首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The neural cell adhesion molecule (NCAM) plays a crucial role in neuronal development, synaptic plasticity, and regeneration. NCAM works as "smart glue" that not only mediates cell-cell adhesion but also induces activation of a complex network of intracellular signaling cascades on homophilic or heterophilic binding. Stimulation of NCAM by homophilic interactions induces neuronal differentiation through activation of a number of signaling molecules, including the fibroblast growth factor receptor, non-receptor kinases Fyn and focal adhesion kinase, growth-associated protein-43, the mitogen-activated protein kinase pathway, intracellular Ca(2+), and protein kinases A, C, and G. This review presents and discusses the current knowledge in the area of NCAM signaling with a focus on the events involved in NCAM-mediated neurite outgrowth.  相似文献   

2.
The neural cell adhesion molecule in synaptic plasticity and ageing   总被引:23,自引:0,他引:23  
By mediating cell adhesion and signal transduction, the neural cell adhesion molecule (NCAM) regulates neurite outgrowth, fasciculation and target recognition in the developing nervous system. In addition, a number of studies suggest an important role for the NCAM in regeneration and learning in the adult nervous system. NCAM-deficient mice are impaired in spatial learning. Moreover, by interfering with normal NCAM function by intracranial injections of NCAM-antibodies, long-term potentiation (LTP) in rat hippocampal slices and learning in rats and chicks have been inhibited. In the vertebrate nervous system, NCAM is the dominant carrier of polysialic acid (PSA), an unusual carbohydrate consisting of long homopolymers of sialic acid. The PSA-NCAM expression decreases markedly during development. However, an upregulation of polysialic acid (PSA) in restricted brain areas including the hippocampus has been observed following learning. Moreover, enzymatic removal of PSA results in impaired LTP and learning. In muscle, the PSA-NCAM expression is upregulated following denervation. This response is weakened in aging rats. The expression of NCAM and PSA have been shown to be regulated by neuronal activity suggesting that the NCAM may promote structural remodelling in an activity dependent manner associated with learning and regeneration.  相似文献   

3.
Neural cell adhesion molecule, NCAM, is an important regulator of neuronal process outgrowth and synaptic plasticity. Transgenic mice that overexpress the soluble NCAM extracellular domain (NCAM-EC) have reduced GABAergic inhibitory and excitatory synapses, and altered behavioral phenotypes. Here, we examined the role of dysregulated NCAM shedding, modeled by overexpression of NCAM-EC, on development of GABAergic basket interneurons in the prefrontal cortex. NCAM-EC overexpression disrupted arborization of basket cells during the major period of axon/dendrite growth, resulting in decreased numbers of GAD65- and synaptophysin-positive perisomatic synapses. NCAM-EC transgenic protein interfered with interneuron branching during early postnatal stages when endogenous polysialylated (PSA) NCAM was converted to non-PSA isoforms. In cortical neuron cultures, soluble NCAM-EC acted as a dominant inhibitor of NCAM-dependent neurite branching and outgrowth. These findings suggested that excess soluble NCAM-EC reduces perisomatic innervation of cortical neurons by perturbing axonal/dendritic branching during cortical development.  相似文献   

4.
Studies of the cell-cell adhesion molecules NCAM and L1 have indicated that their combined action is an important determinant in establishing normal patterns of muscle innervation. Moreover, they participate in activity-dependent changes in axonal sprouting. Recent findings in vivo, however, suggest that the central variable in both events is not altered NCAM or L1 expression, but rather changes in the amount of polysialic acid (PSA) at the cell surface. This finding is consistent with the proposed role of PSA as a regulator of cell-cell interactions. Because these molecular entities are present in most of the nervous system, it is likely that this mechanism can influence many aspects of axonal behavior during development and regeneration.  相似文献   

