首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose:

To evaluate the relative enhancement of liver, pancreas, focal nodular hyperplasia (FNH), pancreas‐to‐liver index, and FNH‐to‐liver index in the hepatic arterial dominant phase (HADP) after injection of hepatocyte‐specific MRI contrast agents, gadoxetic acid and gadobenate dimeglumine, on 3 and 1.5 Tesla (T) MRI in the same patient.

Materials and Methods:

The MRI database was retrospectively searched to identify consecutive patients who underwent abdominal MRI at 3T and 1.5T systems, using both 0.025 mmol/kg gadoxetic acid‐enhanced and 0.05 mmol/kg gadobenate dimeglumine‐enhanced MRI at the same magnetic strength field system. 22 patients were identified, 10 were scanned at 3T system and 12 at 1.5T system. The enhancement of liver, pancreas, and FNH was evaluated quantitatively on MR images.

Results:

The relative enhancement of liver in HADP in the gadobenate dimeglumine‐enhanced group in all subjects was significantly higher than that in gadoxetic acid‐enhanced group (P = 0.023). The gadobenate dimeglumine‐enhanced group in HADP had better relative enhancement of pancreas and FNH, pancreas‐to‐liver index, and FNH‐to‐liver index than gadoxetic acid‐enhanced group, but the difference was not statistically significant.

Conclusion:

The 0.05 mmol/kg gadobenate dimeglumine‐enhanced abdominal MRI studies at 3T and 1.5T MR systems are superior in relative enhancement of the liver in HADP to 0.025 mmol/kg gadoxetic acid‐enhanced MRI. This type of assessment may provide comparative effectiveness data. J. Magn. Reson. Imaging 2013;37:903–908. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
OBJECTIVE: The purpose of this study was to evaluate the clinical efficacy and dose response relationship of three doses of gadobenate dimeglumine for MRI of the breast and to compare the results with those obtained after a dose of 0.1 mmol/kg of body weight of gadopentetate dimeglumine. SUBJECTS AND METHODS. Gadobenate dimeglumine at 0.05, 0.1, or 0.2 mmol/kg of body weight or gadopentetate dimeglumine at 0.1 mmol/kg of body weight was administered by IV bolus injection to 189 patients with known or suspected breast cancer. Coronal three-dimensional T1-weighted gradient-echo images were acquired before and at 0, 2, 4, 6, and 8 min after the administration of the dose. Images were evaluated for lesion presence, location, size, morphology, enhancement pattern, conspicuity, and type. Lesion signal intensity-time curves were acquired, and lesion matching with on-site final diagnosis was performed. A determination of global lesion detection from unenhanced to contrast-enhanced and combined images was performed, and evaluations were made of the diagnostic accuracy for lesion detection and characterization. A full safety evaluation was conducted. RESULTS: Significant dose-related increases in global lesion detection were noted for patients who received gadobenate dimeglumine (p < 0.04, all evaluations). The sensitivity for detection was comparable for 0.1 and 0.2 mmol/kg of gadobenate dimeglumine, and specificity was highest with the 0.1 mmol/kg dose. Higher detection scores and higher sensitivity values for lesion characterization were found for 0.1 mmol/kg of gadobenate dimeglumine compared with 0.1 mmol/kg of gadopentetate dimeglumine, although more variable specificity values were obtained. No differences in safety were observed, and no serious adverse events were reported. CONCLUSION: Gadobenate dimeglumine is a capable diagnostic agent for MRI of the breast. Although preliminary, our results suggest that 0.1 mmol/kg of gadobenate dimeglumine may offer advantages over doses of 0.05 and 0.2 mmol/kg of gadobenate dimeglumine and 0.1 mmol/kg of gadopentetate dimeglumine for breast lesion detection and characterization.  相似文献   

