首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TAP1 -/- and β2-microglobulin (β2m) -/- mice (H-2b background) express very low levels of major histocompatibility complex (MHC) class I molecules on the cell surface. Consequently these mice have low numbers of mature CD8+ T lymphocytes. However, TAP1 -/- mice have significantly higher numbers of CD8+ T cells than β2m -/- mice. Alloreactive CD8+ cytotoxic T lymphocyte (CTL) responses were also stronger in TAP1 -/- mice than in β2m -/- mice. Alloreactive CTL generated in TAP1 -/- and β2m -/- mice cross-react with H-2b-expressing cells. Surprisingly, such cross-reactivity was stronger with alloreactive CTL from β2m -/- mice than with similar cells from TAP1 -/- mice. The β2m -/- mice also responded more strongly when primed with and tested against cells expressing normal levels of H-2b MHC class I molecules. Such H-2b-reactive CD8+ CTL from β2m -/- mice but not from TAP1 -/- mice also reacted with TAP1 -/- and TAP2-deficient RMA-S cells. In contrast, H-2b-reactive CD8+ CTL from neither β2m -/- mice nor TAP1 -/- mice killed β2m -/- cells. In line with these results, β2m -/- mice also responded when primed and tested against TAP1 -/- cells. We conclude that the reactivity of residual CD8+ T cells differs between TAP1 -/- and β2m -/- mice. The MHC class I-deficient phenotype of TAP1 -/- and β2m -/- mice is not equivalent: class I expression differs between the two mouse lines with regard to quality as well as quantity. We propose that the differences observed in numbers of CD8+ T cells, their ability to react with alloantigens and their cross-reactivity with normal H-2b class I are caused by differences in the expression of MHC class I ligands on selecting cells in the thymus.  相似文献   

2.
Cytotoxic T lymphocytes (CTL) recognize peptides in association with major histocompatibility complex (MHC) class I proteins, but how peptides bind to class I is not well understood. We used a fluorescence technique to measure antigenic peptide binding to a soluble, single-chain Kd (SC-Kd) molecule in which the Kd heavy chain was connected by a 15-residue link to β2-microglobulin. Peptides were covalently labeled at their N terminus with dansyl, and binding of dansylated Kd-restricted peptides to SC-Kd resulted in significant fluorescence enhancement, which could be inhibited by unmodified Kd-restricted peptides. Real-time binding of a dansylated peptide could be followed by monitoring the fluorescence at 530 nm. The dansylated Plasmodium berghei circumsporozoite (PbCS) 263–260 peptide bound to “empty” SC-Kd with an association rate constant of 1140 M?1s?1, and the subsequent spontaneous dissociation of the SC-Kd-peptide complex was slow. The dissociation increased dramatically after addition of excess unlabeled PbCS 253–260 peptide, but with a slower association constant for unlabeled peptide, 77 M?1s?1. Thus, the Kd-peptide complex on the surface of antigen-presenting cells should be stable, but high concentrations of peptides in the endoplasmic reticulum (ER) lumen would allow for peptide exchange on Kd before export to the surface. The apparent activation energy for PbCS 253–260 peptide binding to SC-Kd was 6.78 ± 0.64 kcal/mole, similar to values previously reported for antigen-antibody interactions.  相似文献   

3.
In this report, we demonstrate stimulation of T cell receptor (TCR) transgenic CD8 T cells by isolated major histocompatibility complex (MHC) class I H-2Ld complexes and antigenic peptide. This is the first demonstration of CD8 T cells activated by MHC and antigenic peptide in the absence of antigen priming. Furthermore, isolated MHC and a potent peptide antigen can stimulate phenotypically naive CD44? T cells to become CTL effectors and to produce interleukin-2 in nanogram per milliliter amounts. These results demonstrate that particular TCR antigen pairs may overcome the need for specialized antigen-presenting cells and have implications for mechanisms of autoimmunity and tolerance induction.  相似文献   

