首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chick embryo dorsal root ganglion (DRG) neurons were purified by differential adhesion to plastic. The purified neurons were used to study the cooperation between nerve growth factor (NGF) and laminin or fibronectin in promoting neuron survival and neurite outgrowth. NGF alone supported the survival of only 20% embryonic day 10 (E10) cells, of which only 40-50% had neurites. Treatment of the substrate with fibronectin or laminin increased survival in the presence of NGF up to 80% of the seeded neurons, all of which showed extensive neurite outgrowth. Survival and neurite outgrowth were also enhanced by the combined effects of elevated potassium and laminin. In contrast to E8-10 cells, 85% of E16 neurons survived in the basal culture conditions, i.e. without additional NGF, fibronectin or laminin, although neurite outgrowth was enhanced by all 3 proteins. Antisera to NGF, laminin and fibronectin, each independently decreased survival and neurite outgrowth of DRG neurons, totally with E9 and partially with E16 cells. The results suggest that the cooperative actions of extracellular matrix proteins and NGF are essential for survival and neurite outgrowth of embryonic DRG neurons and that these neuronal requirements change during development.  相似文献   

2.
Inflammation may affect the local presence of sensory nerve fibers in situ and inflammatory mediators influence sensory neurons in vitro. In the present study we have investigated effects of the cytokines interleukin-1beta (IL-1beta, interleukin-6 (IL-6), and leukemia inhibitory factor (LIF) on survival of and neurite growth from neonatal rat sensory neurons co-cultured with fibroblast-like cells prepared from neonatal rat skin (sFLCs) or perichondrium (pFLCs). The results showed that both FLC types expressed receptors for all three cytokines. Five ng/ml of either cytokine, but not lower or higher concentrations, supported survival of DRG neurons co-cultured with sFLCs. Neuronal survival was also enhanced by addition of the soluble IL-6 receptor (rsIL-6R) with or without IL-6. In co-cultures with pFLCs neuronal survival was promoted by IL-6, increasing with cytokine concentration. Addition of rsIL-6R without IL-6 did also stimulate neuronal survival. The growth of neurites from DRG neurons co-cultured with sFLCs was stimulated by 0.5 ng/ml LIF, unaffected by 5 ng/ml LIF and inhibited by 50 ng/ml LIF. Considering DRG neurons co-cultured with pFLCs, 50 ng/ml of either of the three cytokines, as well as rsIL-6R conditioned medium, stimulated neurite outgrowth. Some of the cytokine effects observed were reduced by application of antibodies against nerve growth factor (NGF). We conclude that that the cytokines examined affect DRG neurons in terms of survival or neuritogenesis, that the effects are influenced by cytokine concentration and the origin of the FLCs and that some of the effects are indirect, probably being mediated by factors released from FLCs.  相似文献   

3.
Two pools of seven brains each from adult Swiss-Webster mice were homogenized, and supernatants were collected for bioassay. PC-12 cells were placed in a bioassay plate at time zero, at a concentration of 104 cells per well, and primed for 48 hours in a medium containing 50 ng/ml of mNGF. The PC-12 cell bioassay for neurite outgrowth was conducted after primed cells were exposed to an NGF-free medium for 24 hours. Suitable controls for serum toxicity and cell viability were established. The sensitivity of the bioassay approximates 100 pg NGF/ml. The results showed 80–100% neurite outgrowth in wells exposed to brain pool supernatant (BPS) alone, and control level outgrowth (3–8%) in wells containing BPS and specific anti-β-NGF antibody. Therefore, the brains of Swiss-Webster adult mice contain an NGF-like substance which promotes neurite outgrowth in PC-12 cells. The substance probably is NGF itself, since the effect is blocked by specific NGF antiserum.  相似文献   