3.
Gadobenate dimeglumine (formerly known as Gd-BOPTA) is a recently developed paramagnetic contrast agent that undergoes biliary as well as renal excretion. It may, therefore, be useful in MR imaging of the liver. Its safety, tolerance, and usefulness in visualizing hepatobiliary structures were studied in eight healthy subjects. Axial abdominal images were obtained with T1-weighted spin-echo and gradient-echo sequences at 1.5 T before and after IV administration of gadobenate dimeglumine in doses of 0.005, 0.05, 0.1, and 0.2 mmol/kg body weight. Two subjects received each dose. Administration of 0.1 mmol/kg resulted in a maximum liver enhancement of 149% on the gradient-echo sequence and of 90% on the T1-weighted spin-echo sequence 60 min after injection. The contrast enhancement of the liver remained virtually constant for 2 hr. The signal-to-noise ratio of the biliary tract increased from 38 to 121 after 2 hr on gradient-echo images. In addition, there was significant contrast enhancement of the kidneys. Optimal visualization of the liver parenchyma was achieved with doses of 0.05 and 0.1 mmol gadobenate dimeglumine/kg. Mild to moderate side effects such as nausea and retching, a sense of warmth at the infusion site, and transient pruritus lasting 1 min were reported by three (38%) of the subjects. The initial results of the first application of gadobenate dimeglumine in humans are encouraging because the contrast agent appears to be reasonably well tolerated at the doses appropriate for hepatobiliary imaging. Further clinical studies of this contrast agent are warranted to assess its effect on liver lesion conspicuity and the frequency with which side effects occur.  相似文献   

4.
PURPOSE: To evaluate the safety of and compare the enhancement characteristics of gadobenate dimeglumine (MultiHance; Bracco Imaging, Milan, Italy) with those of a standard gadolinium chelate (gadopentetate dimeglumine, Magnevist; Schering, Berlin, Germany) in primary and secondary brain tumors on the basis of qualitative and quantitative parameters, on an intraindiviual basis. MATERIALS AND METHODS: Twenty-seven patients with either high-grade glioma or metastases were enrolled in a bicentric intraindividual crossover study to compare lesion enhancement with doses of 0.1 mmol per kilogram of body weight of 0.5 mol/L gadopentetate dimeglumine and 0.5 mol/L gadobenate dimeglumine. MR imaging was performed before injection (T1-weighted spin-echo [SE] and T2-weighted fast SE acquisitions) and at 1, 3, 5, 7, 9, and 16 minutes after injection (T1-weighted SE acquisitions). Qualitative assessment was performed by blinded off-site readers (for 22 patients) and on-site investigators (for 24 patients) in terms of global contrast enhancement, lesion-to-brain contrast, lesion delineation, internal lesion morphology and structure, tumor vascularization, and global image preference. Additional quantitative assessment with region-of-interest analysis was performed by off-site readers alone. Statistical analysis of qualitative data was performed with the Wilcoxon signed rank test, whereas a nonparametric approach was adopted for analysis of quantitative data. RESULTS: Significant (P <.05) preference for gadobenate dimeglumine over gadopentetate dimeglumine was noted both off-site and on-site for the global assessment of contrast enhancement. For off-site readers 1 and 2 and the on-site investigators, respectively, gadobenate dimeglumine was preferred in 13, 17, and 16 patients; gadopentetate dimeglumine was preferred in four, four, and four patients; and equality was found in five, one, and four patients). Similar preference for gadobenate dimeglumine was noted by off-site readers and on-site investigators for lesion-to-brain contrast and all other qualitative parameters. Off-site quantitative evaluation revealed significantly (P <.05) superior enhancement for gadobenate dimeglumine compared with that for gadopentetate dimeglumine at all time points from 3 minutes after injection. CONCLUSION: Significantly superior contrast enhancement of intraaxial enhancing brain tumors was achieved with 0.1 mmol/kg gadobenate dimeglumine compared with that with 0.1 mmol/kg gadopentetate dimeglumine.  相似文献   