4.
This study extends our previous observation that glycopeptides bind to class I major histocompatibility complex (MHC) molecules and elicit carbohydrate-specific CTL responses. The Sendai virus nucleoprotein wild-type (WT) peptide (FAPGNYPAL) binds H-2Db using the P5-Asn as an anchor. The peptide K2 carrying a P5 serine substitution did not bind Db. Surprisingly, glycosylation of the serine (K2-O-GlcNAc) with N-acetylglucosamine (GlcNAc), a novel cytosolic O-linked glycosylation, partially restored peptide binding to Db. We argue that the N-acetyl group of GlcNAc may fulfil the hydrogen bonding requirements of the Db pocket which normally accomodates P5-Asn. Glycosylation of the P5-Asn residue itself abrogated binding similar to K2, probably for steric reasons. The peptide K2-O-GlcNAc readily elicited Db-restricted cytotoxic T lymphocytes (CTL), which did not cross-react with K2 or WT. However, all Db-restricted CTL raised against K2-O-GlcNAc cross-reacted strongly with another glycopeptide, K3-O-GlcNAc, where the GlcNAc substitution is on a neighboring P4-Ser. Furthermore, Db-restricted CTL clones raised against K2-O-GlcNAc or K3-O-GlcNAc displayed a striking TCR conservation. Our interpretation is that the carbohydrate of K2-O-GlcNAc not only mediates binding to Db, but also interacts with the TCR in such a way as to mimic K3-O-GlcNAc. This unusual example of molecular mimicry extends the known effects of peptide glycosylation from what we and others have previously reported: glycosylation may create a T cell neo-epitope, or, conversely, abrogate recognition. Alternatively, glycosylation may block peptide binding to MHC class I and finally, as reported here, restore binding, presumably through direct interaction of the carbohydrate with the MHC molecule.  相似文献   

5.
Previously we used the peptide-binding motif for the murine class I major histocompatibility complex molecule H-2Kd to identify a nonamer peptide of the Listeria monocytogenes listeriolysin (LLO) protein that was recognized by cytotoxic T lymphocytes (CTL) in association with H-2Kd. Eleven nonamer peptides contained in the LLO sequence were synthesized and one, LLO 91-99, proved to be a CTL target. Using peptide binding competition assays with H-2Kd-restricted CTL, we show that 3 out of the 11 LLO peptides, including the CTL epitope, have a high binding affinity for H-2Kd; 2 of 11 peptides have approximately 10-fold lower affinity, while the remaining 6 peptides have no or very low affinity for H-2Kd. Single residue changes were made in the LLO 91-99 peptide and two other LLO peptides to identify non-anchor amino acids that might interfere with peptide binding. In addition, we used the LLO peptides which bound well to H-2Kd to attempt to restimulate a secondary CTL response from L. monocytogenes-primed spleen cells. Only LLO 91-99 was able to induce such a response. Thus only a fraction of nonamer peptides which fit the original binding motif have a high affinity for the H-2Kd class I molecule, and only a fraction of these serve as CTL epitopes.  相似文献   

6.
Cytotoxic T lymphocytes (CTL) kill target cells by perforin-mediated pore formation, induction of apoptosis by the Fas ligand, or both. It has been demonstrated that depolarized neurons can be induced to express major histocompatibility complex (MHC) class I antigens by interferon-γ. Evidence for antigen-dependent CTL-mediated killing was obtained by transfecting neurons with MHC class I cDNA. The present study was designed to investigate the mechanisms of killing of cerebellar granule neurons depolarized by high K+ concentrations and thereby inducible for MHC class I antigen expression. We found that neurons express only low levels of Fas (APO-1/CD95) and are resistant to Fas ligand-mediated killing even when pretreated with cytokines. However, granules extracted from CTL as well as purified perform induce almost complete lysis of neurons. These data suggest that CTL-mediated elimination of neurons involves the perform, but not the Fas pathway of target cell killing.  相似文献   