4.
Soluble chondroitin sulfate proteoglycans (CSPGs), prepared from 10-d-old rat brain, were added to the culture medium of PC12D cells containing NGF to examine the effects on NGF-induced neurite outgrowth from the cells. PC12D cells, a flat-shaped variant of PC12 pheochromocytoma cells, are characteristic of prompt neurite formation in response not only to NGF, but also to cAMP-enhancing reagents such as forskolin. Brain CSPGs inhibited the neurite elongation irreversibly in a dose-dependent manner; complete inhibition was observed at a concentration of 50 nmol uronic acid/ml. Closely similar dose-dependent inhibition was observed in the forskolin-induced neurite outgrowth from PC12D cells. NGF-induced neurite outgrowth from conventional PC12 cells was also inhibited completely by 50 nmol uronic acid/ml CSPGs. Some brain CSPGs seemed to be inhibitory, but the cartilage-unique CSPG did not show any inhibitory effect. Chondroitin sulfate, a polysaccharide moiety of CSPGs, did not show any inhibitory effect even at a concentration of 250 nmol uronic acid/ml, while core proteins prepared from brain CSPGs by digestion with chondroitinase ABC exhibited inhibitory activity similar to that of intact CSPGs. This indicates that the site of the inhibitory activity exists in the core protein moiety of brain CSPGs. From these observations, it is conceivable that brain CSPGs are involved in the regulation of neuronal differentiation.  相似文献   

5.
We have previously demonstrated that high concentrations of nerve growth factor suppress neurite outgrowth from sensory neurons. Inhibition could be mediated by either the p75NTR or TrkA receptor. We used a functional block of p75NTR by REX antibody in rat dorsal root ganglion neurons and dorsal root ganglion cultures from p75NTR knockout mice. In both systems, high-dose NGF inhibited neurite outgrowth, implying that p75NTR is not involved in suppression of neurite outgrowth. Confocal images of dissociated dorsal root ganglion neurons exposed to fluorescence-tagged NGF showed ligand internalization. Radioligand binding indicated disappearance of high-affinity binding sites from the surface of dorsal root ganglia after treatment with 200 ng/ml NGF for 1 h. Downstream signaling showed sustained hyperphosphorylation of MAPK (Erk(1-2)) but not of SNT or Akt. High-dose NGF may induce cytoplasmic relocation of the receptor TrkA and axonal growth arrest independently of p75NTR.  相似文献   

6.
Cytostatic drugs, like cisplatin, vincristine and taxol, when given to cancer patients may cause peripheral neuropathies. We were interested in the potential neuroprotective effects of neurotrophic factors against such neuropathies. To this aim we studied the effects of these cytostatic agents on sensory fibers located in the dorsal root ganglia (DRG) in vitro and studied whether nerve growth factor (NGF) could reverse the cytostatic induced morphological changes on intact DRG (1 DRG/well, n=10per dose). Neuritogenesis from DRG was measured with an image analysis system following exposure to different concentrations of cytostatic drugs in the presence of 3 ng NGF/ml and cytosine arabinoside (Ara-C, 10−6 M). Relative neurite outgrowth in intact DRG in culture was reduced dose-dependently, (a) by vincristine starting at a dose of 0.4 ng/ml for 2 days (−33% as compared to control; P < 0.001, Student's t-test); (b) by taxol 10 ng/ml (−60%; P< 0.001), and (c) by cisplatin 3 μg/ml (−47%, P < 0.001). Cisplatin also prevented the migration of satellite cells away from the intact DRG along the extending neurites into the well in contrast to control, vincristine, or taxol. To evaluate the neuroprotective potential of NGF in this in vitro cytostatic neuropathy model, we incubated intact DRG with cytostatic agents in combination with increasing amounts of NGF. Neurite outgrowth from DRG treated with vincristine (0.5 ng/ml) + NGF (3 ng/ml) for 2 days was significantly higher (+87%) than after treatment with vincristine + 1 ng NGF/ml (P < 0.001). Neutrite outgrowth from DRG treated with taxol (20 ng/ml) + NGF (3 ng/ml) for 2 days was significantly higher (+ 228%) than after taxol + 1 ng NGF/ml (P < 0.05). Neurotogenesis from DRG treated with cisplatin (2.5 μg/ml) + NGF (3 ng/ml) for 2 days was significantly increased (+105%) compared to treatment with cisplatin + 1 ng NGF/ml (P < 0.001). DRG thus appear to be a very suitable model for studying cytostatic drug-induced neuropathies in vitro and NGF has a clear neuroprotective effect on the vincristine-, taxol-, and cisplatin-induced neuropathies in this in vitro model.  相似文献   

