首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A prospective study was undertaken on 204 consecutive patients comparing low flip angle gradient-echo and T1-weighted spin-echo techniques in the MR evaluation of cervical extradural disease. Four patient groups were studied with varying gradient-echo TEs (6 or 13 msec) and flip angles (10 degrees or 60 degrees). Images were evaluated independently for contrast behavior and anatomy, then directly compared for conspicuity of lesions. The FLASH sequences (especially with a 10 degrees flip angle) produced better conspicuity of disease in half the imaging time. T1-weighted spin-echo sequences were more sensitive to marrow changes and intradural disease. The short TE sequence (6 msec) did not produce any diagnostic advantage over the longer TE sequence (13 msec). A fast and sensitive MR examination for cervical extradural disease combines a sagittal T1-weighted spin-echo acquisition with sagittal and axial FLASH 10 degrees sequences.  相似文献   

2.
The authors reviewed their 21/2-year experience with a magnetic resonance (MR) imaging protocol for a 1.5-T MR imager that included T2-weighted fat-suppressed spin-echo, T1-weighted breath-hold gradient-echo, and serial dynamic gadolinium-enhanced T1-weighted gradient-echo imaging to identify histologic types of malignant liver lesions more apparent on T1- than on T2-weighted images. MR images of 212 consecutive patients with malignant liver lesions were reviewed. T2-weighted, T1-weighted, and dynamic contrast-enhanced T1-weighted images were examined separately in a blinded fashion. Seven patients demonstrated liver lesions (lymphoma [two patients] and carcinoid, hepatocellular carcinoma, colon adenocarcinoma, transitional cell carcinoma, and melanoma [one patient each]) on T1-weighted images that were inconspicuous on T2-weighted images. In all cases, the lesions were most conspicuous on T1-weighted images obtained immediately after administration of contrast agent. Histologic confirmation was present for all seven patients. The consistent feature among these lesions was that they were hypovascular, due either to a fibrous stroma or to dense monoclonal cellularity. These results suggest that in some patients with hypovascular primary neoplasms, the lesions may be identified only on T1-weighted images, and that immediate postcontrast T1-weighted images are of particular value in demonstrating lesions.  相似文献   

3.
OBJECTIVE: We prospectively compared the detectability of hepatocellular carcinoma (HCC) arising in cirrhotic livers using dynamic gadolinium-enhanced fast low-angle shot (FLASH), ferumoxides-enhanced T2-weighted turbo spin-echo, and ferumoxides-enhanced T2*-weighted FLASH MR imaging. SUBJECTS AND METHODS: Fifty-three patients with HCC (32 men and 21 women) who were 33-86 years old (mean, 63 years old) were enrolled in a prospective MR study to assess hepatic lesions using both gadopentetate dimeglumine and ferumoxides. Dynamic gadolinium-enhanced imaging was obtained before and 30, 60, and 180 sec after rapid bolus injection of gadopentetate dimeglumine (0.1 mmol/kg). Ferumoxides-enhanced T2-weighted turbo spin-echo imaging and ferumoxides-enhanced T2*-weighted FLASH imaging were performed between 30 min and 2 hr after i.v. infusion of ferumoxides (10 micromol/kg). Images were analyzed qualitatively and quantitatively. A receiver operating characteristic curve study was performed to compare the diagnostic value of gadolinium-enhanced imaging with that of ferumoxides-enhanced imaging for the detection of HCC. RESULTS: Quantitative analysis revealed a significantly higher percentage of signal-intensity loss and higher liver-lesion contrast-to-noise ratio on ferumoxides-enhanced T2*-weighted FLASH imaging than on ferumoxides-enhanced T2-weighted turbo spin-echo imaging. The percentage of signal-intensity loss and liver-lesion contrast-to-noise ratio on ferumoxides-enhanced images was significantly higher in patients with mild liver cirrhosis (Child's class A) than in patients with severe liver cirrhosis (Child's class C). Qualitative analysis showed that dynamic gadolinium-enhanced images revealed significantly higher lesion conspicuity than did ferumoxides-enhanced T2-weighted turbo spin-echo images. According to receiver operating characteristic analysis, dynamic gadolinium-enhanced FLASH imaging achieved the highest sensitivity, and ferumoxides-enhanced T2*-weighted FLASH imaging was the second most sensitive. We found that ferumoxides-enhanced turbo spin-echo imaging was the least valuable technique for revealing HCC lesions. Gadolinium-enhanced imaging revealed more HCC lesions than did ferumoxides-enhanced imaging, particularly for lesions smaller than 2 cm in diameter. CONCLUSION: Ferumoxides-enhanced imaging revealed fewer findings, such as lesion conspicuity of HCCs arising in cirrhotic livers, than did gadolinium-enhanced FLASH imaging.  相似文献   