5.
RATIONALE AND OBJECTIVES: The safety and diagnostic efficacy of MultiHance (gadobenate dimeglumine) in the central nervous system (CNS) were evaluated in a double-blind, multicenter, phase III clinical trial. METHODS: Two hundred five patients highly suspected of having a CNS lesion (by previous imaging exam) were enrolled at 16 sites in the United States. Patients were randomized to one of three incremental dosing regimens. Magnetic resonance imaging with Omniscan (gadodiamide) at doses of 0.1 and 0.3 mmol/kg was compared with MultiHance (gadobenate dimeglumine) at doses of 0.05 and 0.15 mmol/kg and at 0.1 and 0.2 mmol/kg. RESULTS: Compared with predose images alone, efficacy was demonstrated in each of the gadobenate dimeglumine and gadodiamide groups (single and cumulative doses) as indicated by the level of diagnostic information, number of lesions detected, and contrast-to-noise ratio measurements. The level of diagnostic information from gadobenate dimeglumine at 0.1 mmol/kg was equivalent to that with gadodiamide at the same dose. One of the two blinded reviewers found equivalence between the gadobenate dimeglumine 0.05 mmol/kg dose and gadodiamide at 0.1 mmol/kg. Both reviewers found the level of diagnostic information to be equivalent after the second dose of contrast for all three dosing regimens. The cumulative doses of gadobenate dimeglumine were well tolerated and as safe as gadodiamide. CONCLUSIONS: Gadobenate dimeglumine is comparable to gadodiamide in terms of safety and efficacy for imaging of CNS lesions, with a possible advantage in imaging applications owing to enhanced T1 relaxivity.  相似文献   

6.
RATIONALE AND OBJECTIVES: To compare gadobenate dimeglumine (MultiHance) with other commercially available MRI contrast agents for the detection of intracranial metastases. METHODS: A retrospective assessment was performed on MR images from 22 patients enrolled in a prior phase II clinical trial of gadobenate dimeglumine. Each patient underwent two examinations: a first examination with one of three "comparator" agents (gadopentetate dimeglumine, gadodiamide, and gadoterate meglumine) at a dosage of either 0.1 or 0.2 mmol/kg, and then a similar examination with gadobenate dimeglumine at equal dosage. All images were evaluated randomly for lesion number and location in unpaired and then paired fashion by two independent, masked neuroradiologists. A third assessor performed quantitative assessments on the available complete sets of digitally recorded images (10 cases). RESULTS: The findings for the comparator agents were pooled. Sensitivity for lesion detection with gadobenate dimeglumine (93%-100%) was markedly superior to that of comparator-enhanced examinations (65%-73%). The increase of lesion-to-brain contrast of the main lesion was consistently greater with gadobenate dimeglumine than with comparator agents relative to unenhanced contrast (+43% vs. +27%). CONCLUSIONS: Gadobenate dimeglumine proved to be a more efficacious agent than comparator contrast agents for the detection of intracranial metastatic lesions: superior efficacy was noted by both reviewers for total lesion count as well as for sensitivity and positive predictive value for lesion detection. The higher relaxivity of gadobenate dimeglumine might explain the superior sensitivity of gadobenate dimeglumine-enhanced MRI for the detection of central nervous system metastases.  相似文献   

7.
RATIONALE AND OBJECTIVES: To evaluate the safety and utility of gadobenate dimeglumine as a magnetic resonance (MR) contrast agent in patients with acute myocardial infarction (MI). METHODS: One hundred three patients with acute MI received intravenous bolus gadobenate dimeglumine (0.05 mmol/kg) during MR examination. Dynamic and delayed T1-weighted spin-echo postcontrast images were compared with precontrast images, EKG, resting (201)Tl SPECT and echocardiography. RESULTS: Gadobenate dimeglumine was well tolerated. Dynamic imaging with gadobenate dimeglumine was more sensitive (72% vs 56%) than delayed spin echo imaging (P < 0.001). No difference in specificity was seen (98% vs 99%). (201)Tl SPECT was a sensitive (96%) test, but was not specific (63%). Echocardiography was not sensitive (32%), but was specific (92%). CONCLUSION: The intravenous use of gadobenate dimeglumine, at a bolus dose of 0.05 mmol/kg, is safe in patients with an acute MI. Dynamic contrast enhanced MR imaging has moderate sensitivity and high specificity for demonstrating infarct.  相似文献   

