首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
UDP-glucuronosyltransferases (UGTs) represent major phase II enzymes of drug metabolism which are regulated in a tissue-specific manner by endogenous and environmental factors. Among the latter, aryl hydrocarbon receptor (AhR) agonists such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and phenolic antioxidants such as tert-butylhydroquinone (tBHQ) are known to induce the expression of human UGT1A6 in Caco-2 cells. While binding of the TCDD-activated AhR to one xenobiotic response element (XRE) in the 5'-flanking regulatory region of UGT1A6 was characterised previously, the mechanism responsible for tBHQ induction is unknown. Therefore, it was investigated whether antioxidant response elements (AREs) are involved in tBHQ induction of UGT1A6. Transfectants of 3 kb of its regulatory region and its deletion mutants were treated with tBHQ. These studies suggested a region with approximately 2-fold induction, including an ARE-like motif, 15 bp downstream of the previously characterised XRE. Transfectants of the point-mutated ARE-like motif showed marginally reduced response to tBHQ, but surprisingly, loss of response to TCDD, suggesting interference of flanking proteins with the AhR/Arnt complex. Coordinate responses of UGT activity after treatment with TCDD or tBHQ were also observed in rat hepatoma 5L cells, mutants without the AhR and with recomplemented AhR. The results suggest a contribution of the AhR pathway and of proteins binding to the XRE flanking region to the induction of human UGT1A6 by both AhR agonists and phenolic antioxidants.  相似文献   

3.
4.
5.
6.
Caco-2 cells are a widely used model in drug development to study intestinal drug transport and metabolism. Recently, serotonin (5-hydroxytryptamine, 5-HT) has been characterized as a highly selective substrate of human UDP-glucuronosyltransferase UGT1A6 [Krishnaswamy S, Duan SX, von Moltke LL, Greenblatt DJ, Court MH. Validation of serotonin (5-hydroxytryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug Metab Disp 2003; 31:133-9], an isoform which conjugates planar phenols and is inducible by Ah receptor agonists and by oxidative/electrophile stress. To gain more insight into intestinal 5-HT disposition, uptake and metabolism of this neurotransmitter was studied in Caco-2 cell monolayers. It was found that 5-HT was taken up from the basolateral and to a lesser extent from the apical surface. It was mainly excreted basolaterally as 5-HT glucuronide. 5-HT UGT activity and UGT1A6 mRNA were induced by Ah receptor agonists and by oxidative stress generated by tert-butylhydroquinone and by isomeric thymoquinone, a potential antitumor agent and constituent of Nigella sativa seeds, commonly used as a condiment in the Middle East. While UGT1A6 induction was clearly detectable in NAD(P)H:quinone oxidoreductase 1 (NQO1)-deficient Caco-2 cells, it was not induced in NQO1-efficient HT-29 colon adenocarcinoma cells. The results suggest that--in addition to its detoxification function--intestinal UGT1A6 contributes to intestinal homeostasis of 5-HT from dietary sources and from release by enterochromaffin cells.  相似文献   

7.
The effects of andrographolide, the major diterpenoid constituent of Andrographis paniculata, on the expression of cytochrome P450 superfamily 1 members, including CYP1A1, CYP1A2, and CYP1B1, as well as on aryl hydrocarbon receptor (AhR) expression in primary cultures of mouse hepatocytes were investigated in comparison with the effects of typical CYP1A inducers, including benz[a]anthracene, beta-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Andrographolide significantly induced the expression of CYP1A1 and CYP1A2 mRNAs in a concentration-dependent manner, as did the typical CYP1A inducers, but did not induce that of CYP1B1 or AhR. Interestingly, andrographolide plus the typical CYP1A inducers synergistically induced CYP1A1 expression, and the synergism was blocked by an AhR antagonist, resveratrol. The CYP1A1 enzyme activity showed a similar pattern of induction. This is the first report that shows that andrographolide has a potency to induce CYP1A1 enzyme and indicates that andrographolide could be a very useful compound for investigating the regulatory mechanism of the CYP1A1 induction pathway. In addition, our findings suggest preparing advice for rational administration of A. paniculata, according to its ability to induce CYP1A1 expression.  相似文献   

8.
Recently we demonstrated the ability of mercuric chloride (Hg2+) in human hepatoma HepG2 cells to significantly decrease the TCDD-mediated induction of Cytochrome P450 1A1 (CYP1A1) mRNA, protein, and catalytic activity levels. In this study we investigated the effect of methylmercury (MeHg) on CYP1A1 in HepG2 cells. For this purpose, cells were co-exposed to MeHg and TCDD and the expression of CYP1A1 mRNA, protein, and catalytic activity levels were determined. Our results showed that MeHg did not alter the TCDD-mediated induction of CYP1A1 mRNA, or protein levels; however it was able to significantly decrease CYP1A1 catalytic activity levels in a concentration-dependent manner. Importantly, this inhibition was specific to CYP1A1and was not radiated to other aryl hydrocarbon receptor (AhR)-regulated genes, as MeHg induced NAD(P)H:quinone oxidoreductase 1 mRNA and protein levels. Mechanistically, the inhibitory effect of MeHg on the induction of CYP1A1 coincided with an increase in heme oxygenase-1 (HO-1) mRNA levels. Furthermore, the inhibition of HO-1 activity, by tin mesoporphyrin, caused a complete restoration of MeHg-mediated inhibition of CYP1A1 activity, induced by TCDD. In addition, transfection of HepG2 cells with siRNA targeting the human HO-1 gene reversed the MeHg-mediated inhibition of TCDD-induced CYP1A1. In conclusion, this study demonstrated that MeHg inhibited the TCDD-mediated induction of CYP1A1 through a posttranslational mechanism and confirms the role of HO-1 in a MeHg-mediated effect.  相似文献   