7.
Administration of epidermal growth factor receptor (EGFR) inhibitors (e.g. AG1478/PD168393) promotes central nervous system (CNS) axon regeneration in vivo by an unknown mechanism. Here, we show that EGFR activation is not required for AG1478-/PD168393-induced neurite outgrowth in cultures of dorsal root ganglion neurons (DRGN) with added inhibitory CNS myelin extract (CME), but is mediated by the paracrine and autocrine actions of the glia-/neuron-derived neurotrophins (NT) NGF, BDNF and NT-3 through Trk signalling in DRGN potentiated by elevated cAMP levels. The DRGN neurite growth seen in CME-inhibited cultures treated with AG1478 is eradicated by blocking Trk signalling but undiminished after siRNA knockdown of > 90% EGFR. Moreover, addition of the combined triplet of NT restores neurite outgrowth in CME-inhibited cultures, when cAMP levels are raised. Accordingly, we suggest that chemical EGFR inhibitors act independently of EGFR, inducing glia and neurons to secrete NT and raising cAMP levels in DRG cultures, leading to Trk-dependent disinhibited DRGN neurite outgrowth.  相似文献   

8.
Aggrecan is one of the major chondroitin sulfate proteoglycans (CSPGs) expressed in the central nervous system. The signaling pathways activated downstream of cell interaction with aggrecan and with CSPGs in general and the importance of chondroitin sulfate-glycosaminoglycan side chains in their inhibition are unclear. Therefore, to analyze the effect of different components of aggrecan in inhibiting neurite growth, neurite outgrowth was quantified in an in vitro model in which chick dorsal root ganglion (DRG) explants were grown on substrates containing aggrecan bound to hyaluronan and link protein as a macromolecular aggregate, aggrecan monomers, hyaluronan, or ChABC-treated aggrecan. Aggrecan aggregate, aggrecan monomer, and hyaluronan inhibited neurite outgrowth from nerve growth factor (NGF)- and neurotrophin-3 (NT3)-responsive DRG neurons. Aggrecan inhibition was dependent on its chondroitin sulfate-glycosaminoglycans, as ChABC digestion alleviated neurite inhibition because of aggrecan. Growth cones displayed full or partial collapse on aggrecan aggregate, hyaluronan, and ChABC-treated aggrecan. Inhibition of Rho kinase (ROCK) with Y27632 increased neurite growth on some but not all of the aggrecan components tested. With NGF in the culture medium, Y27632 increased neurite outgrowth on aggrecan aggregate, monomers, and ChABC-treated aggrecan, but not on hyaluronan. The ROCK inhibitor also increased NT3-responsive outgrowth on aggrecan aggregate and hyaluronan, but not on ChABC-treated aggrecan. This study showed that the matrix proteoglycan aggrecan and its components have multiple effects on neurite outgrowth and that some of these effects involve the Rho/ROCK pathway.  相似文献   

9.
Nerve Growth Factor (NGF) is known to elicit several distinct responses from its target neurons. Three different responses were exploited as bases for an assay method for NGF: (i) the traditional neurite outgrowth from 8-day chick embryo dorsal root ganglia (DRG) in modified explant culture, (ii) survival of neonatal mouse DRG neurons in monolayer cell culture, and (iii) extrusion of 22Na+ from chick embryo DRG neurons preloaded under conditions of NGF deprivation, in cell suspension. All three procedures were able to detect as little as 0.01 to 0.03 biological unit (BU) NGF/ml (about 10−11m). Nerve growth factor-like activity was examined in a number of human sera samples. None of the sera tested elicited a positive response with any of the three assay methods, indicating that if NGF was present, it would be at less than 0.1 to 0.2 BU/ml of undiluted serum. Human sera did not prevent genuine NGF from producing a positive response in these assays. Sera from patients with familial dysautonomia, an inherited neurologic disease suspected of having an altered concentration of circulating NGF, were also negative.  相似文献   

10.
Neurite-promoting activity in feeding medium conditioned by rat astrocytes and Schwann cells in culture was examined. The conditioned medium (CM) from both types of glial cultures stimulated extensive neurite outgrowth from embryonic chick dorsal root ganglia (DRG) as well as pheochromocytoma (PC12) cells. Both the DRG and PC12 cells also produce neurite outgrowth in the presence of nerve growth factor (NGF). With the DRG, the neurite growth rates observed with the glial cell CM were identical to growth rates seen with NGF. Although anti-NGF antibody did not inhibit the neurite outgrowth produced by either of the glial CM, a nerve growth factor radioreceptor assay did detect an NGF-like molecule in both CM. Since the extensive neurite outgrowth stimulated by the glial CM was not mimicked by pure laminin alone, we conclude that the glial neurite promoting factors are distinct from laminin.  相似文献   