8.
RATIONALE AND OBJECTIVES: The neurologic pathologies for which contrast-enhanced MRI is indicated are often accompanied by a disruption of the blood-brain barrier (BBB), which allows the contrast agent to come into contact with the nervous tissue. Thus, assessment of the neurologic safety for a new contrast agent is of crucial importance. The objective of this study was to assess the neurotolerability of the new MRI contrast agent gadobenate dimeglumine using EEG in the presence of focal lesions of the BBB. METHODS: Lesions of the BBB were obtained inducing a photochemical ischemia in rats. Gadobenate dimeglumine was intravenously administered at 4.0 mmol/kg. An EEG was recorded during sleep/awake behavior and was analyzed for pathologic tracing and for changes in spectral content in terms of total power and frequency index. The presence of the BBB lesions was verified using high-performance liquid chromatography measurement of the gadobenate ion content in the brain. RESULTS: Gadobenate dimeglumine did not have any epileptogenic effect in ischemic rats. However, it caused a transitory shift of the EEG power spectrum toward the 0.5 to 9 Hz frequency bands of the lesioned hemisphere during quiet wake. In the lesioned cortex, higher levels of gadobenate ion were found until 3 hours after administration. CONCLUSIONS: In experimental conditions of focal brain ischemia associated with BBB lesions, gadobenate dimeglumine was well tolerated up to doses even 10 times higher than the maximum clinical dose (0.3 mmol/kg) intended for brain imaging procedures.  相似文献   

9.
OBJECTIVE: We sought to evaluate gadobenate dimeglumine for the detection and characterization of focal liver lesions in the unenhanced and already pre-enhanced liver. MATERIALS AND METHODS: Sixty patients were evaluated prospectively. Unenhanced T1-weighted gradient echo (T1wGRE) and T2-weighted turbo spin echo (T2wTSE) images were acquired followed by contrast-enhanced T1wGRE images during the dynamic, equilibrium, and delayed phases after the bolus injection of 0.05 mmol/kg gadobenate dimeglumine. An identical series of dynamic images was then acquired after the delayed scan following a second 0.05 mmol/kg bolus of gadobenate dimeglumine. Images were evaluated randomly in 2 sessions by 3 independent blinded readers. Evaluated images in the first session comprised the unenhanced images, the first or second set of dynamic images, and the delayed images. The second session included the unenhanced images, the dynamic images not yet evaluated in the first session, and the delayed images. The 2 reading sessions were compared for lesion characterization and diagnosis, and kappa (kappa) values for interobserver agreement were determined. Quantitative evaluation of lesion contrast enhancement was also performed. RESULTS: The enhancement behavior in the second dynamic series was similar to that in the first series, although pre-enhancement of the normal liver resulted in reduced lesion-liver contrast-to-noise ratios and the visualization of some lesions only on arterial phase images. Typical imaging features for the lesions included in the study were visualized clearly in both series. Strong agreement (kappa=0.56-0.89; all evaluations) between the 2 images sets was noted by all readers for differentiation of benign from malignant lesions and for definition of specific diagnosis, and between readers for diagnoses established based on images acquired in the unenhanced and pre-enhanced liver. CONCLUSION: Dynamic imaging in the hepatobiliary phase gives similar information as dynamic imaging of the unenhanced liver. This might prove advantageous for screening protocols involving same session imaging of primary extrahepatic tumors and liver.  相似文献   