4.
Jeong YY  Mitchell DG  Holland GA 《Radiology》2001,219(2):455-460
PURPOSE: To evaluate the effect of a gadolinium chelate on T2-weighted breath-hold fast spin-echo magnetic resonance images of focal hepatic lesions. MATERIALS AND METHODS: In 21 patients with focal hepatic lesions, identical T2-weighted breath-hold fast spin-echo images were obtained before and after gadolinium enhancement and were compared regarding lesion-to-liver contrast-to-noise ratio, signal-to-noise ratio, lesion conspicuity, and vascular pulsation artifact. Image review was performed independently, in random order, by two experienced radiologists. RESULTS: For solid lesions, the lesion-to-liver contrast-to-noise ratio on enhanced images was significantly higher (P <.05) than that on nonenhanced images. For nonsolid lesions, however, there was no significant difference (P =.07). For both readers, lesion conspicuity for solid lesions on enhanced images was significantly higher than on nonenhanced images (P <.05). Severity of vascular pulsation artifact was not significantly different. CONCLUSION: Solid-lesion contrast on T2-weighted breath-hold fast spin-echo images improves after administration of a gadolinium chelate. These images should be obtained after, rather than before, gadolinium enhancement.  相似文献   

5.
A method called segmented turboFLASH imaging allows high-resolution, multisection, short-inversion-time (TI) inversion-recovery (STIR), T1- or T2-weighted magnetic resonance (MR) studies of the liver to be completed within a breath-hold interval. The method was applied in a phantom and in 19 patients with hepatic lesions. Sequence comparisons were performed among segmented turboFLASH, single-shot turboFLASH, T1-weighted gradient-echo with ultrashort echo time, and T2-weighted spin-echo (SE) techniques. Signal from fat and liver could be nulled with the segmented turboFLASH method, with TIs of 10 and 300 msec, respectively; signal from these tissues could not be eliminated with the single-shot approach. Signal-difference-to-noise ratios and contrast for the best segmented sequences were comparable with those of the best T2-weighted SE and T1-weighted gradient-echo techniques. It is concluded that it is feasible to obtain breath-hold images with arbitrary tissue contrast by means of segmented turboFLASH imaging. The method may prove helpful for the detection and characterization of hepatic lesions and will likely have applications to other anatomic regions such as the chest and pelvis.  相似文献   

6.
PURPOSETo compare lesion enhancement after injection of gadopentetate dimeglumine on spin-echo and gradient-echo T1-weighted images.METHODSA total of 48 contrast-enhancing intracranial lesions were evaluated using a spin-echo and two gradient-echo T1-weighted pulse sequences. Percent contrast, contrast-to-noise, and signal-to-noise measurements were made on the spin-echo T1-weighted, three-dimensional gradient-echo, and multiplanar gradient-echo sequences.RESULTSThe measurements were somewhat different for the following categories of lesions: extraaxial, intraaxial with edema, and intraaxial without edema. The latter group provided the greatest diagnostic challenge: three of 19 such lesions 1 cm in size or smaller could not be identified on three-dimensional gradient-echo images, and one could not be identified on multi-planar gradient-echo images. The spin-echo T1-weighted sequence demonstrated significantly higher percent contrast (P < .05) and greater contrast to noise (P < .03) than either gradient-echo sequence for these small intraaxial lesions without edema. For extraaxial and intraaxial lesions with edema, percent C was similar for spin-echo T1-weighted and three-dimensional gradient-echo images, while contrast to noise was greater for spin-echo T1-weighted images. This reflected greater tissue noise with gradient-echo sequences.CONCLUSIONThe T1-weighted spin-echo sequence was preferred for detecting the full spectrum of contrast-enhancing lesions of the central nervous system.  相似文献   