11.
Ciliary neurotrophic factor (CNTF) has been shown to promote the survival of motoneurons, but its effects on axonal outgrowth have not been examined in detail. Since nerve growth factor (NGF) promotes the outgrowth of neurites within the same populations of neurons that depend on NGF for survival, we investigated whether CNTF would stimulate neurite outgrowth from motoneurons in addition to enhancing their survival. We found that CNTF is a powerful promoter of neurite outgrowth from cultured chick embryo ventral spinal cord neurons. An effect of CNTF on neurite outgrowth was detectable within 7 hours, and at a concentration of 10 ng/ml, CNTF enhanced neurite length by about 3- to 4-fold within 48 hours. The neurite growth-promoting effect of CNTF does not appear to be a consequence of its survival-promoting effect. To determine whether the effect of CNTF on spinal cord neurons was specific for motoneurons, we analyzed cell survival and neurite outgrowth for motoneurons labeled with diI, as well as for neurons taken from the dorsal half of the spinal cord, which lacks motoneurons. We found that the effect of CNTF was about the same for motoneurons as it was for neurons from the dorsal spinal cord. The responsiveness of a variety of spinal cord neurons to CNTF may broaden the appeal of CNTF as a candidate for the treatment of spinal cord injury or disease. © 1996 Wiley-Liss, Inc.  相似文献   

12.
F Collins 《Brain research》1988,467(1):111-116
Neurite outgrowth in the presence and absence of nerve growth factor (NGF) was compared in neuronal cultures from the parasympathetic ciliary ganglion and from a traditional target of NGF, the sensory dorsal root ganglion. Both ciliary and dorsal root ganglion cultures exhibited a developmental time window during which the effect of NGF on neurite length was maximal. Although neuronal cultures from embryonic day 4 and 5 ganglia exhibited considerable neurite outgrowth in the absence of NGF, there was no significant increase in neurite outgrowth in the presence of NGF. After embryonic day 6, there was a steady increase in the effect of NGF in both types of ganglia. With ciliary ganglia, the effect of NGF increased until day 8, plateaued, then fell off significantly after day 11. With dorsal root ganglia, the effect of NGF continued to increase until day 12, plateaued, then fell off significantly after day 17. Thus, the period of maximal responsiveness of chick ciliary ganglia to NGF occurs earlier in development than for dorsal root ganglia. At the ages when the effect of NGF was maximal, approximately 20% of ciliary ganglion neurons exhibited substantial increases in neurite length compared to approximately 40% of dorsal root ganglion neurons. The effect of NGF was maximal at or below 1 ng/ml (4 X 10(-11) M) for both types of ganglia. These results support previous evidence that NGF does not simply boost ciliary ganglionic neurite growth non-specifically: the effect of NGF is already maximal at low, physiological concentrations and it appears at a specific time in development.  相似文献   

13.
The administration of nerve growth factor (NGF) into the brain of a fornix-fimbria lesioned rat can rescue many cholinergic, septal-basal forebrain (SBF) neurons from imminent cell death. Unfortunately, it is unclear if NGF can stimulate regenerative growth from axotomized, SBF neurons. In the present study, we used an in vitro model system to determine if NGF could affect neurite outgrowth from nonaxotomized and/or axotomized, embryonic SBF neurons. Axotomized neurons were obtained by severing the neuritic fields surrounding embryonic day (E) 15 SBF explants maintained in primary culture. Acetylcholinesterase (AChE) histochemistry was used to assess the effects of NGF on cholinergic neurites. We report that 1) neurite outgrowth on type I collagen from E15 SBF neurons in primary culture (nonaxotomized neurons) was not affected by NGF. 2) NGF enhanced the outgrowth (regeneration) of axotomized, SBF neurons on a collagen substratum; however, neurons had to be treated with NGF both before and after axotomy to stimulate regeneration effectively. Application of NGF either before or after axotomy did not enhance regenerative neurite outgrowth. 3) SBF neurons had to be axotomized for NGF to facilitate neurite outgrowth. This is supported by the observation that SBF explants, initially maintained in NGF-supplemented medium in suspension culture, did not demonstrate enhanced neurite outgrowth in the presence of NGF when plated onto a substratum. 4) The regenerative growth of AChE-negative, as well as AChE-positive, neurites was facilitated by NGF treatment. In addition to data concerning neurite outgrowth, we also found that the NGF receptor, as recognized by the antibody 192-IgG, expands its distribution as time in culture progresses; i.e., staining, originally confined to cell bodies and proximal processes within the explant, later included neurites that emanated from the explant. Thus, our results demonstrate that NGF can stimulate regenerative growth from axotomized, but not nonaxotomized, embryonic SBF neurons. We hypothesize that, given the appropriate substratum for axon elongation in vivo, NGF can stimulate the regeneration of SBF neurons in the injured adult brain.  相似文献   

