首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Renal handling of postprandial and intravenously administered gastrin was investigated in anaesthetised pigs. The fractional extraction of postprandial carboxyamidated and glycine-extended gastrin in the kidneys was 0.21 ± 0.01 and 0.16 ± 0.02, but the respective urinary clearance comprised only 0.57 ± 0.03 and 0.44 ± 0.05% of the GFR (P < 0.02). The respective total body clearance of carboxyamidated and glycine-extended gastrin-17 (gastrin-17 and gastrin-17Gly) during continuous infusion was 22.9 ± 1.5 and 19.6 ± 1.4 mL kg?1 min?1 (NS), and the renal fractional extraction of the peptides was 0.31 ± 0.03 and 0.29 ± 0.05, respectively. The kidneys accounted for 8% of total body clearance of gastrin-17. Renal filtration rate of gastrin-17 exceeded renal extraction rate (9.739 ± 0.487 vs. 6.407 ± 0.321 pmol min?1). Urinary clearance of gastrin-17 and gastrin-17Gly amounted only 0.91 ± 0.16 and 0.13 ± 0.03%, respectively, of the GFR (P < 0.01), but urinary excretion rate correlated with the filtered amount of the peptides (r = 0.93, P < 0.01). Neither was a renal plasma threshold recorded nor was a Tm value for tubular uptake or degradation of gastrin achieved in spite of supraphysiological plasma levels of the peptides. The results indicate that filtered gastrin is almost completely removed in the renal tubules, primary by metabolism although part of the absorbed peptides may be returned to the circulation in intact form. The process for uptake or metabolism has a high capacity but varies with the molecular form of gastrin.  相似文献   

2.
The renal clearance of creatinine was measured following orogastric administration in conscious dogs. Values of creatinine clearance were compared with simul taneously determined values of inulin clearance, when urine volume, glomerular filtration rate and volume status were acutely altered by a variety of experimental manoeuvres. At urine volumes greater than 20 μl. min?1 · kg?1, creatinine clearance was not significantly different from inulin clearance. At low urine volumes there was some evidence of creatinine reabsorption. It is concluded that the bolus creatinine technique provides reliable estimates of glomerular filtration rate and is particularly applicable to long-term studies in conscious dogs.  相似文献   

3.
Chemical renal medullectomy with 2-bromo-ethylamine hydrobromide (BEA) has been used to study the importance of the renal medulla in blood pressure regulation. However, conclusive evidence as to whether BEA treatment affects the glomerular barrier is lacking. In the present study, the effects of BEA upon glomerular permselectivity for albumin were studied using isolated kidneys (IPK) perfused at a low temperature (8 °C) to inhibit tubular reabsorption of proteins. Sixteen WKY rats (WB) received an i.v. injection of BEA (150 mg kg-1) while 10 rats served as controls (WC). Volume balance, urinary osmolality and creatinine clearance (GFR) were measured in metabolic cages. Acute paired experiments (n=9) were performed 5–7 weeks after BEA. The rats were anaesthetized and the total in vivo albumin excretion was recorded. The kidneys were then isolated and perfused for measurements of inulin clearance (GFR) and fractional albumin clearance without tubular reabsorption of protein. The nine BEA treated rats showed polyuria and hypoosmotic urine. In vivo GFR was lower in the BEA treated groups when measured with creatinine clearance (459±22 vs. 213±41 μL min-1 100 g-1 body wt, P<0.001), while GFR was not significantly changed in the IPK (WC=135±27, WB=92±14 μL min-1 100 g-1 body wt, n.s.) when perfused at identical pressures. The fractional albumin clearance was increased three times in the BEA group (WB=9.6±3.4J, P<0.05). Moreover, albumin excretion in vivo was similar in the two groups despite low GFR in the BEA group. We conclude that BEA treatment affects glomerular permselectivity for albumin.  相似文献   

4.

Aim

Renal medullary hypoperfusion and hypoxia precede acute kidney injury (AKI) in ovine sepsis. Oxidative/nitrosative stress, inflammation, and impaired nitric oxide generation may contribute to such pathophysiology. We tested whether the antioxidant and anti-inflammatory drug, tempol, may modify these responses.