5.
Post-translational modification of neural cell adhesion molecule (NCAM) with alpha2,8-linked polysialic acid, which regulates homophilic adhesion and/or signal transduction events, is crucial to synaptic plasticity in the developing and adult brain. Evidence from in vitro models has implicated polysialylation in the regulation of cell growth, migration, and differentiation. Here, using two in vitro models, we demonstrate that polysialylation is downregulated by cell-cell contact and correlated with a state of neuronal differentiation. Furthermore, we report a role for protein kinase C delta (PKCdelta) in the regulation of NCAM polysialylation. Pharmacological studies using the PKC activator, phorbol myristate acetate, and inhibitors, calphostin-C, and staurosporine, demonstrated PKC activity to be inversely related to NCAM polysialylation in the mouse neuro-2A cell line. Isoform-specific immunoblot studies indicated this effect to be mediated by the calcium-independent PKCdelta isozyme, as its expression was inversely related to NCAM polysialylation state in both neuro-2A and rat PC-12 cell lines. Isoform specificity was further confirmed using the PKCdelta-selective inhibitor rottlerin, which produced a marked increase in PSA expression (36.9+/-5.25 a.u. vs. 24.7+/-0.80 arbitrary units control) coupled with a neuritogenic response. Likewise, decreased expression of PKCdelta was seen in nerve growth factor (NGF)-differentiated PC-12 cells. These findings suggest that the neuronal differentiation process may involve inhibition of PKCdelta, resulting in enhanced morphological plasticity, as evidenced by activation of NCAM polysialylation.  相似文献   

6.
NCAM expression induces neurogenesis in vivo   总被引:1,自引:0,他引:1  
Neural cell adhesion molecule (NCAM) plays an important role during neural development and in the adult brain, whereby most functions of NCAM have been ascribed to its unique polysialic acid (PSA) modification. Recently we presented evidence suggesting that expression of NCAM in vivo interferes with the maintenance of forebrain neuronal stem cells. We here aimed at investigating the fate of cells generated from NCAM-overexpressing stem cells in postnatal mouse brain and at elucidating the functional domains of NCAM mediating this effect. We show that ectopic expression of the NCAM140 isoform in radial glia and type C cells induces an increase in cell proliferation and consequently the presence of additional neuronal type A cells in the rostral migratory stream. A mutant NCAM protein comprising only fibronectin type III repeats and immunoglobulin-like domain 5 was sufficient to induce this effect. Furthermore, we show that the neurogenic effect is independent of PSA, as transgenic NCAM is not polysialylated in radial glia and type C cells. These results suggest that heterophilic interactions of NCAM with other components of the cell membrane must be involved.  相似文献   

7.
Taste receptor cells are replaced throughout life, accompanied by continuing synaptogenesis between newly formed taste cells and first-order gustatory fibers. The neural cell adhesion molecule (NCAM) is expressed by a subset of taste cells in adult rodents and appears on gustatory nerve fibers during development prior to differentiation of the taste buds. We employed antibodies against the extracellular domain of the NCAM polypeptide (mAb 3F4) and against polysialic acid (PSA) residues found on embryonic forms of NCAM (mAb 5A5) to investigate the relationship between the expression of these molecules and the innervation of taste buds in adult rats. In unoperated rats, anti-NCAM recognized a subset of cells within the vallate taste buds and also the fibers of the glossopharyngeal (IXth) nerve, including those innervating the gustatory epithelium. Taste bud cells did not express PSA but mAb 5A5 immunoreactivity was observed on some fibers of the IXth nerve, including a few that entered the taste buds. Bilateral crush of the IXth nerve resulted in the loss of NCAM expression from the gustatory epithelium within 8 days. As IXth nerve fibers reinnervated the epithelium, NCAM expression was seen first in the nerve, followed by increased expression in the epithelium as the taste cells differentiated from their precursors. PSA expression by fibers of the IXth nerve did not return to normal until well after the regeneration of the vallate taste buds. The present results demonstrate that taste cell expression of NCAM is dependent upon innervation by the IXth nerve and that NCAM expression appears in the nerve prior to its expression in the differentiating epithelium during regeneration. The occurrence of a similar temporal sequence in the developing taste system suggests that NCAM could play a role in cell-cell interactions that are important for the differentiation of the taste epithelium. Ongoing taste cell turnover and synaptogenesis between IXth nerve fibers and newly differentiating taste cells also requires recognition and adhesion, in which NCAM could play a role. © 1994 Wiley-Liss, Inc.  相似文献   