7.
The functional half-life (t1/2) of different complexes formed by major histocompatibility complex (MHC) class I molecules and antigen on the surface of target cells was measured using specific cytotoxic T lymphocyte (CTL) clones in cytolysis, and interferon-γ-production and Ca2+-mobilization assays. Functional t1/2 values of 5–10 h were obtained, which are in accordance with some previous estimations obtained from biochemical and immunochemical measurements. Moreover, these values were independent of the type of target cell, fixation of the target cells, or proteases able to degrade the peptides, suggesting that the unfolding of the peptide/MHC complexes at the cell surface alone determines the functional t1/2 of the CTL epitopes.  相似文献   

8.
Animal models have become essential tools for studying the human autoimmune disease. They are of vital importance in explorations of disease aspects, where, for diverse reasons, human material is unavailable. This is especially true for disease processes preceding clinical diagnosis and for tissues, which are inaccessible to routine biopsy. Early developing multiple sclerosis (MS) makes an excellent point in case for these limitations. Useful disease models should be developing spontaneously, without a need of artificial, adjuvant-supported induction protocols, and they should reflect credibly at least some of the complex features of human disease. The aim of this review is to compile models that exhibit spontaneous organ-specific autoimmunity and explore their use for studying MS. We first evaluate a few naturally occurring models of organ-specific autoimmune diseases and then screen autoimmunity in animals with compromised immune regulation (neonatal thymectomy, transgenesis, etc.). While most of these models affect organs other than the nervous tissues, central nervous system (CNS)-specific autoimmune disease is readily noted either after transgenic overexpression of cytokines or chemokines within the CNS or by introducing CNS-specific immune receptors into the lymphocyte repertoire. Most recently, spontaneous autoimmunity resembling MS was obtained by transgenic expression of self-reactive T cell receptors and B cell receptors. These transgenic models are not only of promise for studying directly disease processes during the entire course of the disease but may also be helpful in drug discovery.  相似文献   

9.
In the class II region of the major histocompatibility complex (MHC), four genes implicated in MHC class I-mediated antigen processing have been described. Two genes (TAP 1 and TAP 2) code for multimembrane-spanning ATP-binding transporter proteins and two genes (LMP 2 and LMP 7) code for subunits of the proteasome. While TAP 1 and TAP 2 have been shown to transport antigenic peptides from the cytosol into the endoplasmic reticulum, where the peptides associate with MHC class I molecules, the role of LMP 2/7 in antigen presentation is less clear. Using antigen processing mutant T2 cells that lack TAP 1/2 and LMP 2/7 genes, it was recently shown that expression of TAP 1/2 alone was sufficient for processing and presentation of the influenza matrix protein M1 as well as the minor histocompatibility antigen HA-2 by HLA-A2. To understand if presentation of a broader range of viral antigens occurs in the absence of LMP 2/7, we transfected T2 cells with TAP 1, TAP 2 and either of the H-2Kb, Db or Kd genes and tested their ability to present vesicular stomatitis vires and influenza virus antigens to virus-specific cytotoxic T lymphocytes. We found that T2 cells, expressing TAP 1/2 gene products, presented all tested viral antigens restricted through either the H-2Kb, Db or Kd class I molecules. We conclude that the proteasome subunits LMP 2/7 as well as other gene products in the MHC class II region, except from TAP 1/2, are not generally necessary for presentation of a broader panel of viral antigens to cytotoxic T cells. However, the present results do not exclude that LMP 2/7 in a more subtle way may, or in rare cases completely, affect processing of antigen for presentation by MHC class I molecules.  相似文献   