Methods

Following unilateral nephrectomy, we inserted renal arterial catheters and laser-Doppler/oxygen-sensing probes in the renal cortex and medulla. Noanesthetized sheep were administered intravenous (IV) Escherichia coli and, at sepsis onset, IV tempol (IVT; 30 mg kg−1 h−1), renal arterial tempol (RAT; 3 mg kg−1 h−1), or vehicle.

Results

Septic sheep receiving vehicle developed renal medullary hypoperfusion (76 ± 16% decrease in perfusion), hypoxia (70 ± 13% decrease in oxygenation), and AKI (87 ± 8% decrease in creatinine clearance) with similar changes during IVT. However, RAT preserved medullary perfusion (1072 ± 307 to 1005 ± 271 units), oxygenation (46 ± 8 to 43 ± 6 mmHg), and creatinine clearance (61 ± 10 to 66 ± 20 mL min−1). Plasma, renal medullary, and cortical tissue malonaldehyde and medullary 3-nitrotyrosine decreased significantly with sepsis but were unaffected by IVT or RAT. Consistent with decreased oxidative/nitrosative stress markers, cortical and medullary nuclear factor-erythroid-related factor-2 increased significantly and were unaffected by IVT or RAT. However, RAT prevented sepsis-induced overexpression of cortical tissue tumor necrosis factor alpha (TNF-α; 51 ± 16% decrease; p = 0.003) and medullary Thr-495 phosphorylation of endothelial nitric oxide synthase (eNOS; 63 ± 18% decrease; p = 0.015).

Conclusions

In ovine Gram-negative sepsis, renal arterial infusion of tempol prevented renal medullary hypoperfusion and hypoxia and AKI and decreased TNF-α expression and uncoupling of eNOS. However, it did not affect markers of oxidative/nitrosative stress, which were significantly decreased by Gram-negative sepsis.  相似文献   

5.
Aims: The study was designed to determine (i) whether the effects of angiotensin III (AngIII) are similar to those of angiotensin II (AngII) at identical plasma concentrations and (ii) whether AngIII operates solely through AT1‐ receptors. Methods: Angiotensin II (3 pmol kg?1 min?1–3.1 ng kg?1 min?1) or AngIII (15 pmol kg?1 min?1–14 ng kg?1 min?1) was infused i.v. during acute inhibition of angiotensin converting enzyme (enalaprilate; 2 mg kg?1) and of aldosterone (canrenoate; 6 mg kg?1 plus 1 mg kg?1 h?1). Arterial plasma concentrations of angiotensins were determined by radioimmunoassay using a cross‐reacting antibody to AngII. During ongoing peptide infusion, candesartan (2 mg kg?1) was administered to block the AT1‐receptors. Results: Angiotensin immunoactivity in plasma increased to 60 ± 10 pg mL?1 during infusion of AngII or infusion of AngIII. AngII significantly increased mean arterial blood pressure (+14 ± 4 mmHg) and plasma aldosterone by 79% (+149 ± 17 pg mL?1) and reduced plasma renin activity and sodium excretion (?41 ± 16 mIU L?1 and ?46 ± 6 μmol min?1 respectively). AngIII mimicked these effects and the magnitude of AngIII responses was statistically indistinguishable from those of AngII. All measured effects of both peptides were blocked by candesartan. Conclusion: At the present arterial plasma concentrations, AngIII is equipotent to AngII with regard to effects on blood pressure, aldosterone secretion and renal functions, and these AngIII effects are mediated through AT1‐ receptors. The metabolic clearance rate of AngIII is five times that of AngII.  相似文献   