14.
We have used a number of pharmacological manipulations of calcium influx to alter the nerve growth factor (NGF)-elicited neurite outgrowth response of SCG neurons. Our results indicate that influx of extracellular calcium is critical to sympathetic SCG neurite outgrowth. Effective blockade of this process was produced by the inorganic calcium channel blockers Cd2+ (with an IC50 of 48 microM), Co2+ (129 microM), and Ni2+ (180 microM). More specifically, there is a significant contribution from dihydropyridine-sensitive L-type calcium channels to NGF-activated neurite outgrowth, as evidenced by the significant inhibition of neurite outgrowth by diltiazem (IC50 of 17 microM) and nifedipine (3 microM). Further, increases in calcium influx can elicit an enhanced neurite outgrowth response, as shown by the calcium channel agonist Bay K 8644 which potentiated neurite outgrowth by up to 40%.  相似文献   

15.
Using dorsal root ganglion neurons (DRG), in vitro, we studied the effects of nerve growth factor (NGF) on a toxin extracted from ethylene oxide (EO) sterilized hemodialyzers. Tissue culture medium passed through dialyzers produced beading of DRG axons that was inhibited by increasing the concentration of NGF from 3.5 to 10 ng/ml. The antioxidant enzymes, catalase and glutathione peroxidase (GPx), prevented neurite beading while superoxide dismutase (SOD) alone did not. 3-amino-1,2,4-triazole (Az), an inhibitor of catalase blocked the protective effects of catalase and NGF. 1,3 bis[chloromethyl]-1-nitrosourea (BCNU) inhibits glutathione reductase, and reduces intracellular glutathione levels; it blocked the protective effects of NGF. Dialyzer treated medium was found to have increased peroxide content. In parallel experiments, NGF protected DRG neurons from hydrogen peroxide (H(2)O(2)) toxicity that was inhibited by Az and BCNU. NGF was also shown to upregulate glutathione in DRG neurons. We propose that EO gas used in the sterilization of hemodialyzers is responsible for the neurotoxicity and is most likely due to oxidative damage in DRG neurons. NGF protects DRG from this toxin by upregulating antioxidants such as catalase, GPx and GSH.  相似文献   