10.
11.
12.
目的 探讨外周血淋巴细胞携带风疹病毒抗原与风疹病毒感染中枢神经系统的关系。方法 BALB/c小鼠分别给予临床常用的可影响机体免疫功能的药物 ,再经腹腔感染风疹病毒 ,并在感染后的 1、3、7、14d观察外周血淋巴细胞携带病毒抗原的情况 ,分析其与中枢神经系统病毒感染的关系。结果 地塞米松药物组在不同时间抗原的平均携带率分别为 3 1%、4 1%、9 6 %、2 4% ,环磷酰胺药物组分别为 14 2 %、12 7%、9 9%、3 1% ,未用药物干预的感染组分别为 4 6 3 %、10 2 5 %、6 88%、1 75 %。方差分析显示 ,3组动物在感染风疹病毒后的第 2 4小时外周血淋巴细胞携带抗原存在明显差异 ,F =0 0 317,P <0 0 5。组间两两比较结果显示 :环磷酰胺药物组动物外周血淋巴细胞抗原的携带明显高于其它实验动物组 ,地塞米松药物组和药物未干预组动物之间无明显差异。确切概率法分析表明 ,动物外周血淋巴细胞风疹病毒的持续性携带与中枢神经系统风疹病毒感染的关系极为密切 ,P <0 0 0 1。结论 环磷酰胺可能影响风疹病毒感染后外周血淋巴细胞对病毒的携带率。在感染初期 ,外周血淋巴细胞持续携带风疹病毒将增大中枢神经系统感染的机会  相似文献   

13.
The peptides recognized by an H-2Db-restricted CD8 cytotoxic T lymphocyte (CTL) clone which is specific for the 60-kDa mycobacterial heat shock protein (hsp) and cross-reacts with stressed host cells were characterized. None of the nonapeptides from hsp60 conforming to the H-2Db binding motif were able to sensitize target cells for lysis by this CTL clone. Sequence analysis of the stimulatory fraction from a trypsin digest of hsp60, together with synthetic peptide studies, defined a cluster of overlapping epitopes. Carboxy-terminal extension by at least one amino acid of the nonamer predicted to bind best to H-2Db was essential for CTL recognition. Two such elongated peptides, a 10-mer and a 12-mer stimulated the clone at similarly low concentrations in the 100 pM range. We assume that these two peptides comply best with the natural epitope. In contrast, the 11-mer was inactive. The stimulatory 10-mer bound to H-2Db with an efficacy similar to that of the nonapeptide corresponding to the H-2Db motif, as revealed by peptide induced major histocompatibility complex (MHC) surface expression on RMA-S cells and competitive blocking of epitope recognition by the nonamer. Binding of these carboxy-terminally extended peptides to the MHC groove can be explained by anchoring through the amino acid residue Asn in position 5 of the peptide and by intrusion of the hydrophobic carboxy-terminal Ala (10-mer) or Leu (12-mer), but not Gly (11-mer), into the hydrophobic pocket of the H-2Db cleft. Because the carboxy-terminal part is thus larger than predicted this region of the peptide may arch up from the binding groove. We assume that recognition of steric components of the MHC/peptide complex broaden the range of epitope specificity for a single T cell receptor. This flexibility not only promotes recognition of several overlapping peptides from a single antigen, but may also increase the chance of cross-reaction with similar peptides from unrelated proteins, including autoantigens. Consistent with this latter assumption, the T cell clone cross-recognizes mycobacterial hsp60 and stressed host cells.  相似文献   

14.
In this study the immunogenic tryptic fragment from a horse cytochrome c (cyt c) digest recognized by cytotoxic T lymphocytes (CTL), induced by in vitro peptide stimulation from C57BL/6 (B6) and mutant B6.C-H-2bm1 (bm1) mice is identified. An identical sequence, p40—53, is recognized by CTL from both B6 and bm1 mice. In addition, both B6 and bm1 cloned CTL lines display unusual major histocompatibility complex (MHC) class I-restricted recognition of this peptide in that they respond to it in the context of H-2Kb, H-2Db, and H-2Kbm1 class I molecules, although the sequence lacks the usual structural Kb and Db peptide-binding motifs. Truncated analogues which resemble the lengths of naturally processed MHC class I-presented peptides, confer reactivity for B6 and bm1 CTL against EL4 (H-2b) targets as well as the L cell transfectants, L + Kb, L + Db, and L + Kbm1. The antigenic peptide with the greatest potency is p41—49, which appears to be generated by angiotensin converting enzyme cleavage of the full-length p40—53 tryptic peptide. The minimum antigenic peptide recognized by both B6 and bm1 CTL, and which targets lysis on each of the transfectants, is the hexamer p43—48 peptide from horse cyt c. Residues Pro44 and Thr47, which occupy polymorphic positions with respect to other species-variant cyt c molecules, influence recognition of these peptides differently for the B6 and bm1 CTL. The ability of H-2Kb, H-2Db, and mutant H-2Kbm1 class I molecules to present the same peptide to a single cloned CTL is discussed in the context of current knowledge of peptide anchor residues and side chain-specific binding pockets in the MHC class I peptide-binding site.  相似文献   