8.
The neural cell adhesion molecule (NCAM) plays an important role in synaptic plasticity in embryonic and adult brain. Recently, it has been demonstrated that NCAM is capable of binding and hydrolyzing extracellular ATP. The purpose of the present study was to evaluate the role of extracellular ATP in NCAM-mediated cellular adhesion and neurite outgrowth. We here show that extracellularly added adenosine triphosphate (ATP) and its structural analogues, adenosine-5'-O-(3-thiothiophosphate), beta, gamma-methylenadenosine-5'-triphosphate, beta, gamma-imidoadenosine-5-triphosphate, and UTP, in varying degrees inhibited aggregation of hippocampal neurons. Rat glial BT4Cn cells are unable to aggregate when grown on agar but acquire this capacity when transfected with NCAM. However, addition of extracellular ATP to NCAM-transfected BT4Cn cells inhibited aggregation. Furthermore, neurite outgrowth from hippocampal neurons in cultures allowing NCAM-homophilic interactions was inhibited by addition of extracellular nucleotides. These findings indicate that NCAM-mediated adhesion may be modulated by extracellular ATP. Moreover, extracellularly added ATP stimulated neurite outgrowth from hippocampal neurons under conditions non-permissive for NCAM-homophilic interactions, and neurite outgrowth stimulated by extracellular ATP could be inhibited by a synthetic peptide corresponding to the so-called cell adhesion molecule homology domain (CHD) of the fibroblast growth factor receptor (FGFR) and by FGFR antibodies binding to this domain. Antibodies against the fibronectin type-III homology modules of NCAM, in which a putative site for ATP binding and hydrolysis is located, also abolished the neurite outgrowth-promoting effect of ATP. The non-hydrolyzable analogues of ATP all strongly inhibited neurite outgrowth. Our results indicate that extracellular ATP may be involved in synaptic plasticity through a modulation of NCAM-mediated adhesion and neurite outgrowth.  相似文献   

9.
Interactions between the neural cell adhesion molecule (NCAM) with NCAM-expressing neurons (trans-interaction) stimulate outgrowth of neurites. The extent of NCAM-triggered neurite outgrowth depends on the presence of 10 amino acids derived from the variable alternatively spliced exon (VASE or π-exon) in the fourth immunoglobulin-like domain of NCAM (Ig4): NCAM with VASE reduces and without VASE enhances neurite outgrowth in cis- or trans-interaction. We have investigated the role of VASE in neurite outgrowth by characterizing the receptors at the cell surface of cultured cerebellar neurons. Results from experiments with L1 and NCAM antibodies and with cerebellar neurons derived from wild-type or NCAM-deficient mice show that substrate-coated Ig4 with VASE (Ig4+) or without VASE (Ig4−) stimulates neurite outgrowth by a trans-interaction with L1 and that Ig4− promotes neurite outgrowth more strongly than Ig4+ by a transinteraction with NCAM. J. Neurosci. Res. 50:62–68, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
The large quantities of polysialic acid (PSA) characterizing highly sialylated isoform of the neural cell adhesion molecule (PSA-NCAM), greatly reduce cell adhesion and render this particular cell surface adhesion molecule a likely candidate to intervene in dynamic neuronal phenomena, such as synaptic plasticity. The hypothalamic arcuate nucleus expresses high levels of PSA-NCAM and maintains a high capacity for neuroplastic changes in the adult. Thus, in the arcuate nucleus of female rats, varying circulating levels of estrogen give rise to a reversible reduction in the number of axo-somatic GABA synapses, together with a changing ensheathing of neuronal somata by astrocytes. To examine the role of PSA in such changes, we perturbed its expression, either by blockade with antibodies raised against this carbohydrate moiety (delivered intracerebroventricularly), or by its enzymatic cleavage after microinjection of endoneuraminidase N over the arcuate nucleus. Either procedure was performed in ovariectomized adult rats that received concurrent treatment with 17 beta-estradiol. Morphological synaptic plasticity was analysed using the unbiased disector method to assess synaptic densities in ultrathin sections of the arcuate nucleus immunogold-labelled for GABA. As expected, 17 beta-estradiol induced a significant reduction in the number of GABAergic axo-somatic synapses, a reduction which did not occur after infusion of anti-PSA antibodies or in vivo enzymatic removal of PSA from NCAM. Taken together, our results provide strong evidence that the presence of large quantities of the PSA moiety on NCAM is a necessary prerequisite for estrogen-induced phasic remodelling of synapses in the adult female arcuate nucleus.  相似文献   