9.
10.
11.
The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver.  相似文献   

12.
Dioxins are widespread environmental contaminants that induce the carcinogen-activating enzyme, cytochrome P450 1A1 (CYP1A1) through an aryl hydrocarbon receptor (AhR)-dependent mechanism. We previously demonstrated that harmine inhibits the dioxin-mediated induction of Cyp1a1 activity in murine hepatoma cells. Therefore, the aim of this study is to determine the effect of harmine and its main metabolite, harmol, on the dioxin-mediated induction of CYP1A1 in human HepG2 and murine Hepa 1c1c7 hepatoma cells. Our results showed that harmine and harmol significantly inhibited the dioxin-mediated induction of CYP1A1 at mRNA, protein, and activity levels in a concentration-dependent manner in human and murine hepatoma cells. Moreover, harmine and harmol inhibited the AhR-dependent luciferase activity and the activation and transformation of AhR using the electrophoretic mobility shift assay. In addition, harmine and harmol displaced [3H]TCDD in the competitive ligand binding assay. At posttranslational level, both harmine and harmol decreased the protein stability of CYP1A1, suggesting that posttranslational mechanism is involved. Furthermore, we demonstrated that the underlying mechanisms of the posttranslational modifications of both compounds involve ubiquitin-proteasomal pathway and direct inhibitory effects of CYP1A1 enzyme. We concluded that harmine and its metabolite, harmol, are new inhibitors of dioxin-mediated effects.  相似文献   

13.
Coordinate regulation of Phase I and II drug-metabolizing enzymes and conjugate transporters by nuclear receptors suggests that these proteins evolved to an integrated biotransformation system. Two major groups of ligand-activated nuclear receptors/xenosensors evolved: the Ah receptor (activated by aryl hydrocarbons and drugs such as omeprazole) and type 2 steroid receptors such as PXR and CAR, activated by drugs such as rifampicin, carbamazepin and phenytoin. It is increasingly recognized that there is considerable cross-talk between these xenosensors. Therefore, an attempt was made to discuss biotransformation by the Ah receptor together with that of PXR and CAR. Due to considerable species differences the emphasis is on human biotransformation. Agonists coordinately induce biotransformation due to common xenosensor-binding response elements in the regulatory region of target genes. However, whereas different groups of xenobiotics appear to more selectively stimulate CYPs (Phase I), their regulatory control largely converged in modulating Phase II metabolism and transport. Biotransformation appears to be tightly controlled to achieve efficient homeostasis of endobiotics and detoxification of dietary phytochemicals, but nuclear receptor agonists may also lead to potentially harmful drug interactions.  相似文献   

14.
15.
As phytochemicals have the potential to counteract adverse effects of carcinogens we investigated the influence of the flavonoids quercetin and kaempferol on benzo[a]pyrene (BaP) mediated effects on human colon cancer cells, Caco-2. We focused on concerted effects on the expression of AhR and Nrf2 pathway components. In contrast to kaempferol, BaP and quercetin efficiently induced CYP1A1, CYP1A2 and CYP1B1-mRNA in Caco-2 cells. BaP not only acted via AhR activation but sustainably also by increasing AhR and by down-regulating AhRR mRNA. The flavonoids did not affect AhR expression but counteracted the BaP mediated AhRR repression. Only quercetin was found to induce AhRR mRNA. ARNT mRNA appeared to be slightly but significantly down-regulated by BaP as well as by flavonoids while expression of AIP was not or only slightly modulated. The Nrf2 pathway was activated by BaP and by the flavonoids shown by induction of Nrf2 and several of its target genes such as NQO1, GSTP1, GSTA1 and GCLC. Induction effects of 10 μm BaP on Nrf2, GSTP1 and NQO1 were abolished by the flavonoids. In summary, we show that quercetin supports AhR mediated effects. Both flavonoids, however, may counteract the effects of BaP on expression of AhR, AhRR, Nrf2, GSTP1 and NQO1. In conclusion, quercetin appears to have two faces, a flavonoid-like one and a PAH-like one which supports Ahr-mediated effects while kaempferol acts “just like a flavonoid”. Thus, flavonoids have to be treated individually with respect to their anti-adverse activity.  相似文献   