7.
Multisection FLASH: method for breath-hold MR imaging of the entire liver.   总被引:3,自引:0,他引:3  
One hundred ten patients with various focal liver lesions were imaged with a multisection fast low-angle shot (FLASH) gradient-echo sequence with an echo time of 4.6 msec. This sequence enabled the acquisition of 19 T1-weighted magnetic resonance (MR) images of the liver within a single 26-second breath hold. Patients were also examined with standard T1- and T2-weighted spin-echo (SE) sequences. The multisection FLASH sequence provided significantly higher (P less than .01) liver-spleen contrast, liver-spleen signal-difference-to-noise ratio (SD/N), liver-tumor contrast, and liver-tumor SD/N than the T1-weighted SE sequence but lower values than the T2-weighted SE sequence. Motion artifacts were reduced with the multisection FLASH sequence compared with both SE sequences (P less than .01). The overall image quality of the multisection FLASH images was similar to that of the T1-weighted SE images and superior to that of T2-weighted SE images. The most important characteristics of the multisection FLASH technique in MR imaging of the liver are the high T1 contrast, the prevention of motion artifacts, and a dramatic reduction in imaging time.  相似文献   

8.
PURPOSE: To prospectively determine the accuracy of differentiating benign focal nodular hyperplasia (FNH) from hepatic adenoma (HA) and liver adenomatosis (LA) by using gadobenate dimeglumine-enhanced magnetic resonance (MR) imaging. MATERIALS AND METHODS: The ethics committee at each center approved the study, and all patients provided informed consent. Seventy-three patients with confirmed FNH and 35 patients with confirmed HA (n = 27) or LA (n = 8) underwent MR imaging before (T2-weighted half-Fourier rapid acquisition with relaxation enhancement or T2-weighted fast spin-echo and T1-weighted gradient-echo [GRE] sequences) and at 25-30 seconds (arterial phase), 70-90 seconds (portal venous phase), 3-5 minutes (equilibrium phase), and 1-3 hours (delayed phase) after (T1-weighted GRE sequences only, with or without fat suppression) bolus administration of 0.1 mmol per kilogram of body weight gadobenate dimeglumine. The enhancement of 235 lesions (128 FNH, 32 HA, and 75 LA lesions) relative to the normal liver parenchyma was assessed. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and overall accuracy for the differentiation of FNH from HA and LA were determined. RESULTS: Hyper- and isointensity on T2-weighted and iso- and hypointensity on T1-weighted GRE images were noted for 177 (88.9%) of 199 lesions visible on unenhanced images. On dynamic phase images after contrast material administration, 231 (98.3%) of 235 lesions showed rapid strong enhancement during the arterial phase and appeared hyper- to isointense during portal venous and equilibrium phases. Accurate differentiation of FNH from HA and LA was not possible on the basis of precontrast or dynamic phase images alone. At 1-3 hours after contrast material enhancement, 124 (96.9%) of 128 FNHs appeared hyper- or isointense, while 107 (100%) HA and LA lesions appeared hypointense. The sensitivity, specificity, PPV, NPV, and overall accuracy for the differentiation of FNH from HA and LA were 96.9%, 100%, 100%, 96.4%, and 98.3%, respectively. CONCLUSION: Accurate differentiation of FNH from HA and LA is achievable on delayed T1-weighted GRE images after administration of gadobenate dimeglumine.  相似文献   