11.
Cell adhesion molecules (CAMs) play important roles in cell-cell and cell-extracellular matrix interactions in both mature and developing nervous system. During development, they are involved in cell migration, axon guidance, target recognition, and synapse formation; while in the mature nervous system, they maintain synaptic connections, cell-cell contacts, and neuron-glial interactions. Injuries to the nervous systems break the stable state of the tissues and the repair of damaged tissues and regeneration of axons require the participation of CAMs both as adhesion molecules and as signal transduction molecules. One group of the well-studied CAMs in the nervous system is the immunoglobulin superfamily including L1 and neural cell adhesion molecule (NCAM). This review will be focussed on the involvement of L1, NCAM, and polysialylated NCAM in neural repair and axon regeneration after nerve injury and their potential applications in the treatment of CNS injury.  相似文献   

12.
The neural cell adhesion molecule NCAM exists as several related peptides formed by alternative splicing of the single NCAM gene. Here the ability of NCAM containing and lacking the alternatively spliced VASE exon to act as a permissive growth substrate was tested by examining retinal axon outgrowth on normal L cell fibroblasts and L cells expressing stably transfected 140 kD NCAM ± VASE. L cells expressing either NCAM form were a more permissive substrate than control L cells. At higher substrate cell densities, greater axon outgrowth occurred on substrate cells expressing NCAM ? VASE than on those expressing NCAM + VASE. Similar experiments tested retinal axon growth on neuronal substrates by utilizing clonal B35 cells, C3 cells that are NCAM lacking variants of B35, and C3 cells into which 140 kD NCAM ± VASE has been restored by transfection. Axon growth on C3 cells transfected with NCAM ? VASE was greater than that on all other substrates including cells transfected with NCAM + VASE. In these experiments C3 cells and transfected C3 expressing NCAM + VASE cell promoted similar outgrowth. The influence on neurite growth of the NCAM isoform of the neurite itself was tested by examining neurite formation using combinations of C3 cells and C3 NCAM transfectants both in the growth monolayer and as responding cells. C3 cells were able to extend neurites, indicating NCAM is not required for neurite growth. However, C3 derivatives transfected with NCAM ± VASE had greater neurite outgrowth. The most extensive neurite growth was found when NCAM ? VASE was expressed by both substrate cells and the responding neurite growing cells. Thus NCAM enhances axon or neurite outgrowth when present either in the growth substrate or on the growing axon. NCAM ? VASE has a significantly greater growth promoting capability than NCAM + VASE. The expression of NCAM + VASE by more mature neural cells could thus be a © Wiley-Liss, Inc. significant factor in the reduced axonation capabilities of mature neurons. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Polysialic acid (PSA) on the extracellular domain of the neural cell adhesion molecule (NCAM) reduces cell adhesion and is considered an important regulator of cell surface interactions. The hypothalamo-neurohypophysial system (HNS), whose glia, neurons, and synapses undergo striking, reversible morphological changes in response to physiological stimulation, expresses high levels of PSA-NCAM throughout life. Light and electron microscopic immunocytochemistry in normal rats and rats in which cell transport was blocked with colchicine showed that PSA-NCAM is expressed in both HNS neurons and glia, particularly at the level of astrocytic processes that envelop neuronal profiles and can undergo remodeling. Moreover, we confirmed that the overall levels of PSA-NCAM were not greatly altered by stimulation (lactation and chronic salt ingestion). Nevertheless, PSA is essential to morphological plasticity. Using comparative ultrastructural analysis, we found that, after specific enzymatic removal of PSA from NCAM by microinjection of endoneuraminidase close to the hypothalamic magnocellular nuclei in vivo, there was no apparent withdrawal of astrocytic processes nor any increase in synaptic contacts normally induced by lactation and dehydration. Our observations demonstrate, therefore, that expression of PSA on cell surfaces in the adult HNS is indispensable to its capacity for activity-dependent morphological neuronal-glial and synaptic plasticity. The carbohydrate PSA on NCAM can thus be considered a necessary permissive factor to allow neuronal and glial remodeling to occur whenever the proper inductive stimulus intervenes.  相似文献   