6.
Adenosine, an endogenous vasodilator, induces a cerebral vasodilation at hypotensive infusion rates in anaesthetized humans. At lower doses (< 100 μg kg?1 min?1), adenosine has shown to have an analgesic effect. This study was undertaken to investigate whether a low dose, causing tolerable symptoms of peripheral vasodilation affects the global cerebral blood flow (CBF). In nine healthy volunteers CBF measurements were made using axial magnetic resonance (MR) phase images of the internal carotid and vertebral arteries at the level of C2–3. Quantitative assessment of CBF was also obtained with positron emission tomography (PET) technique, using intravenous bolus []> 15O]butanol as tracer in four of the subject at another occasion. During normoventilation (5.4 ± 0.2 kPa, mean ± s.e.m.), the cerebral blood flow measured by magnetic resonance imaging technique, as the sum of the flows in both carotid and vertebral arteries, was 863 ± 66 mL min?1, equivalent to about 64 ± 5 mL 100 g?1 min?1. The cerebral blood flow measured by positron emmission tomography technique, was 59 ± 4 mL 100 g?1 min?1. All subjects had a normal CO2 reactivity. When adenosine was infused (84 ± 7 μg kg?1 min?1) the cerebral blood flow, measured by magnetic resonance imaging was 60 ± 5 mL 100 g?1 min?1. The end tidal CO2 level was slightly lower (0.2 ± 0.1 kPa) during adenosine infusion than during normoventilation. In the subgroup there was no difference in cerebral blood flow as measured by magnetic resonance imaging or positron emission tomography. In conclusion, adenosine infusion at tolerable doses in healthy volunteers does not affect global cerebral blood flow in unanaesthetized humans.  相似文献   

7.
To investigate the effect of endothelin on renin release, experiments were performed in barbiturate-anaesthetized dogs with denervated kidneys. Intrarenal infusion of endothelin (1 ng min-1kg-1body wt) reduced renal blood flow (RBF) from 145 ± 10 ml min-1to 98 ± 9 ml min-1without altering renin release (1 ± 1 μg angiotensin I (AI) min-1). Renin release was then increased either by renal arterial constriction or ureteral occlusion. When renal arterial pressure was reduced to 50 mmHg, renin release averaged 79 ± 20 μg AI min-1in six dogs and fell significantly to 24 ± 6 μg AI min-1during endothelin infusion. During ureteral occlusion the inhibitory effect of endothelin on renin release either during inhibition of β-adrenergic activity with propranolol or after inhibiting prostaglandin synthesis by indomethacin during intrarenal infusion of isoproterenol was examined. After propranolol administration ureteral occlusion increased renin release from 5 ± 2 μg AI min-1to 38 ± 12 μg AI min-1in six dogs. Subsequent intrarenal endothelin infusion (1 ng min-1kg-1body wt) during maintained ureteral occlusion reduced renin release to 10 ± 3 μg AI min-1. In six other dogs prostaglandin synthesis was inhibited by indomethacin. Subsequent infusion of isoproterenol (0.2 μg min-1kg-1body wt) to stimulate β-adrenoceptor activity increased renin release from 13 ± 4 μg AI min-1to 68 ± 8 μg AI min-1during ureteral occlusion. Intrarenal endothelin infusion (1 ng min-1kg-1body wt) reduced renin release to 22 ± 3 μg AI min-1during continuous isoproterenol infusion and ureteral occlusion. Hence endothelin inhibits renin release induced by renal arterial constriction or ureteral occlusion. Similar inhibitory effects whether renin release was raised by increasing prostaglandin synthesis or by stimulating β-adrenergic activity suggest a direct effect of endothelin on the juxtaglomerular cells.  相似文献   

8.
Cardiovascular and renal responses to a step-up infusion of endothelin-1 (ET-1) (1, 5, and 15 ng kg-1 min-1) were investigated in conscious dogs. In addition, the disappearance of ET-l in arterial and central venous plasma after an infusion of 10 ng kg-1 min-1 was quantified, and the effects of vasopressin (AVP, 10 ng kg-1 min-1) and angiotensin II (AII, 2, 5, and 10 ng kg-1 min-1) on plasma ET-1 were investigated. The step-up infusion of ET-1 increased the plasma level from 3.6 ± 0.3 to 243 ± 23 pg ml-1. Concomitantly, arterial blood pressure increased and heart rate (HR) decreased dose-dependently. Diuresis, sodium, and potassium excretion did not change significantly. However, free water clearance increased during the infusion. Clearance of creatinine and excretion of urea decreased (39 ± 4 to 29 ± 3 ml min-1 and 87 ± 16 to 71 ± 14 μmol min-1, respectively). Decay curves for ET-1 in venous and arterial plasma were identical, and initial t½ was 1.1 ± 0.1 min. Vasopressin increased arterial blood pressure (107 ± 4 to 136 ± 3 mmHg) beyond the infusion period and increased plasma ET-1 (85%). An equipressor dose of AII tended to decrease plasma ET-1. It is concluded that the lung is apparently not important in the removal of ET-1, that the disappearance of ET-1 follows a complex pattern, and vasopressin – in contrast to angiotensin II – is able to increase the plasma concentration of ET-1. The latter may suggest that ET-1 is involved in the prolonged pressor action of AVP observed.  相似文献   

