献   

12.
Phase-contrast (PC) cine MRI is a promising method for assessment of pathologic hemodynamics, including cardiovascular and hepatoportal vascular dynamics, but its low data acquisition efficiency limits the achievable spatial and temporal resolutions within clinically acceptable breath-hold durations. We propose to accelerate PC cine MRI using an approach which combines compressed sensing and parallel imaging (k-t SPARSE-SENSE). We validated the proposed 6-fold accelerated PC cine MRI against 3-fold accelerated PC cine MRI with parallel imaging (generalized autocalibrating partially parallel acquisitions). With the programmable flow pump, we simulated a time varying waveform emulating hepatic blood flow. Normalized root mean square error between two sets of velocity measurements was 2.59%. In multiple blood vessels of 12 control subjects, two sets of mean velocity measurements were in good agreement (mean difference = -0.29 cm/s; lower and upper 95% limits of agreement = -5.26 and 4.67 cm/s, respectively). The mean phase noise, defined as the standard deviation of the phase in a homogeneous stationary region, was significantly lower for k-t SPARSE-SENSE than for generalized autocalibrating partially parallel acquisitions (0.05 ± 0.01 vs. 0.19 ± 0.06 radians, respectively; P < 0.01). The proposed 6-fold accelerated PC cine MRI pulse sequence with k-t SPARSE-SENSE is a promising investigational method for rapid velocity measurement with relatively high spatial (1.7 mm × 1.7 mm) and temporal (~35 ms) resolutions.  相似文献   

13.
Conventional phase-contrast (PC) MRI is limited in the temporal resolution (typically 50 ms) that can be achieved, due to the need to implement bipolar velocity encoding gradients. PC using steady-state free precession (SSFP) has recently been developed to acquire PC data at higher rates without sacrificing contrast-to-noise ratio (CNR). This work presents two multiecho SSFP PC implementations that can be used to increase the time efficiency of PCSSFP. Both approaches (extrinsic and intrinsic) enable reference image lines to be acquired within the same TR as the flow-encoded lines, thus minimizing the scan time and permitting TR-equivalent temporal resolutions. Both approaches have been implemented and tested successfully on human volunteers at 1.5T and 3T. While the intrinsic approach is useful for encoding higher velocity flows in-plane, the extrinsic implementation can be used for studying a wider range of encoding velocities for flow in the imaging plane and through the imaging plane.  相似文献   

14.
Phase contrast MRI (PC‐MRI) is an established technique for measuring blood flow velocities in vivo. Although spoiled gradient recalled echo (GRE) PC‐MRI is the most widely used pulse sequence today, balanced steady state free precession (SSFP) PC‐MRI has been shown to produce accurate velocity estimates with superior SNR efficiency. We propose a referenceless approach to flow imaging that exploits the intrinsic refocusing property of balanced SSFP, and achieves up to a 50% reduction in total scan time. With the echo time set to exactly one half of the sequence repetition time (TE = TR/2), we show that non‐flow‐related image phase tends to vary smoothly across the field‐of‐view, and can be estimated from static tissue regions to produce a phase reference for nearby voxels containing flowing blood. This approach produces accurate in vivo one‐dimensional velocity estimates in half the scan time compared with conventional balanced SSFP phase‐contrast methods. We also demonstrate the feasibility of referenceless time‐resolved 3D flow imaging (called “7D” flow) in the carotid bifurcation from just three acquisitions. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion‐weighted single‐shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 T. Increased off‐resonance effects and reduced transverse relaxation times at 7 T, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k‐space traversal using a multishot approach, which acquires a subset of k‐space data after each excitation, reduces these artifacts relative to conventional single‐shot acquisitions. However, corrections for motion‐induced phase errors are not straightforward in accelerated, diffusion‐weighted multishot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion‐weighted multishot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard sensitivity‐encoding (SENSE) algorithm to account for shot‐to‐shot phase errors; the method is called image reconstruction using image‐space sampling function (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2‐D navigator phase information is demonstrated for human diffusion‐weighted imaging studies at 7 T. The final reconstructed images show submillimeter in‐plane resolution with no ghosts and much reduced blurring and off‐resonance artifacts. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
4D flow MRI   总被引:1,自引:0,他引:1  
Traditionally, magnetic resonance imaging (MRI) of flow using phase contrast (PC) methods is accomplished using methods that resolve single‐directional flow in two spatial dimensions (2D) of an individual slice. More recently, three‐dimensional (3D) spatial encoding combined with three‐directional velocity‐encoded phase contrast MRI (here termed 4D flow MRI) has drawn increased attention. 4D flow MRI offers the ability to measure and to visualize the temporal evolution of complex blood flow patterns within an acquired 3D volume. Various methodological improvements permit the acquisition of 4D flow MRI data encompassing individual vascular structures and entire vascular territories such as the heart, the adjacent aorta, the carotid arteries, abdominal, or peripheral vessels within reasonable scan times. To subsequently analyze the flow data by quantitative means and visualization of complex, three‐directional blood flow patterns, various tools have been proposed. This review intends to introduce currently used 4D flow MRI methods, including Cartesian and radial data acquisition, approaches for accelerated data acquisition, cardiac gating, and respiration control. Based on these developments, an overview is provided over the potential this new imaging technique has in different parts of the body from the head to the peripheral arteries. J. Magn. Reson. Imaging 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Phase-contrast magnetic resonance imaging (PC-MRI) is used routinely to measure fluid and tissue velocity with a variety of clinical applications. Phase-contrast magnetic resonance imaging methods require acquisition of additional data to enable phase difference reconstruction, making real-time imaging problematic. Shared Velocity Encoding (SVE), a method devised to improve the effective temporal resolution of phase-contrast magnetic resonance imaging, was implemented in a real-time pulse sequence with segmented echo planar readout. The effect of SVE on peak velocity measurement was investigated in computer simulation, and peak velocities and total flow were measured in a flow phantom and in volunteers and compared with a conventional ECG-triggered, segmented k-space phase-contrast sequence as a reference standard. Computer simulation showed a 36% reduction in peak velocity error from 8.8 to 5.6% with SVE. A similar reduction of 40% in peak velocity error was shown in a pulsatile flow phantom. In the phantom and volunteers, volume flow did not differ significantly when measured with or without SVE. Peak velocity measurements made in the volunteers using SVE showed a higher concordance correlation (0.96) with the reference standard than non-SVE (0.87). The improvement in effective temporal resolution with SVE reconstruction has a positive impact on the precision and accuracy of real-time phase-contrast magnetic resonance imaging peak velocity measurements.  相似文献   