14.
The neuron adhesion molecules NILE/L1 and NCAM may be involved in axonal guidance and cell recognition. To investigate all exposed membrane domains of single neurons, something which has not previously been done for any adhesion molecule, we used digitally processed scanning electron microscopy with a high-energy backscatter electron detector. This allowed a quantitative analysis of immunogold staining densities on all surfaces of isolated rat hippocampal neurons in culture to study NILE/L1 and NCAM expression independent of potentially inductive innervation. During early stages of neuritic extension, all growth cones showed similar NILE/L1 expression, but as soon as a single process extended farther than the others (by 20 hours), this putative axon and its growth cone generally showed a stronger level of NILE/L1 immunogold labeling than the other neurites. This is the earliest evidence of plasma membrane differentiation between axons and dendrites. With further neuritic growth, the relative NILE/L1 expression on axons and their growth cones continued to increase. In contrast to some earlier reports, NILE/L1 was expressed on axonal growth cones growing on both polylysine-coated glass and astrocyte substrates. Strong immunostaining for NCAM-related polysialic acid (PSA) was found on axonal growth cones and filopodia, suggesting that the homophilic adhesive action of NCAM may be reduced during axonal growth. PSA showed greater labeling on distal axons than on other areas of the neuron, indicating a variable NCAM-mediated adhesion on different regions of the same cell. Neither NILE/L1, NCAM, nor PSA appeared to show regional differences in axons fasciculating or defasciculating on themselves. A strong intercellular heterogeneity of NILE/L1, NCAM, and PSA expression levels on neurons in the same culture dish was found, suggesting that subsets of cells from the hippocampus may express biologically relevant differences in adhesion molecules compared to neighboring neurons. In light of the growing body of evidence pointing to the multifaceted array of homophilic and heterophilic binding interactions that NILE/L1 and NCAM may exhibit, and the functional importance of molecular densities, the quantitative data here support the hypothesis that sufficient cellular and subcellular heterogeneity exists for these molecules to be involved in some aspects of axonal guidance. © 1993 Wiley-Liss, Inc.  相似文献   

15.
The neural cell adhesion molecule (NCAM) plays a pivotal role in neural development, regeneration, and plasticity. NCAM mediates adhesion and subsequent signal transduction through NCAM-NCAM binding. Recently, a peptide ligand termed P2 corresponding to a 12-amino-acid sequence in the FG loop of the second Ig domain of NCAM was shown to mimic NCAM homophilic binding as reflected by induction of neurite outgrowth in hippocampal neurons. We demonstrate here that in concentrations between 0.1 and 10 microM, P2 also induced neuritogenesis in primary dopaminergic and cerebellar neurons. Furthermore, it enhanced the survival rate of cerebellar neurons although not of mesencephalic dopaminergic neurons. Moreover, our data indicate that the protective effect of P2 in cerebellar neurons was due to an inhibition of the apoptotic process, in that caspase-3 activity and the level of DNA fragmentation were lowered by P2. Finally, treatment of neurons with P2 resulted in phosphorylation of the ser/thr kinase Akt. Thus, a small peptide mimicking homophilic NCAM interaction is capable of inducing differentiation as reflected by neurite outgrowth in several neuronal cell types and inhibiting apoptosis in cerebellar granule neurons.  相似文献   

16.
The neural cell adhesion molecule (NCAM) is found on cells as several related polypeptides formed by alternative splicing of the single NCAM gene. The alternatively spliced 30-bp VASE exon in the fourth immunoglobulin-like domain is the structural variation nearest those portions of the polypeptide proposed to mediate cell-cell adhesion. To test the ability of distinct forms of the NCAM molecules to mediate cell adhesion, L cells were transfected with expression vectors encoding rat 140 kD NCAM ± the VASE exon. L cell lines which expressed these polypeptides were isolated and tested for self-aggregation in a low shear, rapid aggregation assay. Increased cellular aggregation of the transfectants was observed to be a function of the NCAM molecule expressed. These transfected cells showed segregation in a long term co-aggregation assay: cells expressing NCAM — VASE formed aggregates which tended to exclude cells expressing NCAM + VASE and vice versa. These results provide direct evidence that this small difference in NCAM structure is sufficient to allow segregation of cells. © 1994 Wiley-Liss, Inc.  相似文献   