9.
Nitric oxide plays an important role in the regulation of basal renal blood flow. This study was performed to examine whether selective inhibiti± of renal nitric oxide synthesis affects renin release in vivo. Accordingly, in six barbiturate-anaesthetized dogs renin release was examined before and after intrarenal infusion of the selective inhibitor of nitric oxide synthesis, NG-nitro-l -arginine (NOARG). NOARG was infused into the renal artery to yield a renal arterial blood concentration of 0.4 μmol ml-1. NOARG did not change systemic arterial blood pressure and glomerular filtration rate, but reduced basal renal blood flow by 26 ± 2%. Urine flow, sodium and potassium excretion were reduced after inhibition of renal nitric oxide synthesis. Basal renin release (3 ± 2 μg AI min-1) was not altered by NOARG infusion (1 ± 1 μg AI min-1). To stimulate renin release the renal artery was constricted to a renal perfusion pressure of 50 mmHg. At this perfusion pressure infusion of NOARG reduced renin release significantly from 48 ± 11 μg AI min-1to 14 ± 4 μg AI min-1. In conclusion, inhibition of renal nitric oxide synthesis reduces basal renal blood flow and reduces renin release stimulated by renal arterial constriction. These findings indicate that renal nitric oxide modulates both renal blood flow and renin release in vivo.  相似文献   

10.
Aim: To investigate in vivo effects of P2X receptor activation on sodium and water excretion in urine. Methods: The clearance experiments were carried out in anaesthetized rats during intravenous infusion (2 μmol kg?1 + 20 nmol (kg min)?1, v = 40 μL min?1) of P2X receptors agonists: α,β‐methylene ATP (α,β‐meATP) and β,γ‐methylene ATP (β,γ‐meATP). Cortical blood flow (CBF) was estimated by laser Doppler flux during intrarenal artery infusion of β,γ‐meATP (20 nmol (kg min)?1, v = 2 μL min?1). Influence of α,β‐meATP and β,γ‐meATP on the activity of Na‐K‐ATPase was investigated in isolated proximal tubules. Results: Intravenous infusion of β,γ‐meATP resulted in a marked, progressively increasing diuresis and this effect was accompanied by a progressive increase in the sodium excretion rate. The glomerular filtration rate was unaffected. The effects of β,γ‐meATP were abolished by P2 receptor antagonist PPADS (70 nmol (kg min)?1). CBF increased by 16 ± 2% during renal artery infusion of β,γ‐meATP. Furthermore, α,β‐meATP and β,γ‐meATP increased 1.5‐fold lithium clearance (CLi). Sodium excretion, expressed as a fraction of the distal delivery (CNaCLi?1), increased 1.5‐fold during infusion of α,β‐meATP or β,γ‐meATP. Both agonists at 10?6 m produced a statistical significant decrement in the ouabain‐sensitive ATPase activity about 16–20% and these effects were blocked in the presence of PPADS. Conclusion: Activation of P2X receptors increased renal sodium and water excretion. Mechanistically, P2X agonists increased renal perfusion and inhibited sodium reabsorption via an Na‐K‐ATPase‐dependent mechanism.  相似文献   

11.
The role of adenosine in exercise‐induced human skeletal muscle vasodilatation remains unknown. We therefore evaluated the effect of theophylline‐induced adenosine receptor blockade in six subjects and the vasodilator potency of adenosine infused in the femoral artery of seven subjects. During one‐legged, knee‐extensor exercise at ~48% of peak power output, intravenous (i.v.) theophylline decreased (P < 0.003) femoral artery blood flow (FaBF) by ~20%, i.e. from 3.6 ± 0.5 to 2.9 ± 0.5 L min?1, and leg vascular conductance (VC) from 33.4 ± 9.1 to 27.7 ± 8.5 mL min?1 mmHg?1, whereas heart rate (HR), mean arterial pressure (MAP), leg oxygen uptake and lactate release remained unaltered (P = n.s.). Bolus injections of adenosine (2.5 mg) at rest rapidly increased (P < 0.05) FaBF from 0.3 ± 0.03 L min?1 to a 15‐fold peak elevation (P < 0.05) at 4.1 ± 0.5 L min?1. Continuous infusion of adenosine at rest and during one‐legged exercise at ~62% of peak power output increased (P < 0.05) FaBF dose‐dependently to level off (P = ns) at 8.3 ± 1.0 and 8.2 ± 1.4 L min?1, respectively. One‐legged exercise alone increased (P < 0.05) FaBF to 4.7 ± 1.7 L min?1. Leg oxygen uptake was unaltered (P = n.s.) with adenosine infusion during both rest and exercise. The present findings demonstrate that endogenous adenosine controls at least ~20% of the hyperaemic response to submaximal exercise in skeletal muscle of humans. The results also clearly show that arterial infusion of exogenous adenosine has the potential to evoke a vasodilator response that mimics the increase in blood flow observed in response to exercise.  相似文献   