18.
The radial trajectory has found applications in cardiac imaging because of its resilience to undersampling and motion artifacts. Recent work has shown that interleaved and weighted radial imaging can produce images with multiple contrasts from a single data set. This feature was investigated for inversion recovery imaging of scar using a radial technique. The 2D radial imaging method was modified to acquire quadruply interleaved projection sets within each acquisition window of the cardiac cycle. These data were reconstructed using k-space weightings that used a smaller segment of the acquisition window for the central k-space data, the determinant of image contrast. This method generates four images with different T1 weightings. The novel approach was compared with noninterleaved radial imaging, interleaved radial without weightings, and Cartesian imaging in simulations, phantoms, and seven subjects with clinical myocardial infarction. The results show that during a typical acquisition window after an inversion pulse, magnetization changes rapidly. The interleaved acquisition provided better image quality than the noninterleaved radial acquisition. Interleaving with weighting provided better quality when the inversion time (TI) was shorter than optimal; otherwise, interleaving without weighting was superior. These methods enable a radial trajectory to be employed in conjunction with preparation pulses for viability imaging.  相似文献   

19.
To characterize gradient field nonuniformity and its effect on velocity encoding in phase contrast (PC) MRI, a generalized model that describes this phenomenon and enables the accurate reconstruction of velocities is presented. In addition to considerable geometric distortions, inhomogeneous gradient fields can introduce deviations from the nominal gradient strength and orientation, and therefore spatially-dependent first gradient moments. Resulting errors in the measured phase shifts used for velocity encoding can therefore cause significant deviations in velocity quantification. The true magnitude and direction of the underlying velocities can be recovered from the phase difference images by a generalized PC velocity reconstruction, which requires the acquisition of full three-directional velocity information. The generalized reconstruction of velocities is applied using a matrix formalism that includes relative gradient field deviations derived from a theoretical model of local gradient field nonuniformity. In addition, an approximate solution for the correction of one-directional velocity encoding is given. Depending on the spatial location of the velocity measurements, errors in velocity magnitude can be as high as 60%, while errors in the velocity encoding direction can be up to 45 degrees. Results of phantom measurements demonstrate that effects of gradient field nonuniformity on PC-MRI can be corrected with the proposed method.  相似文献   

20.
In areas of highly pulsatile and turbulent flow, real-time imaging with high temporal, spatial, and velocity resolution is essential. The use of 1D Fourier velocity encoding (FVE) was previously demonstrated for velocity measurement in real time, with fewer effects resulting from off-resonance. The application of variable-density sampling is proposed to improve velocity measurement without a significant increase in readout time or the addition of aliasing artifacts. Two sequence comparisons are presented to improve velocity resolution or increase the velocity field of view (FOV) to unambiguously measure velocities up to 5 m/s without aliasing. The results from a tube flow phantom, a stenosis phantom, and healthy volunteers are presented, along with a comparison of measurements using Doppler ultrasound (US). The studies confirm that variable-density acquisition of kz-kv space improves the velocity resolution and FOV of such data, with the greatest impact on the improvement of FOV to include velocities in stenotic ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号