15.
Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas' disease, lives free within the cytoplasm of infected host cells. This intracellular niche suggests that parasite antigens may be processed and presented on major histocompatibility complex (MHC) class I molecules for recognition by CD8+ T cells. However, the parasite persists indefinitely in the mammalian host, indicating its success at evading immune clearance. It has been shown that T. cruzi interferes with processing and presentation of antigenic peptides in the MHC class II pathway. This investigation sought to determine whether interference in MHC class I processing and presentation occurs with T. cruzi infection. Surface expression of MHC class I molecules was found to be unaffected or up-regulated by T. cruzi infection in vitro. A model system employing a β-galactosidase (β-gal)-specific murine cytotoxic T lymphocyte (CTL) line (0805B) showed: (i) in vitro infection of mouse peritoneal macrophages or J774 cells with T. cruzi did not inhibit MHC class I presentation of exogenous peptide (a nine-amino acid epitope of β-gal) to the CTL line, (ii) in vitro infection of a β-gal-expressing 3T3 cell line (LZEJ) with T. cruzi did not inhibit MHC class I presentation of the endogenous protein to the CTL line and (iii) mouse renal adenocarcinoma cells infected with T. cruzi and subsequently infected with adenovirus expressing β-gal were able to present antigen to the β-gal-specific CTL line. These findings indicate that the failure of the immune response to clear T. cruzi does not result from global interference by the parasite with MHC class I processing and presentation. Parasites engineered to express β-gal were unable to sensitize infected antigen-presenting cells in vitro to lysis by the CTL 0805B line. This was probably due to the intracellular localization of the β-gal within the parasite and its inaccessibility to the host cell cytoplasm.  相似文献   

16.
Summary Tritiated 6-hydroxydopamine (6-OHDA) was injected into the lateral ventricle of rats and rabbits and visualized by means of autoradiography. In unfixed frozen sections, radioactive material was found penetrating about 2 mm into the periventricular tissue within 4–48 hours after injection. Radioactivity was localized preferably in particular nuclei, leaving the fiber bundles nearly free of label.In formalin-fixed paraplast-embedded sections the appearance of silver grain clusters was the very characteristic finding representing most probably uptake into presynaptic terminals. Labelling pattern suggests highly selective uptake of 6-OHDA by terminals of noradrenaline and dopamine-containing neurones; also a few single neurones of particular mesencephalic nuclei showed uptake by their nerve cell soma. A specific uptake mechanism for 6-OHDA which is most likely identical with the monoamine pump may explain the well-known selectivity of the pharmacological action of 6-OHDA.Mapping of silver grain clusters and an analysis of the frequency by which they occur in different areas of the brain were performed.  相似文献   

17.
Dendritic cells (DC) are unique in their ability to prime naive T cells and initiate adaptive immunity. In recent years, DC were identified in the inflamed central nervous system (CNS), but their role in the initiation or regulation of the tissue specific immune response is unknown. As shown here, DC isolated from mice with experimental autoimmune encephalomyelitis (EAE) exhibit a maturational phenotype similar to immature bone marrow-derived DC or splenic DC as characterized by intermediate surface MHC class II and low expression of the costimulatory molecule CD80. However, they are unable to prime naive T cells. Moreover, they inhibit T cell proliferation stimulated by mature bone marrow-derived DC. TGFbeta, IL-10 and TRAIL were found to significantly contribute to the CNS-DC-mediated inhibition of allo-T cell proliferation. Thus CNS-DC may be the key responsibles for maintaining immune privilege within the inflamed CNS.  相似文献   