12.
Summary Renal and total inulin clearances were measured after a single injection and were compared with the endogenous creatinine clearance. The investigation was made on two dogs in which the ureters had been brought to the outside by Orbeli's method. Inulin clearance was measured in capillary blood by the antron micromethod. We concluded that a single intravenous injection of inulin may be used only for the measurement of renal inulin clearance. Total inulin clearance considerably exceeds the creatinine clear ance and there fore cannot be used to measure glomerular filtration.(Presented by Active Member AMN SSSR G. N. Speranskii) Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 55, No. 4, pp. 121–123, April, 1963.  相似文献   

13.
The effect of intravenous administration of the endothelium-derived vasoconstrictor peptide endothelin-1 (ET-1 0.2, 1 and 8 pmol kg?1 min?1) on coronary blood flow in relation to plasma ET-1 as well as blood lactate and glucose levels were investigated in six healthy volunteers. Coronary sinus blood flow was measured by thermodilution. Administration of ET-1 elevated arterial plasma ET 35-fold, dose-dependently increased mean arterial blood pressure from 95±5 mmHg to 110±6 mmHg (P<0.01) and reduced heart rate from 64±4 beats min?1 to 58±4 beats min?1 (P<0.05) at 8 pmol kg?1 min?1. Coronary sinus blood flow was reduced maximally by 23±4% (P<0.01) and coronary vascular resistance increased by 48±11% (P<0.01). Coronary sinus oxygen saturation decreased from 35±1% to 22±2% at 2 min after the infusion (P<0.01). A coronary constrictor response was observed at a 4-fold elevation in plasma ET. The reduction in coronary sinus blood flow lasted 20 min and coronary sinus oxygen saturation was still reduced 60 min after the infusion. Myocardial oxygen uptake or arterial oxygen saturation were not affected by ET-1. Myocardial lactate net uptake decreased by 40% whereas glucose uptake was unaffected. At the highest infusion rate there was a net removal of plasma ET by 24±3% over the myocardium (P<0.05). The results show that ET-1 induces long-lasting reduction in coronary sinus blood flow via a direct coronary vasoconstrictor effect in healthy humans observable at a 4-fold elevation in plasma ET-1. Furthermore, there is a net removal of circulating ET-1 by the myocardium.  相似文献   

14.
The effect of glucagon-like peptide-1 (GLP-1) on hepatic glucose production and peripheral glucose utilization was investigated with or without infusion of somatostatin to inhibit insulin and glucagon secretion in 13 healthy, non-diabetic women aged 59 years. After 120 min 3-3H-glucose infusion, GLP-1 was added (4.5 pmol kg?1 bolus + 1.5 pmol kg?1 min?1). Without somatostatin (n = 6), GLP-1 decreased plasma glucose (from 4.8 ± 0.2 to 4.2 ± 0.3 mmol L?1, P = 0.007). Insulin levels were increased (48 ± 3 vs. 243 ± 67 pmol L?1, P = 0.032), as was the insulin to glucagon ratio (P = 0.044). The rate of glucose appearance (Ra) was decreased (P = 0.003) and the metabolic clearance rate of glucose (MCR) was increased during the GLP-1 infusion (P = 0.024 vs. saline). Also, the rate of glucose disappearance (Rd) was reduced during the GLP-1 infusion (P = 0.004). Since Ra was reduced more than Rd, the net glucose flow was negative, which reduced plasma glucose. Somatostatin infusion (500 μg h?1, n = 7) abolished the effects of GLP-1 on plasma glucose, serum insulin, insulin to glucagon ratio, Ra, Rd, MCR and net glucose flow. The results suggest that GLP-1 reduces plasma glucose levels mainly by reducing hepatic glucose production and increasing the metabolic clearance rate of glucose through indirectly increasing the insulin to glucagon ratio in healthy subjects.  相似文献   