17.
The neural cell adhesion molecule (NCAM) plays a crucial role during development and regeneration of the nervous system, mediating neuronal differentiation, survival and plasticity. Moreover, NCAM regulates learning and memory. A peptide termed P2, corresponding to a 12-amino-acid sequence in the second immunoglobulin (Ig)-like module of NCAM, represents the natural cis -binding site for the first NCAM Ig module. The P2 peptide targets NCAM, thereby inducing a number of intracellular signaling events leading to the stimulation of neurite outgrowth and promotion of neuronal survival in vitro . The present study evaluated the effect of the P2 peptide on functional and histological outcomes following traumatic brain injury inflicted by a cortical cryogenic lesion. Lesioned rats were injected subcutaneously with P2 peptide, 5 mg/kg daily for 15 days beginning 2 h after injury. This treatment significantly improved postlesion recovery of motor and cognitive function, reduced neuronal degeneration, protected cells against oxidative stress, and increased reactive astrogliosis and neuronal plasticity in the sublesional area. P2 appeared rapidly in blood and cerebrospinal fluid after subcutaneous administration and remained detectable in blood for up to 5 h. The results suggest that P2 has therapeutic potential for the treatment of traumatic brain injury.  相似文献   

18.
In the mammalian nervous system, the neural cell adhesion molecule NCAM is the major carrier of the glycan polymer polysialic acid (PSA) which confers important functions to NCAM's protein backbone. PSA attached to NCAM contributes not only to cell migration, neuritogenesis, synaptic plasticity, and behavior, but also to regulation of the circadian rhythm by yet unknown molecular mechanisms. Here, we show that a PSA-carrying transmembrane NCAM fragment enters the nucleus after stimulation of cultured neurons with surrogate NCAM ligands, a phenomenon that depends on the circadian rhythm. Enhanced nuclear import of the PSA-carrying NCAM fragment is associated with altered expression of clock-related genes, as shown by analysis of cultured neuronal cells deprived of PSA by specific enzymatic removal. In vivo, levels of nuclear PSA in different mouse brain regions depend on the circadian rhythm and clock-related gene expression in suprachiasmatic nucleus and cerebellum is affected by the presence of PSA-carrying NCAM in the cell nucleus. Our conceptually novel observations reveal that PSA attached to a transmembrane proteolytic NCAM fragment containing part of the extracellular domain enters the cell nucleus, where PSA-carrying NCAM contributes to the regulation of clock-related gene expression and of the circadian rhythm.  相似文献   

19.
To investigate the role of polysialylated neural cell adhesion molecule (NCAM PSA)-mediated plasticity after injury, we examined the temporal and spatial expression of NCAM PSA immunoreactivity in the medial temporal lobe following global ischemia. Male Mongolian gerbils were subjected to bilateral common carotid artery occlusion for 5 min and killed at increasing times post-occlusion. The well-characterized delayed CAl pyramidal cell death was observed 5-7 days post-occlusion. At post-occlusion days 1-2 there was a small but significant increase of NCAM PSA-positive hippocampal granule cells followed by an equally significant decrease at post-occlusion day 5. In contrast, a substantial increase in glial PSA expression was observed in all hippocampal regions at 1-7 days post-occlusion that was associated generally with stellate astroglia and specifically with the radial processes of glia traversing the granule cell layer of the dentate gyrus. Administration of the glutamate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-ben-zo(F)quinoxaline significantly blocked the ischemia-induced modulation of neuronal and glial NCAM PSA expression. Astroglial NCAM polysialylation became attenuated by 35 days post-occlusion except in the CAI area of cell death. The temporal and regional pattern of polysialylated NCAM expression in the ischemic gerbil hippocampus implicates this neuroplastic marker in mechanisms of neurotrophic-dependent repair/remodeling that ensue following transient interruption of blood flow.  相似文献   

20.
We show that the loss or inactivation of the polysialic acid (PSA) tail of neural cell adhesion molecule (NCAM) on rat cortical neurons in culture leads to reduced differentiation and survival. The mechanism by which this negative effect is mediated appears to involve the neuronal response to brain-derived neurotrophic factor (BDNF): (i) in the absence of PSA or in the presence of excess free PSA added to the culture medium, BDNF-induced cell signalling is reduced; (ii) the addition of exogenous BDNF to the medium reverses the effect of PSA loss or inactivation. These data suggest that PSA-NCAM, previously shown to modulate cell migration and plasticity, is needed for an adequate sensitivity of neurons to BDNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号