9.
This study was undertaken to determine whether phased array breath-hold T1- and T2-weighted sequences can replace non-breath-hold spin echo (SE) sequences in the imaging of focal liver lesions by comparing overall image quality, liver-lesion contrast, and artifact. Both breath-hold and non-breath-hold T1-weighted and T2-weighted imagings of focal liver lesions were prospectively compared in 120 patients with suspected focal liver lesions imaged at 1.5 T with use of a body phased array multicoil. Breath-hold images were acquired with T1-weighted fast low-angle shot (FLASH) and T2-weighted turbo spin echo (TSE) sequences, and non-breath-hold images were made with conventional T1- and T2-weighted SE sequences. Qualitative image analysis was done by three blinded readers, and quantitative analysis was done. The highest signal-to-noise ratios were obtained with breath-hold T1-weighted FLASH sequence. The signal-to-noise ratios of breath-hold T2-weighted TSE sequence were slightly inferior to those of non-breath-hold SE sequence. Both T1-weighted and T2-weighted breath-hold sequences had less image artifact. Overall image quality of breath-hold sequences was better than that of non-breath-hold sequences for both T1- and T2-weighted sequences (P < .01). The tissue contrast of T1-weighted FLASH sequence was superior to that of SE sequence (P < .01). On T2-weighted imaging, tissue contrast of solid lesions was better on conventional SE sequence than that on breath-hold TSE sequence (P < .01). Respiratory ghost artifact was less prominent on T1-weighted FLASH sequence, although this artifact was occasionally seen on breath-hold T2-weighted TSE sequence. In a state-of-art MR unit with use of a phased array multicoil, conventional T1-weighted can be replaced by breath-hold sequences. On T2-weighted imaging, because solid tumor-liver contrast on breath-hold TSE imaging is inferior to that on non-breath-hold SE image, breath-hold imaging may not replace conventional non-breath-hold T2-weighted SE sequence.  相似文献   

10.
The aim of the study was to find the fast magnetic resonance imaging (MRI) sequence with the best conspicuity of pancreatic lesions at 1.0 T and 1.5 T. A total of 51 patients were studied. At 1.0 T, 22 patients with verified malignant pancreatic lesions were studied using the T1-weighted breath-hold spoiled Gradient Echo 2D FLASH(75) or FLASH(80) sequences, both non-enhanced and enhanced with gadolinium. The relative signal intensity difference (SIDR) between lesion and pancreas was measured. At 1.5 T, 20 patients with primary malignant lesions of the pancreas, and nine patients with 13 benign cystic lesions were examined with the breath-hold T2-weighted TrueFISP, HASTE, T1-weighted 2D FLASH(80) and FLASH(50) fat saturation sequences, the latter also enhanced. The signal intensity (SI) values of the pancreas and lesions as well as the pancreatic standard deviation (S.D.) were assessed, and the contrast-to-noise ratio (C/N) was determined. Statistical significances were calculated using an analysis of variance. No statistically significant difference between the sequences used in the conspicuity of cancer was found, either at 1.0 T or at 1.5 T. At 1.5 T, the T2-weighted TrueFISP and HASTE sequences could differentiate benign, cystic lesions from malignant lesions.  相似文献   

11.
The purpose of this study was to evaluate the value of the respiratory triggered turbo spin-echo (TSE) technique for T2-weighted MRI of liver lesions. Fifty-nine patients (32 men, 27 women; mean age, 63.3 years) with focal hepatic lesions were prospectively studied with MRI at 1.5 T with use of a body phased array coil. In the first 15 patients, breath-hold TSE, respiratory triggered TSE, and conventional nonrespiratory triggered TSE T2-weighted imaging were compared. Because nonrespiratory triggered TSE imaging was significantly inferior (P < .01) to breath-hold or respiratory triggered images, breath-hold and respiratory triggered TSE T2-weighted images were compared in the remaining 44 patients. Images were analyzed quantitatively by measuring the liver signal-to-noise ratio and the lesion-liver and spleen-liver contrast-to-noise ratios and qualitatively by evaluating the lesion conspicuity, liver parenchymal homogeneity, and sharpness of intrahepatic vessels. The imaging time was 26 seconds for breath-hold TSE imaging, 49 to 219 seconds (mean, 149 seconds) for the respiratory triggered TSE imaging, and 79 to 379 seconds (mean, 239 seconds) for the nonrespiratory triggered TSE imaging. Quantitatively, the signal-to-noise ratio of the liver for breath-hold imaging was comparable to that for respiratory triggered imaging. The lesion-liver and liver-spleen contrast-to-noise ratios for the respiratory triggered images were greater by 37% and 39%, respectively, than for the breath-hold T2-weighted TSE images. Qualitatively, the respiratory triggered images showed lower frequency of image artifact, better lesion conspicuity, and greatly superior depiction of intrahepatic structures compared with the breath-hold T2-weighted TSE images. The respiratory triggered T2-weighted TSE technique provides better quality liver images than the breath-hold TSE technique or nonrespiratory triggered technique within a reasonable acquisition time.  相似文献   