15.
Aim: Potassium (K+) released from contracting skeletal muscle is considered a vasodilatory agent. This concept is mainly based on experiments infusing non‐physiological doses of K+. The aim of the present study was to investigate the role of K+ in blood flow regulation. Methods: We measured leg blood flow (LBF) and arterio‐venous (A‐V) O2 difference in 13 subjects while infusing K+ into the femoral artery at a rate of 0.2, 0.4, 0.6 and 0.8 mmol min?1. Results: The lowest dose increased the calculated femoral artery plasma K+ concentration by approx.1 mmol L?1. Graded K+ infusions increased LBF from 0.39 ± 0.06 to 0.56 ± 0.13, 0.58 ± 0.17, 0.61 ± 0.11 and 0.71 ± 0.17 L min?1, respectively, whereas the leg A‐V O2 difference decreased from 74 ± 9 to 60 ± 12, 52 ± 11, 53 ± 9 and 45 ± 7 mL L?1, respectively (P < 0.05). Mean arterial pressure was unchanged, indicating that the increase in LBF was associated with vasodilatation. The effect of K+ was totally inhibited by infusion (27 μmol min?1) of Ba2+, an inhibitor of Kir2.1 channels. Simultaneous infusion of ATP and K+ evoked an increase in LBF equalled to the sum of their effects. Conclusions: Physiological infusions of K+ induce significant increases in resting LBF, which are completely blunted by inhibition of the Kir2.1 channels. The present findings in resting skeletal muscle suggest that K+ released from contracting muscle might be involved in exercise hyperaemia. However, the magnitude of increase in LBF observed with K+ infusion suggests that K+ only accounts for a limited fraction of the hyperaemic response to exercise.  相似文献   

16.
The aim of the present study was to investigate the concentration effect of adenosine on unstimulated platelet aggregation in humans. Adenosine infusion was given intravenously to 12 volunteers in the antecubital vein with infusion rates increasing from 20 to 100 μg kg?1 min?1. Filtragometry measurements were obtained from the contralateral antecubital vein before and during 100 μg kg?1 min?1 or during maximal tolerable infusion rate. In another set of experiments with 10 volunteers, basal filtragometry measurements were obtained before and after infusion of various concentrations of adenosine into the filtragometer test unit. With intravenous infusion aggregation time tended to increase from 333±42 to 418±8 s (mean±SEM) and increased the venous plasma adenosine concentration from 0.42±0.09 μM to 1.52±0.38 μM . Adenosine infusion into the filtragometer tubing system dose-dependently inhibited aggregation (P<0.05). Adenosine was rapidly eliminated with a half-life of adenosine in the filtragometry tubing system calculated to be about 6 s. These data extend our knowledge from an in vitroto an ex vivo situation that adenosine dose-dependently has a platelet antiaggregatory effect.  相似文献   

17.
To examine whether intravenous bilirubin infusion causes cholestasis and impairs liver metabolism, bile secretion and ethanol clearance were measured in 34 anaesthetized pigs before and after intravenous infusion of 0.5 μmol kg-1 min-1 bilirubin for 4.5 hours. Bilirubin infusion increased plasma bilirubin to 556±76 μmol l-1 and hepatic tissue bilirubin to 3.5 ± 1.3 mmol kg tissue weight-1. Bilirubin infusion depressed bilirubin secretion and net hepatic uptake of cholate and taurocholate, and caused a 86±6% reduction of cholate-induced bile secretion. Bilirubin caused formation of large cytoplasmic vacuoles in hepatocytes and dilatation of bile canaliculi. Ethanol clearance and secretin-dependent ductular bile secretion were unaffected by bilirubin. We conclude that intravenous infusion of unconjugated bilirubin causes accumulation of bilirubin in the liver, vacuolization of the hepatocyte cytoplasm and canalicular but not ductular cholestasis. The canalicular cholestasis is not due to impaired hepatic mitochondrial energy metabolism, but may be due to inhibition of a common pathway for lipid, bilirubin and bile salt secretion from hepatocytes.  相似文献   