18.
Similarities between the physical structures of avian and mammalian major histocompatibility complex (MHC) class I glycoproteins have been proposed based on comparative alignment of their amino acid sequences. To investigate the physical structure of the chicken class I glycoprotein, we cloned the cDNA representing the BFIV locus of the B21 haplotype. A unique, chimeric class I glycoprotein was constructed by incorporating an epitope tag (FLAG) at the N terminus. Monoclonal antibodies to the FLAG epitope served to monitor cellsurface expression for functional analysis of the BFIV21 class I glycoprotein. The chimeric class I glycoprotein was expressed in target cells using an avian leukosis virus (ALV)-derived retrovirus vector (RCASBP). The presence of the FLAG epitope did not interfere with either alloantibody recognition or cytotoxic T lymphocyte interaction. Functional analysis employing site-directed mutagenesis identified BF amino acid residues forming serologic epitopes as well as residues important in antigen presentation to ALV-induced cytotoxic T lymphocytes. BF residues 78 and 81, corresponding to HLA 79 and 82, form an antibody epitope with a slight effect on ALV antigen presentation, consistent with their predicted orientation based on the HLA-A2 crystal structure. Alignment of the BFIV21 sequence with previously published BFIV sequences revealed polymorphisms at position 34 (HLA 34), a monomorphic residue in HLA and H-2. Residue 34 is located in pocket B and is predicted to contact the main-chain carbon of peptides bound in HLA-A2. A site-directed substitution in BFIV residue 34 dramatically alters ALV antigen presentation by the BFIV21 class I glycoprotein. These data indicate that the physical molecular structure of the chicken MHC class I glycoprotein is similar to HLA.  相似文献   

19.
目的:观察原发性中枢神经系统淋巴瘤(PCNSL)的临床病理、免疫表型及其与EB病毒的关系。方法:搜集25例PCNSL的临床资料并随访,应用单克隆抗体UCHL-1、L26、k、λ胶质纤维酸性蛋白(GFAP)和CS1-4行免疫组织化学染色,EB病毒寡核苷酸探针(EBER1/2)原位杂交,研究其免疫表型和EB病毒感染情况。结果:25例PCNSL均为B细胞淋巴瘤,EBER1/2原位杂交25例中仅2例(8%)出现阳性。结论:本组PCNSL均为B细胞激性。且与EB病毒呈低相关性。  相似文献   

20.
BackgroundCerebrospinal fluid (CSF) testing is a key component for the diagnosis of central nervous system (CNS) infections. Current meningitis and encephalitis management guidelines agree on the need for CSF molecular testing in combination with other direct and indirect biological testing, both in CSF and blood. Multiplex molecular tests have been developed to reduce turnaround times and facilitate the diagnostic approach.ObjectivesWe aim to discuss the role of multiplex molecular panels in the management of CNS infections.SourcesThe MEDLINE database and the grey literature have been searched for relevant articles.ContentNew molecular multiplex panels are being developed to simultaneously detect a large array of neuropathogens in CSF. Although one of these assays has been US Food and Drug Administration-approved, extensive analytical and clinical validation is still missing, and suboptimal performance related issues have been raised. Its use has been associated with decreased costs, reduced length of hospital stay and reduced antiviral therapy administration in retrospective, industry-sponsored studies. The pros and cons of this multiplex syndromic approach are discussed in this narrative review.ImplicationsMolecular multiplex CNS infection diagnosis panels have been developed and present several attractive features, including ease of use and low turnaround time. However, suboptimal analytical performances render these tests difficult to use without additional confirmatory tests. Such panels are not comprehensive nor adapted to all situations, depending on the epidemiological or clinical context. Overall, available data in the literature currently do not support the use of a multiplex PCR panel in clinical routine as a ‘stand-alone’ molecular assay. Except in restricted laboratory capacity settings where such easy-to-use multiplex panels offer the diagnostic means that would otherwise not be available, the stepwise testing approach remains a more rational option. Serological testing both in blood and CSF should not be neglected, but it represents essential complementary tools regarding some neuropathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号