10.
To evaluate the effect of contrast dose using gadobenate dimeglumine, 30 patients with focal liver lesions documented by computed tomography or ultrasound were studied by magnetic resonance imaging at 1.5 T. Patients received one of four doses of gadobenate dimeglumine (0.025, 0.05, 0.1, or 0.2 mmol/kg) or saline. The order of dosage was randomized, with both the physician and patient blinded to the administered dose. Scans were obtained before, immediately following injection, and after 80 minutes of delay. Enhancement effects were quantified by region of interest measurements. Films were also reviewed in a randomized prospective fashion by an abdominal radiologist blinded to contrast dose and diagnosis. Higher doses led to a statistically significant improvement in enhancement of normal liver, both on immediate (P = 0.01 for the comparison of 0.1 and 0.2 mmol/kg immediately post-contrast) and delayed scans (P = 0.003 for the same comparison). Liver-lesion contrast-to-noise ratio also increased with dose, although results for most comparisons by dose were not statistically significant. Scans following gadobenate dimeglumine injection were judged to provide additional diagnostic confidence sufficient to affect patient management in 10 of 24 cases. In seven cases this information was provided by dynamic scans, in one case by delayed scans, and in two cases by both dynamic and delayed scans. In 2 of the 10 cases the dose was 0.025 mmol/kg, in 2 cases 0.05 mmol/kg, in 3 cases 0.1 mmol/kg, and in 3 cases 0.2 mmol/kg. Gadobenate dimeglumine is effective for imaging of focal liver lesions at a range of doses, with trends toward improved diagnostic information at higher doses.  相似文献   

11.
OBJECTIVES: We sought to determine the optimal dose of a contrast agent with known high relaxivity on 1.5 and 3 Tesla scanners that would achieve the best compromise between image quality and scan time for the clinical application of contrast-enhanced susceptibility-weighted imaging (CE-SWI). METHODS: Pre- and postcontrast SWI was performed with different contrast agent doses (0.05, 0.1, and 0.2 mmol/kg gadobenate dimeglumine) at both 1.5 and 3 T in 6 healthy volunteers, resulting in 72 examinations. Venograms were created from minimum intensity projection reconstructions over specified deep white matter volumes to enhance the visual appearance of connected venous structures. Three independent radiologists blindly rated the visibility of the veins on a continuous scale of 1 to 10. A general linear model was used for statistical evaluation, with fixed effects of the contrast agent dose, the field strength, the rater and the patients as a random effect. RESULTS: With CE-SWI, we found significant differences in the visibility of the deep veins dependent on the contrast media dose (P=0.02). At 3 T, the visibility of deep venous vessels, with regard to susceptibility effect, image quality, and scan time reduction after a standard contrast agent dose 0.1 mmol/kg was significantly better than that achieved with 0.05 mmol/kg. The visibility was considered equal with 0.1 mmol/kg of the contrast agent to the precontrast images and a dose of 0.2 mmol/kg. At 1.5 T, no significant difference was found between the 4 contrast agent doses. We found no difference in the visibility of the veins with the shorter sequences at 3 T compared with the sequences at 1.5 T. CONCLUSIONS: Only a standard dose (0.1 mmol/kg) of gadobenate dimeglumine is required to achieve the optimum susceptibility effect and image quality at 3 T, together with a reduced scan time. This result can be attributed to the higher relaxivity of gadobenate dimeglumine, compared with conventional gadolinium chelates.  相似文献   

12.

Purpose

To prospectively compare 0.1 mmol/kg doses of gadobenate dimeglumine and gadopentetate dimeglumine for contrast‐enhanced MRI of brain lesions at 3 Tesla (T).

Materials and Methods

Forty‐six randomized patients underwent a first examination with gadobenate dimeglumine (n = 23) or gadopentetate dimeglumine (n = 23) and then, after 2–7 days, a second examination with the other agent. Contrast administration (volume, rate), sequence parameters (T1wSE; T1wGRE), and interval between injection and image acquisition were identical for examinations in each patient. Three blinded neuroradiologists evaluated images qualitatively (lesion delineation, lesion enhancement, global preference) and quantitatively (lesion‐to‐brain ratio [LBR], contrast‐to‐noise ratio [CNR], % lesion enhancement). Differences were assessed using Wilcoxon's signed‐rank test. Reader agreement was determined using kappa (κ) statistics.

Results

There were no demographic differences between groups. The three readers preferred gadobenate dimeglumine globally in 22 (53.7%), 21 (51.2%), and 27 (65.9%) patients, respectively, compared with 0, 1, and 0 patients for gadopentetate dimeglumine. Similar significant (P < 0.001) preference was expressed for lesion border delineation and enhancement. Reader agreement was consistently good (κ = 0.48–0.64). Significantly (P < 0.05) higher LBR (+43.5– 61.2%), CNR (+51.3–147.6%), and % lesion enhancement (+45.9–49.5%) was noted with gadobenate dimeglumine.