18.
We rapidly infused 234 ± 3 mL of 5% human serum albumin in eight men while measuring haematocrit, haemoglobin concentration, plasma volume (PV), albumin concentration, total protein concentration, osmolality, sodium concentration, renin activity, aldosterone concentration, and atrial natriuretic peptide concentration to test the hypotheses that plasma volume expansion and plasma albumin content expansion will not persist for 24 h. Plasma volume and albumin content were expanded for the first 6 h after infusion (44.3 ± 1.9–47.2 ± 2.0 mL kg?1 and 1.9 ± 0.1–2.1 ± 0.1 g kg?1 at pre-infusion and 1 h, respectively, P < 0.05), but by 24 h plasma volume and albumin content decreased significantly from 1 h post-infusion and were not different from pre-infusion (44.8 ± 1.9 mL kg?1 and 1.9 ± 0.1 g kg?1, respectively). Plasma aldosterone concentration showed a significant effect of time over the 24 h after infusion (P < 0.05), and showed a trend to decrease at 2 h after infusion (167.6 ± 32.5?1 06.2 ± 13.4 pg mL?1, P = 0.07). These data demonstrate that a 6.8% expansion of plasma volume and 10.5% expansion of plasma albumin content by infusion does not remain in the vascular space for 24 h and suggest a redistribution occurs between the intravascular space and interstitial fluid space.  相似文献   

19.
Jorgensen , K. E., J. V. Møller and M. I. Sheikh . The glomerular filterability of inulin and of different molecular weight preparations of polyethylene glycol in the rabbit. Acta physiol. scand. 1972. 84. 408–414. It has been claimed on the basis of clearance experiments that inulin is incompletely filterable through the glomerular membrane of the rat kidney (Berglund 1964, 1965). In the present study the renal excretion in the rabbit of inulin and different preparations of polyethylene glycol has been compared during constant infusion of these substances. Identical clearance values were obtained for inulin and polyethylene glycol, having molecular weights of 1500 (PEG–1500) and 4000 (PEG–4000). The ratio of the clearances between polyethylene glycol of a molecular weight of 6000 (PEG–6000) and inulin was smaller than unity (0.89±0.03). Gel filtration analysis of plasma and urine samples indicated unrestricted filtration of inulin through the glomerular membrane of this species. Furthermore, gel filtration and ultrafiltration experiments indicated that the molecular size of inulin and PEG–1500 is similar, while the molecular dimensions of PEG–6000 exceed that of the most high molecular weight fractions of inulin. It is concluded that the clearance of inulin, PEG–1500, and PEG–4000 may be used as a measure of the glomerular filtration rate in the rabbit, whereas the glomerular filtration of PEG–6000 is restricted to some extent. The incomplete filterability of PEG–6000 is attributed to the relatively larger molecular size.  相似文献   

20.
To elucidate the underlying mechanism behind the thermogenic effect of adrenaline in human skeletal muscle, nine healthy subjects were studied during intravenous infusion of adrenaline. Restriction of blood flow to one forearm was obtained by external compression of the brachial artery, to separate a direct metabolic effect of adrenaline from an effect dependent on increased blood flow. The other arm served as the control arm. In the control arm, the forearm blood flow increased 4.7-fold (from 2.0 ± 0.3 to 9.3 ± 1.5 mL 100 g–1 min–1, P < 0.001) during the adrenaline infusion. Adrenaline significantly increased forearm oxygen consumption (from 4.7 ± 2.1 to 7.0 ± 3.6 μmol 100 g–1 min–1, P < 0.025). In the arm with restricted blood flow, the forearm blood flow increased 2.9-fold (from 1.6 ± 0.3 to 4.6 ± 0.8 mL 100 g–1 min–1, P < 0.002) but the forearm oxygen consumption did not increase (baseline period: 5.6 ± 2.3 μmol 100 g–1 min–1, adrenaline period: 6.1 ± 2.1 μmol 100 g–1 min–1, P = 0.54). The experimental design and the difficulties in interpretation of the result are discussed. The results give evidence for the hypothesis that the vascular system plays a key role in the thermogenic effect of adrenaline in skeletal muscle in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号