12.
Nonenhanced and gadolinium-enhanced fat-suppressed spin-echo and breath-hold fast low-angle shot (FLASH) magnetic resonance (MR) imaging techniques were compared with iodine contrast material-enhanced computed tomography (CT) for the detection and characterization of renal masses. MR studies included T1-weighted fat-suppressed spin-echo (T1FS) and FLASH images followed by rapid injection of gadopentetate dimeglumine and a repeated FLASH image obtained at 1 second, a T1FS image at 30 seconds, and a FLASH image at 10 minutes. Of 38 patients, 17 had renal cysts, 18 had solid tumors, two had cortical scarring, and one had a hypertrophied column of Bertin. With contrast-enhanced T1FS, contrast-enhanced FLASH, and CT images, 114, 110, and 109 lesions, respectively, were detected. With MR imaging and CT, cysts smaller than 5 mm in diameter and solid tumors as small as 1 cm in diameter were detected. With combined contrast-enhanced FLASH and T1FS images, 112 lesions were correctly characterized as cystic or solid; with nonenhanced T1FS images, 110; with nonenhanced FLASH images, 107; and with nonenhanced CT, 103.  相似文献   

13.
Incremental flip angle (IFA) snapshot fast low angle shot (FLASH) is a new modification of inversion recovery snapshot FLASH MR imaging. The method changes the flip angle incrementally from low to high during data acquisition and was applied in the evaluation of 16 focal hepatic lesions in 10 patients. Sequence comparisons were performed with a fixed flip angle inversion recovery snapshot FLASH sequence (standard), a T1- and T2-weighted spin-echo (SE) sequence, and a T1-weighted breath-hold FLASH sequence. Whereas snapshot FLASH images in both pulse sequences were free from physiological motion artifacts, SE and FLASH images showed respiratory artifacts in some patients. Quantitative analysis of IFA snapshot FLASH images at low hepatic and low lesion signal revealed both superior lesion-liver signal-difference-to-noise ratio (SD/N) and superior contrast compared with standard snapshot FLASH without additional artifacts. Unless motion artifacts were evident, SE and FLASH images showed a higher anatomic resolution but lower SD/N and lower contrast than IFA snapshot images. Because of its superior SD/N and contrast, IFA snapshot FLASH will likely widen the application of fast MR imaging techniques.  相似文献   

14.
The purpose of our study was to evaluate the potential value of ferumoxide-enhanced T1-weighted magnetic resonance (MR) imaging for tissue characterization of focal liver lesions when combined with T2-weighted sequences. Images were acquired within 30 minutes after the end of ferumoxide administration, when ferrite particles were not totally cleared from the intravascular compartment. Thirty-eight patients with 47 focal liver lesions underwent T1-weighted gradient-echo (TR/TE 150/4.1 msec) and T2-weighted fast spin-echo (3180-8638/90 msec) MR imaging at 1.5 T before and after intravenous administration of ferumoxides (10 micromol/kg body weight). A qualitative and quantitative analysis was performed. During the early phase after infusion of ferumoxide, blood vessels showed hypersignal intensity on T1-weighted fast low-angle shot (FLASH) images, while liver signal decreased. Hemangiomas showed both homogeneous and inhomogeneous enhancement patterns, and liver metastasis most typically showed ring enhancement. Hypervascular tumors (hepatocellular carcinomas and focal nodular hyperplasias) showed a slight degree of homogeneous enhancement. Quantitatively, the degree of enhancement and lesion-to-liver contrast on ferumoxide-enhanced images were significantly different among these tumors. Our results demonstrate that distinct enhancement patterns obtained on ferumoxide-enhanced T1-weighted MR imaging improve tissue characterization of focal liver lesions when combined with T2-weighted images.  相似文献   