16.
In the present study, the effects of hexachlorobenzene (HCB) on epidermal growth factor receptor (EGFR) content of liver microsomes and plasma membrane, and on EGFR-tyrosine kinase activity in the microsomal fraction were investigated. In addition, we studied the parameters of the tyrosine kinase signalling pathway such as protein tyrosine kinase (PTK) activity and phosphotyrosine content in microsomal and cytosolic protein. To determine whether the observed alterations were correlated with a manifestation of overt toxicity, a single very low dose of HCB (1mg/kg body wt) and two much higher doses (100 and 1000 mg/kg body wt), the highest being toxicologically significant in that it reduced serum thyroxine (T(4)) and inhibited uroporphyrinogen decarboxylase (URO-D) (EC 4.1.1.37) activity, were tested. Our results demonstrated that liver microsomes of rats treated with HCB had higher levels of EGFR than untreated rats; treated rats also had less EGFR present in hepatocyte plasma membrane fractions than did untreated rats. HCB altered the phosphotyrosine content and protein phosphorylation of some microsomal and cytosolic proteins in a biphasic dose-response relationship. At the low dose, phosphorylation and phosphotyrosine content of several microsomal proteins were increased; however, these effects were diminished or reversed at the higher doses. Our results suggest that chronic HCB treatment produces a down-regulation of the EGFR and a dose-dependent increase in EGFR-tyrosine kinase activity in the microsomal fraction. This effect may contribute to the alteration of membrane and cytosolic protein tyrosine phosphorylation. The level of sensitivity encountered in our studies is extraordinary, occurring at 1/10 to 1/1000 the doses of HCB known to cause other toxicological lesions.  相似文献   

17.
We have previously revealed that treating pregnant rats with 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) reduces the expression of gonadotropins and growth hormone (GH) in the fetal and neonatal pituitary. A change in gonadotropin expression impairs the testicular expression of steroidogenic proteins in perinatal pups, and imprint defects in sexual behavior after reaching maturity. In this study, we examined whether TCDD also affects the expression of gonadotropin and GH in mice using C57BL/6J and DBA/2J strains which express the aryl hydrocarbon receptor (Ahr) exhibiting a different affinity for TCDD. When pregnant C57BL/6J mice at gestational day (GD) 12 were given oral TCDD (0.2–20 μg/kg), all doses significantly attenuated the pituitary expression of gonadotropin mRNAs in fetuses at GD18. On the other hand, in DBA/2J mice, a much higher dose of TCDD (20 μg/kg) was needed to produce a significant attenuation. Such reduction in the C57BL/6J strain continued until at least postnatal day (PND) 4. In agreement with this, TCDD reduced the testicular expression of steroidogenic proteins in C57BL/6J neonates at PND2 and 4, although the same did not occur in the fetal testis and ovary. Furthermore, TCDD reduced the perinatal expression of GH, litter size and the body weight of newborn pups only in the C57BL/6J strain. These results suggest that 1) also in mice, maternal exposure to TCDD attenuates gonadotropin-regulated steroidogenesis and GH expression leading to the impairment of pup development and sexual immaturity; and 2) Ahr activation during the late fetal and early postnatal stages is required for these defects.  相似文献   

18.
Flavin-containing monooxygenases often are thought not to be inducible but we recently demonstrated aryl hydrocarbon receptor (AHR)-dependent induction of FMO mRNAs in mouse liver by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Celius et al., Drug Metab Dispos 36:2499, 2008). We now evaluated FMO induction by other AHR ligands and xenobiotic chemicals in vivo and in mouse Hepa1c1c7 hepatoma cells (Hepa-1). In mouse liver, 3-methylcholanthrene (3MC) induced FMO3 mRNA 8-fold. In Hepa-1 cells, 3MC and benzo[a]pyrene (BaP) induced FMO3 mRNA > 30-fold. Induction by 3MC and BaP was AHR dependent but, surprisingly, the potent AHR agonist, TCDD, did not induce FMO3 mRNA in Hepa-1 cells nor did chromatin immunoprecipitation assays detect recruitment of AHR or ARNT to Fmo3 regulatory elements after exposure to 3MC in liver or in Hepa-1 cells. However, in Hepa-1, 3MC and BaP (but not TCDD) caused recruitment of p53 protein to a p53 response element in the 5′-flanking region of the Fmo3 gene. We tested the possibility that FMO3 induction in Hepa-1 cells might be mediated by Nrf2/anti-oxidant response pathways, but agents known to activate Nrf2 or to induce oxidative stress did not affect FMO3 mRNA levels. The protein synthesis inhibitor, cycloheximide (which causes “superinduction” of CYP1A1 mRNA in TCDD-treated cells), by itself caused dramatic upregulation (> 300-fold) of FMO3 mRNA in Hepa-1 suggesting that cycloheximide prevents synthesis of a labile protein that suppresses FMO3 expression. Although FMO3 mRNA is highly induced by 3MC or TCDD in mouse liver and in Hepa-1 cells, FMO protein levels and FMO catalytic function showed only modest elevation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号