Conclusion

Brain lesion depiction at 3T is significantly improved with 0.1 mmol/kg gadobenate dimeglumine. J. Magn. Reson. Imaging 2009;29:760–767. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Twelve mice with metastatic liver tumors were divided into two groups of six, with one group administered contrast medium at 0.1 mmol/kg, and the other at 0.2 mmol/kg. Contrast medium, gadobenate dimeglumine (GD) or gadopentetate dimeglumine (GP), was administered at 0.1 or 0.2 mmol/kg via the tail vein to each animal in each group. Using a Signa Horizon 1.5-Tesla MRI unit, spin-echo transverse and coronal T1-weighted sections were obtained every 15 minutes until 2 hours after administration. The numbers of liver tumors detected on films were counted before and after the administration of contrast medium, and the liver/tumor contrast-to-noise ratio (CNR) was calculated. After the completion of MRI, livers were removed, and the number of metastatic nodules on the liver surface were counted as the number of tumors. Liver/tumor CNR rose after administration in both of the GD groups. In the GP group, liver/tumor CNR remained almost constant throughout the observation period. Relative to the number of tumors detected at optical microscopy, approximately 80% and 100% of tumors were detected at MRI after the administration of GD at 0.1 and 0.2 mmol/kg, respectively. On the other hand, approximately similar numbers of tumors were detected at MRI before and after the administration of GP. These results suggest that GD administered by intravenous injection was transported promptly to the liver, increased liver/tumor CNR, and enhanced detection performance for metastatic liver tumor.  相似文献   

14.

Purpose:

To evaluate the signal to noise ratio (SNR) and contrast to noise ratio (CNR) performance of 0.05 mmol/kg gadoxetic acid and 0.1 mmol/kg gadobenate dimeglumine for dynamic and hepatobiliary phase imaging. In addition, flip angles (FA) that maximize relative contrast‐to‐noise performance for hepatobiliary phase imaging were determined.

Materials and Methods:

A cross‐over study in 10 volunteers was performed using each agent. Imaging was performed at 3 Tesla (T) with a 32‐channel phased‐array coil using breathheld 3D spoiled gradient echo sequences for SNR and CNR analysis, and for FA optimization of hepatobiliary phase imaging.

Results:

Gadobenate dimeglumine (0.1 mmol/kg) had superior SNR performance during the dynamic phase, statistically significant for portal vein and hepatic vein in the portal venous and venous phase (for all, P < 0.05) despite twice the approved dose of gadoxetic acid (0.05 mmol/kg), while gadoxetic acid had superior SNR performance during the hepatobiliary phase. Optimal FAs for hepatobiliary phase imaging using gadoxetic acid and gadobenate dimeglumine were 25–30° and 20–30° for relative contrast liver versus muscle (surrogate for nonhepatocellular tissues), and 45° and 20° (relative contrast liver versus biliary structures), respectively.

Conclusion:

Gadobenate dimeglumine may be preferable for applications that require dynamic phase imaging only, while gadoxetic acid may be preferable when the hepatobiliary phase is clinically important. Hepatobiliary phase imaging with both agents benefits from flip angle optimization. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
PURPOSE: To intraindividually compare the enhancement pattern of focal nodular hyperplasia (FNH) after dynamic administration of two bolus-injectable liver-specific MR contrast agents, ferucarbotran and gadobenate dimeglumine. MATERIALS AND METHODS: A total of 19 patients with 24 FNHs underwent gadobenate dimeglumine- and ferucarbotran-enhanced MRI during the hepatic arterial-dominant phase (HAP; 25 seconds), the portal-venous phase (PVP; 60 seconds), and the equilibrium phase (EP; 180 seconds). Hepatospecific phases were acquired on T1-weighted images 120 minutes after gadobenate dimeglumine administration, and on T2-weighted images 10 minutes after ferucarbotran administration. Lesion enhancement was independently analyzed by two observers. The kappa statistic was determined to evaluate the agreement between the enhancement patterns of the lesions. RESULTS: On gadobenate dimeglumine-enhanced MR images during HAP, PVP, and EP, FNHs were: hyperintense (24/20/13); isointense (0/4/11); and hypointense (0/0/0). On ferucarbotran-enhanced MR images during HAP, PVP, and EP, FNHs were: hyperintense (2/0/0); isointense (16/9/14); and hypointense (6/15/10). Overall, poor agreement between both contrast agents was observed. During the hepatospecific phases, most (20/24; 83%) FNHs showed a typical enhancement pattern during the delayed hepatospecific phase. CONCLUSION: The dynamic enhancement pattern of FNHs is significantly different between gadobenate dimeglumine- and ferucarbotran-enhanced MRI. With respect to hepatospecific phase, the majority of FNHs showed a typical behavior on both contrast agents.  相似文献   

16.
QUESTION: The availability of new MR contrast agents having either a protein binding effect or higher concentration leads to the question if they differ from standard compounds in their vascular contrasting properties. METHODS: By intraindividual comparison five volunteers were examined (1.5 T MR system) with a multi-phasic MRA of the abdomen each receiving three different contrast agents (gadopentetate dimeglumine 0.5 M; gadobenate dimeglumine 0.5 M, and gadobutrol 1.0 M).The dose (0.15 mmol/kg body weight) and flow rate (3.0 ml/s) were kept identical. All images were quantitatively and qualitatively evaluated by blinded assessment. RESULTS: Significantly higher maximum signal intensity was found in the arteries for the protein interacting gadobenate dimeglumine (p = 0.05). No significant difference in vascular enhancement was demonstrated in the comparison of gadobutrol to gadopentetate dimeglumine. CONCLUSION: Gadobenate dimeglumine was shown to be a favorable contrast agent for multi-phasic MRA. A higher concentrated Gd-chelate does not automatically lead to improved vascular contrast if standard imaging protocols are used.  相似文献   

17.
Cotton F 《Neuroradiology》2006,48(Z1):34-40
A high relaxivity contrast agent is indicated for use in MRI of the central nervous system to visualize lesions with an abnormal blood-brain barrier (BBB) or abnormal vascularity of the brain. We evaluated MultiHance (gadobenate dimeglumine, Gd-BOPTA) on T2*-weighted perfusion imaging in 33 histologically proven intra-axial brain tumors. The higher T1 relaxivity, and therefore better contrast-enhanced T1 imaging led to significantly better tumor delineation. The higher T2 relaxivity allowed high quality T2* perfusion MRI and post processed rCBV maps, with a dose of 0.1 mmol/kg MultiHance.  相似文献   

18.
A two-centre intra-individual crossover study was performed in 23 patients with suspected high-grade glioma or metastases to assess and compare the safety and enhancement characteristics of two different MRI contrast media (gadobenate dimeglumine, Gd-BOPTA and gadoterate meglumine, Gd-DOTA) at equivalent doses of 0.1 mmol/kg body weight. T1-weighted spin-echo (SE) and T2-weighted fast SE images were obtained before and T1-weighted images 0, 2, 4, 6, 8 and 15 min after injection. T1-weighted images with magnetisation transfer contrast were acquired 12 min after injection. Qualitative assessment by blinded, off-site readers (reader 1: 19 patients; reader 2: 21) and on-site investigators (23) revealed significant (P 0.005) overall preference for Gd-BOPTA over Gd-DOTA for contrast enhancement (Gd-BOPTA preferred in 18, 15 and 18 cases; Gd-DOTA in 0, 1 and 1 and no preference in 1, 5 and 4; off-site readers 1 and 2, and on-site investigators, respectively). A similar significant preference for Gd-BOPTA was expressed by off-site readers and on-site investigators for lesion-to-brain contrast, lesion delineation, internal lesion structure, and overall image preference. Quantitative assessment by off-site readers revealed significantly (p<0.05) greater lesion enhancement with Gd-BOPTA than with Gd-DOTA at all times from 2 min after injection.  相似文献   

19.