16.
Exogenously added gangliosides are known to promote neurite outgrowth in a variety of cell types, including some neuroblastoma cell lines. To study neuritogenesis in SH-SY5Y human neuroblastoma we serum starved the cells for 24 hr and exposed them to gangliosides (GM1, GM3, or GT1b), platelet-derived growth factor (PDGF), insulin, nerve growth factor (NGF), insulin-like growth factor I (IGF-I), or combinations of these for 3 days. We measured four parameters of neurite outgrowth using image analysis. PDGF induced neurite outgrowth in SH-SY5Y and GM1 inhibited this. Both phenomena were dose-dependent with neurites/cell and neurite length being below controls with 100 μM GM1, and percent of neurite-bearing cells being below controls with 25, 50, and 100 μM GM1. Similar but more inhibitory results were obtained with GM3 and GT1b. Insulin and IGF-I induced a neuritogenic response that was less potent than that of PDGF and was also inhibited by gangliosides. NGF had no effect on neurite outgrowth but gangliosides were still inhibitory even in cells not treated with growth factors. From this we conclude that gangliosides inhibit spontaneous and trophic factor-induced neurite outgrowth in SH-SY5Y cells. For GM1 and GT1b, but not GM3, this probably involves inhibition of trophic factor receptor function. J. Neurosci. Res. 47:617–625, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Dorsal root ganglion (DRG) neurons explanted from human embryos, at stages less than about 8 weeks in utero, appeared to be strongly dependent on nerve growth factor (NGF) for their long-term survival. In cultures containing a high concentration of NGF (1000 units/ml, added only at explantation), most of the DRG neurons survived and developed for many weeks in vitro. In contrast, extensive degeneration of DRG neurons was evident within the 1st week after explantation of these immature ganglia in our normal culture medium without added NGF. On the other hand, although introduction of NGF in cultures of 10- to 12-week-old human fetal DRG neurons enhanced the early outgrowth of neurites, these ganglia showed relatively good growth and maintenance in long-term culture even when NGF was omitted from the medium. DRGs from human fetuses estimated to be between 9 and 10 weeks in utero showed intermediate degrees of survival when NGF was omitted from the culture medium (about 10 to 25% of the DRG neurons survived compared with those in paired cultures treated with NGF). The data demonstrate the existence of a critical period during which human DRG neurons may require high NGF concentrations to ensure long-term survival and maturation. Human fetal DRG cultures may provide a useful model system for studies related to familial dysautonomia where drastic deficits in sensory and sympathetic ganglia occur in utero.  相似文献   

18.
We have demonstrated that treatment of rat pheochromocytoma (PC12) cells with acetyl-L-carnitine (ALCAR) stimulates the synthesis of nerve growth factor receptors (NGFR). ALCAR has also been reported to prevent some age-related impairments of the central nervous system (CNS). In particular, ALCAR reduces the loss of NGFR in the hippocampus and basal forebrain of aged rodents. On these bases, a study on the effect of NGF on the PC12 cells was carried out to ascertain whether ALCAR induction of NGFR resulted in an enhancement of NGF action. Treatment of PC12 cells for 6 days with ALCAR (10 mM) stimulated [125I]NGF PC12 cell uptake, consistent with increased NGFR levels. Also, neurite outgrowth elicited in PC12 cells by NGF (100 ng/ml) was greatly augmented by ALCAR pretreatment. When PC12 cells were treated with 10 mM ALCAR and then exposed to NGF (1 ng/ml), an NGF concentration that is insufficient to elicit neurite outgrowth under these conditions, there was an ALCAR effect on neurite outgrowth. The concentration of NGF necessary for survival of serum-deprived PC12 cells was 100-fold lower for ALCAR-treated cells as compared to controls. The minimal effective dose of ALCAR here was between 0.1 and 0.5 mM. This is similar to the reported minimal concentration of ALCAR that stimulates the synthesis of NGFR in these cells. The data here presented indicate that one mechanism by which ALCAR rescues aged neurons may be by increasing their responsiveness to neuronotrophic factors in the CNS.  相似文献   

19.
Transforming growth factor alpha (TGF alpha) is a mitogenic polypeptide that is structurally homologous to epidermal growth factor (EGF) and appears to bind to the same receptor in all systems tested previously. In the present study, TGF alpha was found to enhance survival and neurite outgrowth of cultured neonatal rat dorsal root ganglion (DRG) neurons in a dose-dependent manner. This effect was observed with TGF alpha concentrations as low as 17.8 pM. By contrast, EGF at concentrations up to 83 nM was ineffective. Moreover, EGF did not antagonize the TGF alpha survival-promoting effect unless present in large excess (500-fold the concentration for which TGF alpha is effective); even in this case, only partial antagonism was achieved. Survival of neurons from nodose, trigeminal, and sympathetic ganglia was not increased by TGF alpha. Both a subpopulation of DRG neurons and of macrophages in the cultures bound iodinated TGF alpha. This binding was inhibited by excess unlabeled TGF alpha but not EGF. Our data are consistent with the possibilities that the actions of TGF alpha on DRG neurons occur indirectly via unidentified neurotrophic molecules other than NGF as well as directly on the neurons themselves. Thus, TGF alpha, in contrast to EGF, may act as a survival or maintenance factor for a subset of rat sensory neurons. Mediation of this neurotrophic effect appears to occur via a new form of TGF alpha receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号