15.
PURPOSE: To evaluate the efficacy of ferucarbotran in T2-weighted (T2W) fast spin-echo (FSE) and T2*W gradient-echo (GRE) sequences for characterizing focal liver lesions. MATERIALS AND METHODS: In 68 patients, 46 malignant and 22 benign focal liver lesions were evaluated. Precontrast (NCE) T2W FSE images and contrast-enhanced (CE) T2W FSE and T2*W GRE images were obtained on a 1.5T MR system. Based on signal intensity (SI) measurements in focal lesions and liver parenchyma, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated for all sequences. The percentage of SI loss (PSIL) in focal lesions after contrast agent (CA) application was calculated for the T2W FSE sequence. Qualitative analyses were performed to assess image quality and lesion conspicuity obtained with the CE-T2W FSE and CE-T2*W GRE sequences. RESULTS: The mean PSIL was higher in solid benign lesions than in malignant lesions (39.6% vs. 3.2%, P<0.05). With a threshold PSIL of 25%, the sensitivity and specificity for characterizing malignant lesions were 97.8% and 92.9%, respectively. The mean CNR of the malignant lesions was higher in the CE-T2*W sequence than in the CE- and NCE-T2W FSE sequences (29.9 vs. 22.7 (P<0.01) vs. 12.8 (P<0.01)). CE-T2*W images showed a superior image quality and lesion conspicuity (P<0.05) compared to the CE-T2W FSE sequence. CONCLUSION: The PSIL can be an accurate tool for characterizing benign and malignant lesions. The addition of a CE-T2*W GRE sequence is helpful for the detection and characterization of malignant lesions.  相似文献   

16.
To compare the clinical usefulness of T2-weighted breath-hold sequences for imaging the liver, 33 patients with 97 focal hepatic lesions were studied with a 1.0-T scanner by using T2-weighted breath-hold turbo spin-echo (SE) sequences and T2-weighted breath-hold half-Fourier single-shot turbo SE (HASTE) sequences with and without fat suppression. Images were quantitatively analyzed for liver signal-to-noise ratio (SNR) and lesion-to-liver contrast-to-noise ratios (CNR). Qualitative analysis was performed for lesion conspicuity, motion artifacts, and anatomic sharpness of extrahepatic structures. Breath-hold turbo SE imaging with fat suppression showed the highest CNR for cystic lesions and the best lesion conspicuity for cystic and solid lesions among the four sequences. For solid lesions, there was no significant difference of lesion-to-liver CNR between them. HASTE sequence was superior to turbo SE sequences in terms of motion artifacts; however, the usefulness for evaluating focal hepatic lesions was limited compared with turbo SE sequence with fat suppression. Addition of fat suppression was not helpful for HASTE imaging because of decreased lesion conspicuity and extrahepatic details without the advantage of reducing motion artifacts. This study suggests that turbo SE sequence with fat suppression is most useful for breath-hold T2-weighted liver imaging at 1.0 T. Addition of imaging without fat suppression can be considered for evaluating extrahepatic structures. HASTE sequence may have a role for imaging uncooperative patients due to absence of motion artifacts.  相似文献   

17.
Dynamic contrast medium-enhanced computed tomography (CT), T2-weighted fat-suppressed spin-echo (T2FS) magnetic resonance (MR) imaging, and breath-hold T1-weighted fast low-angle shot (FLASH) MR imaging before and after dynamic gadopentetate dimeglumine injection were compared in 73 patients with clinically suspected liver disease. Observer confidence for presence of focal lesions was determined by using receiver operating characteristic analysis. For all MR images, hepatic lesion-liver signal-to-noise ratios were evaluated qualitatively. and resolution and presence of artifacts were evaluated qualitatively. Lesion detection was greatest with T2FS (n = 272) and enhanced FLASH (n = 244) and was statistically greater with both of these than with CT (n = 220) and FLASH (n = 219) (P less than .03). Correct lesion characterization was greatest with enhanced FLASH (n = 236) (P less than .01), followed by CT (n = 199), FLASH (n = 164), and T2FS (n = 144). Enhanced FLASH was particularly successful in characterization of 5-mm- to 1.5-cm-diameter lesions as cystic or solid.  相似文献   