Purpose:

To compare enhancement of liver parenchyma in MR imaging after injection of hepatocyte‐specific contrast media.

Materials and Methods:

Patients (n = 295) with known/suspected focal liver lesions randomly received 0.025 mmol gadoxetic acid/kg body weight or 0.05 mmol gadobenate dimeglumine/kg body weight by means of bolus injection. MR imaging was performed before and immediately after injection, and in the delayed phase at approved time points (20 min after injection of gadoxetic acid and 40 min after injection of gadobenate dimeglumine). The relative liver enhancement for the overall population and a cirrhotic subgroup was compared in T1‐weighted GRE sequences. An independent radiologist performed signal intensity measurements. Enhancement ratios were compared using confidence intervals (CIs).

Results:

The relative liver enhancement in the overall population was superior with gadoxetic acid (57.24%) versus gadobenate dimeglumine (32.77%) in the delayed‐imaging phase. The enhancement ratio between the contrast media was statistically significant at 1.75 (95% CI: 1.46–2.13). In the delayed phase, the enhancement of cirrhotic liver with gadoxetic acid (57.00%) was comparable to that in the overall population. Enhancement with gadobenate dimeglumine was inferior in cirrhotic liver parenchyma (26.85%).

Conclusion:

In the delayed, hepatocyte‐specific phase, liver enhancement after injection of gadoxetic acid was superior to that obtained with gadobenate dimeglumine. J. Magn. Reson. Imaging 2010; 31: 356–364. © 2010 Wiley‐Liss, Inc.
  相似文献   

20.
PURPOSE: To retrospectively compare three different doses of gadobenate dimeglumine with a standard dose of gadopentetate dimeglumine for magnetic resonance (MR) imaging evaluation of breast vessels and to evaluate the accuracy of one-sided increased vascularity seen on gadobenate dimeglumine-enhanced MR images as an indicator of ipsilateral breast cancer. MATERIALS AND METHODS: The original study had local ethics committee approval; informed consent was obtained from all enrolled patients. Ninety-five patients known to have or suspected of having breast cancer were randomly assigned to four groups to receive gadobenate dimeglumine at a dose of 0.05, 0.10, or 0.20 mmol per kilogram of body weight or gadopentetate dimeglumine at a dose of 0.10 mmol/kg. T1-weighted gradient-echo MR images were acquired before and 2 minutes after intravenous contrast material injection. Subtracted images were used to obtain maximum intensity projections (MIPs). Two readers blinded to the type and dose of contrast agent administered scored the MIPs obtained in the dose groups for vessel number, length, and conspicuity from 0, which indicated absent or low breast vascularity, to 3, which indicated high breast vascularity. The sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of one-sided increased vascularity in association with ipsilateral malignancy for 69 histopathologically confirmed lesions (reference standard) were determined after gadobenate dimeglumine-enhanced MR imaging. RESULTS: The mean MIP scores assigned to the gadobenate dimeglumine groups were significantly higher than those assigned to the gadopentetate dimeglumine group (P < or = .044). Histopathologic analysis revealed malignant lesions in 52 of 69 patients examined with gadobenate dimeglumine MR imaging: invasive ductal carcinoma in 45, invasive lobular carcinoma in four, and invasive mixed ductal-lobular carcinoma in three patients. Seventeen patients had benign lesions. Two cases of bilateral invasive cancer with symmetric breast vascular maps were excluded. Thus, the overall sensitivity, specificity, accuracy, PPV, and NPV of one-sided increased vascularity as a finding associated with ipsilateral malignancy were 88% (44 of 50 patients), 82% (14 of 17 patients), 87% (58 of 67 patients), 94% (44 of 47 patients), and 70% (14 of 20 patients), respectively. CONCLUSION: Gadobenate dimeglumine is effective for MR imaging evaluation of breast vessels at doses as low as 0.05 mmol/kg. One-sided increased vascularity is an MR imaging finding frequently associated with ipsilateral invasive breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号