18.
OBJECTIVE: Volumetric interpolated breath-hold examination (VIBE) is a relatively new gradient-echo MR sequence that is capable of shortening acquisition times and is reported to be useful in abdominal and brain imaging. The purpose of this study was to evaluate the feasibility of using VIBE images as a substitute for conventional postcontrast spin-echo T1-weighted images in the assessment of head and neck tumors. SUBJECTS AND METHODS: The subjects were 33 consecutive patients referred for MRI for preoperative assessment of head and neck tumors. After administration of gadodiamide hydrate, images were obtained using postcontrast fat-saturated VIBE sequence for a 35-sec acquisition time and then a postcontrast fat-saturated spin-echo T1-weighted sequence for a 269-sec acquisition time ( approximately 4.5 min). Quantitative comparisons of the two methods were made by calculating signal-to-noise and contrast-to-noise ratios for both methods, and qualitative comparisons were made on the basis of the scoring of three independent reviewers concerning image quality and tumor conspicuity. RESULTS: No significant difference was detected quantitatively between the two sequences. However, in qualitative assessments, the degree of image degradation by artifacts was significantly smaller for VIBE images than for spin-echo T1-weighted images (p = 0.029). CONCLUSION: In preoperative evaluations of head and neck tumors, the postcontrast VIBE sequence is capable of decreasing acquisition time without degrading image quality or tumor conspicuity; thus, it is an acceptable alternative to postcontrast spin-echo T1-weighted imaging.  相似文献   

19.
PURPOSE: The MRI techniques which have contributed to increasing utilization of MRI for abdominal imaging are described and recent advances addressed. METHODS: For breath-hold examinations of the abdomen, two basic techniques are required: array coil technology and fast and ultrafast pulse sequences providing T1 and T2 contrast. RESULTS: Circular polarized array coils render high signal-to-noise ratios (SNR) within large imaging volumes. With fast gradient-echo sequences the liver can be scanned with or without fat saturation within one breath-hold. When adequate parameters are selected, T2-weighted fast (turbo) spin-echo sequences allow high contrast between normal liver tissue and focal liver lesions, even if breath-hold acquisition is applied. Moreover, good soft tissue contrast can also be achieved with ultrafast single-shot sequences. Based on this sequence type, MRCP with a 512 matrix could be performed. The "TRUE FISP" allows for high resolution visualisation of vessels without contrast media. Three-dimensional T1-weighted sequences allow for scanning the upper abdomen with a slice thickness of 3 mm within one breath-hold. Diffusion-weighted sequences contribute to the characterisation of focal liver lesions. DISCUSSION: Modern MRI technology including phase-array coils and high-performance gradient systems made it possible to perform all examinations in breath-hold techniques, reducing motion artifacts.  相似文献   

20.
PURPOSEWe developed and evaluated clinically T1-weighted three-dimensional gradient-echo magnetization transfer (MT) sequences for contrast-enhanced MR imaging of the brain.METHODSA short-repetition-time, radio frequency-spoiled, 3-D sequence was developed with a 10-millisecond MT pulse at high MT power and narrow MT pulse-frequency offset, and the enhancing lesion-to-normal white matter background (L/B) and the contrast-to-noise (C/N) ratios on these images were compared with those on T1-weighted spin-echo images and on non-MT 3-D gradient-echo images in a prospective study of 45 patients with 62 enhancing lesions. In the 24 patients who had intracranial metastatic disease, the number of lesions was counted and compared on the three types of images.RESULTSThe MT ratio of normal callosal white matter was 55% on the MT 3-D gradient-echo sequences. The L/B and C/N on the MT 3-D gradient-echo images were more than double those on the 3-D gradient-echo images, and were significantly greater than those on the T1-weighted spin-echo images. In patients with metastatic disease, the MT 3-D gradient-echo images showed significantly more lesions than did the T1-weighted spin-echo or 3-D gradient-echo images.CONCLUSIONMT 3-D gradient-echo MR imaging improves the contrast between enhancing lesion and background white matter over that obtained with conventional T1-weighted 3-D gradient-echo and spin-echo imaging. MT 3-D gradient-echo imaging provides practical sampling, image coverage, and spatial resolution, attributes that may be advantageous over MT T1-weighted spin-echo techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号